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Abstract: Declines in growing-season rainfall and increases in the frequency of heatwaves in southern
Australia necessitate effective adaptation. The Sustainable Grazing Systems Pasture Model (SGS)
was used to model the growth of three pasture species differing in root depth and root distribution
under three different climate scenarios at two sites. The modelled metabolisable energy intake (in
MJ) was used in a partial discounted net cash flow budget. Both the biophysical and economic
modelling suggest that deep roots were advantageous in all climate scenarios at the long growing
season site but provided no to little advantage at the short growing season site, likely due to the
deep-rooted species drying out the soil profile earlier. In scenarios including climate change, the DM
production of the deep-rooted species at the long growing season site averaged 386 kg/ha/year more
than the more shallow-rooted species, while at the site with a shorter growing season it averaged
205 kg/ha/year less than the shallower-rooted species. The timing of the extra growth and pasture
persistence strongly influenced the extent of the benefit. At the short growing season site other
adaptation options such as summer dormancy will likely be necessary.

Keywords: heat stress; drought; climate impacts; pasture systems; adaptation

1. Introduction

Heatwaves and droughts affecting Australian pastures are becoming more frequent.
Rainfall in southern Australia from 1996 to 2015 declined 11% compared to the long-term
average beginning in 1900. It is projected that years with below average growing-season
rainfall will become more frequent than in the past [1]. Changes in summer rainfall are
less certain. In southern Australia, the expected time of drought is projected to increase [2].
Average temperatures in Australia have increased by about 1 ◦C since 1990. As average
temperatures increase the frequency of extreme heat events also increase. High tempera-
tures, defined as two standard deviations above the 1951 to 1980 mean, occurred 2.2% of
the time during that period. The frequency of these high temperatures increased to 11.45%
during the period from 2001 to 2015 [1]. Under an 8.5 representative concentration pathway
(RCP), which assumes continued increases in greenhouse gas emissions, the number of
‘warm spell’ days (6 or more days above the 90th percentile value for daily temperatures
from 1961 to 1990) is projected to increase by 100 days per year by 2090 [3].

Livestock producers may adapt by switching to deeper-rooted pasture species which
have better growth and persistence under drought and heat-stress conditions [4,5]. Pastures
in the high-rainfall zone are typically sown with perennial ryegrass (Lolium perenne) and
subterranean (Trifolium subterraneum) or white clover (T. repens). A limitation of more
shallow-rooted species like perennial ryegrass is that it is sensitive to heat stress and
drought [4,6]. The more deep-rooted, tall fescue has been shown to outperform perennial
ryegrass both in growth and physiological functions under abiotic stresses including heat
stress and drought due to its deep rooting nature [5]. In addition, Jiang and Huang [5]
reported that cell membrane damage and photosynthesis rate reduction was less in tall
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fescue compared to perennial ryegrass at the end of 21 days of 35/30 ◦C, day/night and
drought. In a study performed in Wales, tall fescue persisted longer than perennial ryegrass
under water stress [7].

Deep roots are considered a drought avoidance mechanism, a type of drought resis-
tance in plants [8]. Deeper-rooted plants maintain high tissue water potential by taking up
water from the deep soil layers so that they can grow more into the drought period [9]. Since
the foliage growth of pastures is related to the supply of water to the growing buds [10],
a continuous uptake of soil moisture is important for the growth of pasture into the dry
periods. Greater water uptake leads to higher leaf water content, photosynthetic activity,
reduced stomatal resistance, and transpiration cooling [5].

Quantifying the extent to which pastures comprised of deeper-rooted species will
perform better and provide a resilient feed base in response to heatwaves; in conjunction
with projected changes in rainfall, is necessary to determine the potential economic benefit
of this management option. Previous modelling has shown that adaptations such as heat
tolerance and responsiveness to CO2 concentrations outperformed deep roots at a cool and
wet site in Tasmania. However, the traits that provided the most advantage varied with the
site [11].

The aim of this research was to estimate the benefits of replacing a shallower-rooted
species with an intermediate or a deeper-rooted species to ameliorate the impacts of heat
stress and projected declines in rainfall on pastures. The analysis expands on previous
modelling by incorporating a climate scenario with increased variability and an economic
analysis that addresses the role of increased persistence that is often associated with deeper
roots. The metabolizable energy (ME) intake and nitrogen use information from the
biophysical modelling was used to inform the economic analysis.

2. Results
2.1. Biophysical Results
2.1.1. Climate Projections

Characteristics of the climate scenarios generated are shown in Table 1. The average of
temperature and rainfall of the climate scenarios at the two sites during the growing (April
to October) and non-growing seasons (November–March) are displayed. The Future and
Extremes scenarios had identical rainfall and average maximum temperatures (Table 1).
However, the variability in temperature was greater in the Extremes scenarios than the
Future scenarios. The methods of calculating projected minimum temperature in the Future
and Extremes scenarios were different, resulting in lower average minimum temperatures
in scenarios with increased variability (Extremes). Any differences between the growth of
the pasture species between Future and Extremes scenarios reflects only differences in the
projected temperature.

Table 1. Climate characteristics of the growing (April–October) and non-growing (November–March)
seasons on the longer and shorter growing season sites under three climate scenarios (standard
deviation in parentheses).

Scenarios Climate Season

Average
Maximum

Temperature
(◦C)

Average
Minimum

Temperature
(◦C)

Average
Rainfall

(mm)

Longer
growing

season site

Historic
Growing 15.5 (3.9) 6.2 (3.2) 451 (79)
Summer 24.1 (6.0) 10.4 (3.7) 190 (52)

Future
Growing 18.4 (4.5) 9.0 (4.5) 430 (74)
Summer 27.3 (6.6) 13.5 (4.8) 173 (54)

Extremes
Growing 18.4 (5.3) 7.3 (3.9) 430 (74)
Summer 27.3 (7.6) 11.7 (4.4) 173 (54)
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Table 1. Cont.

Scenarios Climate Season

Average
Maximum

Temperature
(◦C)

Average
Minimum

Temperature
(◦C)

Average
Rainfall

(mm)

Shorter
growing

season site

Historic
Growing 15.5 (4.6) 4.5 (3.8) 351 (119)
Summer 26.9 (5.3) 12.0 (4.2) 197 (93)

Future
Growing 18.6 (5.2) 6.9 (5.1) 316 (106)
Summer 30.4 (5.8) 15.0 (5.1) 198 (97)

Extremes
Growing 18.6 (6.0) 5.4 (4.6) 316 (106)
Summer 30.4 (6.9) 13.6 (4.9) 198 (97)

Climate change substantially increased the days of heat stress at both sites, both days
with maximum temperature 35 ◦C or above and days with average temperature 23 ◦C or
above (Table 2). The Extremes scenario had more heat stress days from March to October
than the Future scenarios at both sites. The increase was due to greater frequency of high
temperatures (≥35 ◦C) under the Extremes scenarios at both sites. In contrast, the lower
minimum temperatures in the Extremes scenarios led to slightly fewer heat stress days
due to higher average temperature (≥23 ◦C). This results in slightly lower number of heat
stress days in summer, particularly at the short-growing season site (Table 2).

Table 2. The monthly average number of heat stress days (max >35 ◦C or average >23 ◦C) per year at
each site.

Season
Longer-Growing Season Shorter-Growing Season

Historic Future Extremes Historic Future Extremes

Dec 5.2 9.7 10.1 9.2 17.7 16.7
Jan 8.3 13.0 13.6 15.7 22.7 19.9
Feb 8.6 13.4 13.3 14.2 20.9 17.8

March 0.8 9.7 10.1 6.1 13.7 15.2
April 0 3.8 4.3 0.2 3.0 4.1
May 0 0.3 0.7 0 0.1 0.1
June 0 0 0.2 0 0 0
July 0 0 0.2 0 0 0

August 0 0.1 0.2 0 0 0.1
September 0 0.4 0.8 0 0.6 1.0

October 0.5 2.2 3.4 0.7 3.6 4.7
November 2.6 6.3 7.0 4.3 17.7 12.7

Annual 31.3 58.9 64.0 50.5 93.7 92.3

2.1.2. Growth

The average monthly growth for all scenarios is displayed in Figure 1. Increases
in winter temperatures and higher CO2 concentrations associated with climate change
increased annual DM production under both the Future and Extremes climate scenarios at
both the long and short growing season sites. However, spring growth and intake of all
pasture species was reduced under Future and Extremes scenarios at both sites (Table 3).
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Longer growing-season site, historic climate (b) Shorter growing-season site, historic climate (c) Longer growing season, 
Future (d) Shorter growing season, Future (e) Longer growing season, Extremes (f) Shorter growing season, Extremes. 
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of ME are displayed. Values in parentheses are standard deviations. 
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Annual growth 6.5 (1.1) 6.1 (1.1) 6.0 (1.1) 
Annual intake  48.3 (9.8) 46. 7 (9.7) 44.9 (9.6) 

Future 
Spring growth 3.2 (0.8) 2.2 (0.7) 1.9 (0.6) 
Annual growth 6.7 (1.1) 6.3 (1.1) 6.3 (1.1) 
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Extremes 
Spring growth 3.0 (0.8) 2.1 (0.7) 1.8 (0.6) 
Annual growth 6.7 (1.2) 6.4 (1.1) 6.4 (1.1) 
Annual intake 44.5 (9.5) 42.9 (9.2) 41.6 (9.0) 

Shorter growing 
season site 

Historic 
Spring growth 2.5 (0.8) 1.9 (0.8) 1.6 (0.7) 
Annual growth 5.0 (2.0) 4.9 (1.8) 4.8 (1.7) 
Annual intake  27.0 (9.6) 25.5 (10.1) 23.2 (9.8) 

Future Spring growth 1.6 (1.0) 1.2 (0.9) 1.1 (0.8) 

Figure 1. Monthly average growth of three grass species with differing root distributions at two sites and three climate
scenarios. The values displayed are annual pasture growth (kg DM/ha/year) for the deep and shallow rooted species.
(a) Longer growing-season site, historic climate (b) Shorter growing-season site, historic climate (c) Longer growing season,
Future (d) Shorter growing season, Future (e) Longer growing season, Extremes (f) Shorter growing season, Extremes.

The advantage of deep roots was apparent in spring at both sites. At the longer
growing season site this led to the deep-rooted species having the greatest annual DM
production and the intermediate species outperforming the shallow rooting species. How-
ever, this benefit of deep roots in spring was marginal at the short growing season site in
the Future and Extreme scenarios. Further, at the short growing season site annual DM
production was lower and more variable for the deeper-rooted pasture species compared
with the shallower-rooted species (Table 3). The intermediate root distribution resulted
in growth that was more like the shallower rooted species than the deeper-rooted species
across scenarios. Root growth followed the same trends as above ground growth (results
not shown).

Trends in the intake of the pasture ME were similar to dry matter production at
the long growing season site, although the benefit continued into the summer. At the
shorter-growing season site, the variability in annual intake of the shallow-rooted species
was greater than the deep-rooted species. However, the annual average intake of the
deep-rooted species at the short growing season site was greater than the shallow-rooted
species in Future scenarios, in contrast to dry matter production (Table 3).
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Table 3. For each scenario, spring (September–November) and annual pasture growth (t DM/ha) and annual intake in GJ of
ME are displayed. Values in parentheses are standard deviations.

Site Climate Variable Deep-Rooted
Species

Intermediate-Rooted
Species

Shallow-Rooted
Species

Longer growing
season site

Historic
Spring growth 3.7 (0.9) 2.7 (0.8) 2.4 (0.7)
Annual growth 6.5 (1.1) 6.1 (1.1) 6.0 (1.1)
Annual intake 48.3 (9.8) 46. 7 (9.7) 44.9 (9.6)

Future
Spring growth 3.2 (0.8) 2.2 (0.7) 1.9 (0.6)
Annual growth 6.7 (1.1) 6.3 (1.1) 6.3 (1.1)
Annual intake 44.0 (9.5) 42.6 (9.3) 41.3 (9.3)

Extremes
Spring growth 3.0 (0.8) 2.1 (0.7) 1.8 (0.6)
Annual growth 6.7 (1.2) 6.4 (1.1) 6.4 (1.1)
Annual intake 44.5 (9.5) 42.9 (9.2) 41.6 (9.0)

Shorter growing
season site

Historic
Spring growth 2.5 (0.8) 1.9 (0.8) 1.6 (0.7)
Annual growth 5.0 (2.0) 4.9 (1.8) 4.8 (1.7)
Annual intake 27.0 (9.6) 25.5 (10.1) 23.2 (9.8)

Future
Spring growth 1.6 (1.0) 1.2 (0.9) 1.1 (0.8)
Annual growth 5.0 (2.2) 5.1 (2.1) 5.2 (1.9)
Annual intake 24.8 (8.1) 22.9 (9.2) 20.3 (9.7)

Extremes
Spring growth 1.5 (1.0) 1.2 (0.9) 1.1 (0.8)
Annual growth 4.9 (2.2) 5.1 (2.1) 5.2 (1.9)
Annual intake 24.8 (8.3) 23.0 (9.6) 20.6 (10.0)

2.1.3. Soil Moisture

In the spring, the deeper-rooted species reduced soil moisture at depths between 30 to
130 cm compared to the shallow-rooted species across sites and climate scenarios (Figure 2).
The reduction was more pronounced on the shorter-growing season site, with soil moisture
differences between 60 and 100 cm depth between 5.3% and 7.9% lower in the historic and
Future scenarios. At the longer-growing season site this difference ranged from 3.1% to
4.5%. The intermediate root distribution resulted in soil moisture values midway between
the deep and shallow species at the shorter growing site and slightly more similar to the
shallow-rooted species on the longer growing season site.
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2.2. Economic Results
2.2.1. Longer-Growing Season Site

The attractiveness of an investment in improved pasture growth depends on the
opportunity cost of the capital and the farmer’s attitude to risk. On the longer-growing
season site, improving a 100 ha paddock with any of the proposed pasture species has
a 70% chance of earning at least an average of 11% real return on capital over the life
of the investment. A typical opportunity cost of marginal capital used for pasture, and
which could be invested elsewhere on the farm with similar risk could be between 8% and
15% real return. The probability of earning a good return on marginal capital invested
in improved pasture is greater if a pasture species with deeper roots than a shallow root
species is sown. That is, for every level of return there is a greater probability of earning
the return better than the opportunity cost of capital if a pasture species with deep roots is
sown. The extra value from sowing a pasture species with deeper roots depends on the
value of pasture through the production year as well as the persistence of such a pasture
species (see Figure 3). The results in Figures 3 and 4 are based on the pasture being highly
valued in January to August and of less value in September to December. If the pasture
is highly valued in October to June and of less value in July to September (results not
shown)—the curves of the cumulative distribution function shifts to the right and increases
the likelihood of earning a higher return from the investment on both sites.
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traditional shallow-rooted species for a farm business, under any climate scenario. That 
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Figure 3. Cumulative Distribution Function of the Modified Internal Rate of Return (MIRR). The real return on the extra
capital invested, per annum, for investing in pasture sown with a pasture species that is the same in every way except in the
depth of the roots and persistence, under the Extremes scenario in the high-rainfall area over 10,000 simulations (a) MIRR if
the persistence of the pasture is same for each pasture species (b) MIRR if the intermediate and deep root pasture species
persisted for 15 years and the shallow rooted pasture species persisted for ten years.
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capital invested, per annum, for an investment in pasture improvement sown with a pasture species that is the same in
every way except in the depth of the roots and persistence, under the Extremes scenario in the shorter-growing season
region. (a) MIRR if the persistence of the pasture is same for each pasture species. (b) MIRR if the intermediate and deep
root pasture species persisted for 15 years, and the shallow rooted pasture species persisted for ten years.
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2.2.2. Shorter-Growing Season Site

On the shorter growing season site, improving a 100 ha paddock with any of the
proposed pasture species has a 70% chance of earning at least an average of 7% real return
on capital over the life of the investment. If the pasture species have the same establishment
and persistence characteristics, the modelled deeper-rooted pasture species at the shorter
growing season site has no probability of producing more net benefits than the traditional
shallow-rooted species for a farm business, under any climate scenario. That is, for every
level of return there is a greater probability of earning the return on capital that exceeds
opportunity cost, and by a greater margin, if a pasture species with shallow roots is sown.
Even if pasture is more valuable during October to June, a deep-rooted pasture species is
likely to earn lower returns compared to a shallow-rooted pasture species in a region with
low rainfall. If the pasture species have the same establishment but different persistence
characteristics, then sowing a pasture species with roots that are intermediate depth or
deeper roots, are likely to produce more net benefits than sowing a shallow rooted pasture
species with reduced persistence characteristics (see Figure 4).

3. Discussion
3.1. Biophysical Performance of Pasture Species

Improving pastures with a species with increased rooting depth may not necessarily
be adaptive. The benefits of a deeper-rooted pasture species differed for the two case study
locations, with the advantages more evident on the long growing season site.

The large difference in the benefit of deeper roots between the two locations is likely
due to water availability. During the transition period from late spring to early summer
when daily temperatures can cause heat stress and residual soil moisture is still available,
the deeper-rooted species can access residual soil moisture. If residual soil moisture is
insufficient, the deeper-rooted species does not have an advantage over a shallow rooted
species in hot conditions. In an environment where water is limited, the results suggest
that deeper roots are not an effective trait to help with adapting to heat stress, as this ability
depends more on water availability. Additionally, deeper-rooted species may exacerbate
water stress at the end of the growing season through drying down the soil profile earlier.
Experimental evidence shows that a deeper-rooted species such as tall fescue extract
available soil moisture faster (potentially resulting in a lower relative soil moisture content)
and increases evapotranspiration rates compared to more shallow rooted species, such as
perennial ryegrass [5]. This would accelerate the utilisation of available water exacerbating
soil moisture stress in late spring at the low rainfall site.

Similar limitations of deeper-rooted species have been reported previously. In a study
of the performance of tall fescue cultivars, summer active cultivars survived better during
spring-summer drought at two high-rainfall sites in Victoria (with average annual rainfall
of 477 mm and 596 mm and spring-summer moisture deficits of 533 mm and 460 mm
respectively) than at sites in New South Wales with similar rainfall but with a spring-
summer water deficit of 650 mm [12]. A modelling study also demonstrated that site
characteristics influenced the advantage provided by deep roots [11].

3.2. Climate Change Impacts on Pasture Growth

This research has suggested that under the hotter and drier conditions of climate
change there will be a change in the time of the year when pasture is grown. Compared to
the historic scenario, under climate change scenarios spring pasture growth was reduced
and winter growth increased for all pasture species (Table 3). This is consistent with current
pasture growth in southeast Australia being limited by low winter temperatures [13]. It
suggests that the previously observed declines in spring growth and increases in winter
growth [14] will continue.

The change in timing of pasture production with increasing production in winter and
reduced production in spring is especially relevant to the economic analysis. The value of
a deeper-rooted pasture species will depend on whether the extra dry matter grown is at a
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time when extra pasture supply would have been limited and in deficit to animal demand
and the volatility surrounding the amount of extra pasture grown. If spring becomes a time
of year when pasture is in deficit to animal demand, extra spring growth becomes more
valuable to a grazier. In this situation, the deeper-rooted species is more advantageous
because the deeper-rooted species is expected to grow more pasture in spring compared
with a shallower-rooted species. There are other consequences of this change in timing,
since key strategic decisions like calving/lambing time are usually timed to coincide with
the highest producing months to meet the animal feed demand [15].

3.3. Study Limitations

To isolate the productivity differences of a deeper rooting characteristic other aspects
of the systems in the two areas were kept constant. Although this assists in quantifying the
benefits of deep roots, it leads to modelled systems that are generic. The model does not
explicitly incorporate ploidy, time of flowering or endophytes. To eliminate the presence
of confounding factors more realistic details were excluded. Scenarios do not include
management differences that would likely occur in farms of these areas; legumes that
would often co-occur in pastures are not included; and nitrogen limitation that is common,
particularly in spring, was avoided. These factors, in addition to the differences that would
occur in lighter or heavier soils should be considered when considering if these results are
applicable to specific sites in Victoria.

3.4. Importance of Pasture Persistence

The importance of pasture persistence to pasture improvement decisions has been
highlighted in this research. In the scenario in which the deeper-rooted pasture species
persisted longer than the shallower-rooted species it had a greater chance of returning a
higher return to marginal capital on both the long and short growing season sites. This
finding is supported by Malcolm et al. [16] who found that the longer a pasture persists at
peak level of annual production the more profitable it is. Given its importance, the lack of
incorporation of pasture mortality and persistence in many biophysical models suggests
this should be addressed when using such models to determine impacts and alternative
adaptation options. This analysis addresses this gap with the economic analysis, but it is
often overlooked.

The results of the current study suggest that researchers looking for a pasture adap-
tation response to a changing climate, in dry areas, should consider characteristics other
than increased root depth alone, including increased persistence and summer dormancy.
Mediterranean tall fescue, which is summer dormant, has been shown to have good persis-
tence in areas with dry summers [17,18]. In New South Wales, Mediterranean tall fescue
was shown to experience high mortality during a drought but gradually recovered [12].
Summer active tall fescue is suitable in areas where annual rainfall >600 mm with some
amount of summer rainfall or in heavy textured clay soils that hold some residual moisture
in the subsoil layers in latter part of the growing season [19]. Phalaris could be considered
instead of summer active tall fescue for areas prone to drought and heat because of the
summer dormancy and superior heat and drought tolerance characteristics [20,21]. In a
biophysical modelling study, Ghahramani and Moore [22] found adding summer active
lucerne, phosphorous fertilizer and confinement feeding were the best options to cope with
increasing temperatures and decreasing rainfall associated with climate change. However,
that study did not consider climate extremes.

4. Materials and Methods
4.1. Biophysical Modelling

This study used whole-farm system modelling to estimate differences in annual
production from a modelled pasture with three root architectures: shallow, intermediate,
and deep. The dynamic whole-farm system model SGS was used [23]. SGS incorporates
soil water, soil nutrients, pasture, and animals. These components are influenced by climate
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and management actions as well as interactions between them. For instance, dung and
urine from livestock influence soil nutrients and pasture growth and digestibility, which
will influence pasture intake. The SGS model’s pasture and water routines have been
validated for the regions of interest [24–26] and has been used in similar studies [11,27]. A
limitation of the SGS model is that it does not predict pasture mortality. In poor conditions,
growth can be zero. However, growth will resume in the model as soon as conditions
improve, regardless of the length of time poor conditions persist. To address this limitation,
the economic analysis described below includes a case investigating the influence of pasture
persistence.

4.1.1. Site Characteristics

Pasture production from paddocks (1 ha) at two locations was modelled to capture
the differences in pasture DM responses in regions of southeast Australian with longer and
shorter growing seasons. The long-growing season site was based on data from Hamilton,
Victoria, which has had a historic average rainfall of 650 mm while the short-growing
season site was based on data from Dookie, Victoria, with an historic average rainfall of
550 mm. Rainfall and thus pasture production at Hamilton typically continues later into
spring than at Dookie [14]. These sites cover the range of rainfall where a switch from a
shallower-rooted species like perennial ryegrass to a deeper-rooted species such as tall
fescue or Phalaris could be appropriate.

Soil data, including hydrologic parameters, came from research scenarios developed
previously for these areas [28]. A chromosol soil with 25% clay and the default parameters
for a high organic matter (2.97%) soil was modelled at the long growing season site. The
same chromosol with medium organic matter (2.17%) was modelled at the short growing
season site. This allowed for consistent simulations with carbon levels stabilised to long-
term rainfall. Chromosols are patchily distributed throughout Victoria and are a common
soil type in several pasture regions of the state.

In the model, 25 mature wethers/ha were grazed at the long growing season site and
15 mature wethers/ha were grazed at the short growing season site. The model represents
stock as dry sheep equivalents. For the purposes of this study, these values are intended to
reflect a level of stocking intensity appropriate to these areas, not a specific farming system.
Stocks were removed when dry matter was <0.8 tons DM per hectare and were replaced
when dry matter recovered to 1.3 tonnes per ha. Nitrogen fertiliser was applied at both
sites at levels that ensure nitrogen did not limit modelled plant growth.

4.1.2. Pasture Species

To quantify the influence of deep roots, three grass species were modelled. The
shallower-rooted species was described in the SGS model primarily using default param-
eters for perennial ryegrass. The intermediate and deep-rooted species differed only in
rooting depth and root distribution. The default parameters for perennial ryegrass were
validated [24] and include optimal leaf nitrogen composition of 4% and optimal temper-
ature for photosynthesis of 23 ◦C. Starting at 30 ◦C growth in the model is impacted by
heat, with full heat stress occurring at 35 ◦C. For all species, the recovery after heat stress (T
sum for recovery) was changed from the default value of 100 to 20 based on the findings of
Perera et al. [29], who demonstrated the lag between heat stress and recovery was too long
using the default parameters. Rooting depths were altered from the perennial ryegrass
default values. The root distribution of the shallow-rooting species was similar to that
reported for perennial ryegrass with a maximum root depth of 90 cm and 50% of roots
occurring in the top 15 cm [30]. The intermediate rooted species has parameters similar
to tall fescue with 50% of roots occurring in the top 25 cm and a maximum root depth of
120 cm [30]. The deeper-rooted species had a maximum root depth of 120 cm, but had 50%
of roots occurring in the top 40 cm.
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4.1.3. Climate Scenarios

In addition to the historic climate, which served as a reference, traditional climate
change scenarios (referred to as Future) and scenarios with increased climate variability
(referred to as Extremes) were used to investigate the performance of the three species,
leading to a total of 18 scenarios. The historic climate was based on data for each site from
the Australian Bureau of Meteorology, sourced through the SILO patch point dataset [31]
between 1976 to 2013 and this period served as the baseline years for the all climate change
scenarios. The traditional climate change scenarios were developed using change fac-
tors from an RCP 8.5 scenario for 2080. The ensemble means for rainfall, minimum, and
maximum temperature used were the CMIP 5 models available at the Climate Change
in Australia website, with the five worst performing models for southern Australia ex-
cluded [32]. In this climate model evaluation for five Australian regions only five models
had skill scores less than 400 for the southern Australian region. Those were BNU-ESM,
CESM1-WACCM, CMCC-CESM, GFDL-ESM2M, IPSL-CM5A-LR. The 35 models included
in the ensemble projections include a wide range of variation in projected temperature
increases and changes in rainfall [32]. The Extreme climate change scenarios aimed to
increase variability of temperature, while preserving the maximum mean temperature,
based on the methodology of Harrison [27]. This was done by upscaling all daily maximum
temperatures above the median monthly maximum and upscaling only 50% of the values
below the median monthly maximum temperature. This resulted in a more variable climate
projection and greater frequency of extreme heat. This was done to investigate the impacts
of greater variability in temperature on plant responses. All climate change projections
included a CO2 concentration of 758 ppm based on concentrations for 8.5 RCP in 2080 [33].

Rainfall, temperature, heat stress days, soil moisture availability, and pasture produc-
tivity for the scenarios are reported in the results. The biophysical model’s outputs for
pasture productivity, pasture ME, and nitrogen application were used in the economic
analysis described below. The differences in soil moisture availability, root and pasture
growth, and energy intake (MJ) by livestock between the three species were compared
across the three climate projections and two sites.

4.2. Economic Analysis

For the economic analysis, the scenario used was the re-establishment of a 100-ha
paddock. Improved pasture plants were assumed to make up a small proportion of the
paddock, the soil P content was low, lime had not been applied in over 15 years, and low
energy value, low digestibility grasses and weeds were predominant. To improve the
pasture, existing plants were removed, capital fertiliser and lime applied, and an improved
pasture species sown into a prepared seedbed. The choice of pasture to sow was one
of three species of improved pasture plant described earlier. The only difference in the
characteristics of these three plant species was the depth and distribution of plant roots,
defined as shallow, intermediate, and deep, as described in Section 4.1.2.

The economic analysis addresses these research questions:

• What is the most likely real return on capital invested, per annum, if a farmer invests
to increase the dry matter by sowing one of the three described pasture species?

• Which of the three pasture species would be most profitable to sow considering risk?
• If the intermediate and deep root pasture species has increased persistence compared

with the shallow rooted species would this change the conclusion about which pasture
species is the best investment to sow in the paddock?

To answer these questions a discounted net cash flow budget of annual net returns
over the life of the pasture was used. The numbers in the budget were in real dollars (no
inflation) and real opportunity cost of farmer capital. The Modified Internal Rate of Return
(MIRR) which measures the return on investment over the life of the project was calculated.
The investment was analysed over 30 years which involved several cycles of pasture life.

The key assumptions behind the economic analysis were:
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• The results from the biophysical modelling were inputs into the economic analysis.
The estimates of growth of pasture dry matter from the biophysical modelling were
scaled to 100 ha to represent the consequences of a decision to renovate 100 ha of
pasture in a grazing system.

• The two-price method for valuing pasture was used to value the pasture used on farm
each month (described below, Section 4.2.3).

• The initial capital investment in establishing the improved pastures was $580/ha.
• The cost of re-establishing the improved pastures during the repeated life cycle was

$491/ha. It was assumed there was some of the initial ‘bank’ of capital fertiliser from
the start of the project because of annual maintenance applications of fertiliser.

• The investment in pasture improvement was analysed for three climate scenarios.
These were historic climate scenario, Future climate scenario and Extremes climate
scenario, as explained above (Section 4.1.3).

• Probability distributions were used to:

# Determine the starting year from the 40 years of SGS modelled data.
# Account for a range in the value of pasture.
# Encapsulate the likelihood of establishment failure.

4.2.1. Establishment Assumptions

It was assumed the pasture would each take three years to establish and reach peak
annual production (Table 4). A discrete distribution was used to allow for establishment
failure, with a probability that this would occur one year in ten. If the pasture did not
establish, it was assumed that there would be an additional cost in the subsequent year of
$222 per hectare to re-establish it.

Table 4. The assumed percentage of pasture grown during establishment until peak production.

Year after Establishment 1st 2nd 3rd 4th

Potential growth (%) 50% 80% 100% 100%

4.2.2. Persistence Assumptions

‘Persistence’ was defined in this study as the continuing production of the pasture
species at a level of annual production that warrants continuing using that pasture, for a
defined time following pasture establishment. The persistence of a pasture over time is
determined by factors like insect damage, weeds, grazing management, summer rainfall
and temperature, and soil related issues such as compaction, drainage, soil structure,
fertility, and pH [34].

For this study, the persistence of the pasture after ten years was adjusted based on
rainfall. If the average annual rainfall was below average 50% or more of the time, the
10-year period was defined as being a predominately dry period. It was assumed that
after a predominantly dry period 25% of the pasture remained. If annual rainfall was
above average for more than 50% of this period, it was assumed the amount of pasture
remaining after the life of the investment was 40%. Figure 5 shows the adjustment to the
pasture remaining at year ten to allow for persistence of pasture. It was assumed the farmer
managed the other factors that affected persistence.
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Figure 5. The assumed percentage of modelled pasture growth, attributed to capital investment in pasture improvement,
reflecting a 10-year persistence period for both pasture species for a predominately dry 30-year period and a predominately
wet 30-year period.

A second scenario was considered to assess the consequences of the intermediate and
deeper-rooted pasture species having increased persistence. According to Nie et al. [35],
the persistence of a more shallow-rooted pasture (such as perennial ryegrass) and a deeper-
rooted pasture (such as tall fescue) differ. In this case, it was assumed that:

• A pasture sown with the shallower-rooted species would have declined in annual
production such that it would need to be renovated after ten years; and

• A pasture sown with a deeper-rooted species, would have declined in annual produc-
tion such that it would need to be renovated after 15 years.

Figure 6 displays the percentage adjustment made to the two pasture species during a
predominately dry period to reflect the improved persistence of the deeper-rooted pasture.

Plants 2021, 10, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 5. The assumed percentage of modelled pasture growth, attributed to capital investment in pasture improvement, 
reflecting a 10-year persistence period for both pasture species for a predominately dry 30-year period and a predomi-
nately wet 30-year period. 

A second scenario was considered to assess the consequences of the intermediate and 
deeper-rooted pasture species having increased persistence. According to Nie et al. [35], 
the persistence of a more shallow-rooted pasture (such as perennial ryegrass) and a 
deeper-rooted pasture (such as tall fescue) differ. In this case, it was assumed that: 
• A pasture sown with the shallower-rooted species would have declined in annual 

production such that it would need to be renovated after ten years; and 
• A pasture sown with a deeper-rooted species, would have declined in annual pro-

duction such that it would need to be renovated after 15 years. 
Figure 6 displays the percentage adjustment made to the two pasture species during 

a predominately dry period to reflect the improved persistence of the deeper-rooted pas-
ture. 

             
Figure 6. The percentage of modelled pasture growth for the shallower- and deeper-rooted pasture species (to account for establish-
ment differences and differences in the persistence of the different pasture species) based on a predominately dry 30-year period. 

  

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30

%
 o

f p
as

tu
re

 p
ro

du
ct

io
n

Year

Predominantly dry
Predominantly wet

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30

%
 o

f p
as

tu
re

 p
ro

du
ct

io
n

Year

Deeper rooted
Shallower rooted

Figure 6. The percentage of modelled pasture growth for the shallower- and deeper-rooted pasture species (to account for
establishment differences and differences in the persistence of the different pasture species) based on a predominately dry
30-year period.

4.2.3. Valuing Pasture

The method of Hardin and Johnson [36] was used to value the pasture dry matter
consumed by livestock. The competitive market price of ME in an economy is the same
wherever it is used. The price of ME bought and sold in markets is a good guide to the value
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of ME in pasture that is used on farms, whether home-grown or supplied from outside the
farm. In this study the value of pasture is based on the value of ME supplied by pasture
and consumed by livestock as calculated by the biophysical model, which incorporates
livestock utilisation and stocking policy.

The value of the pasture that is grown and used on the farm at different times of the
year depends on supply of pasture (or ME) and the demand for pasture (or ME) through
the year [36].

• At the time in the year when the farm business has low pasture dry matter available
(there is more demand for pasture than is supplied) extra pasture grown and used
is highly valued. The value of pasture used at this time is equal to the replacement
value of ME bought from alternative sources and used during a time of feed shortage
(such as grain), or the value of ME conserved and stored in a time of surplus and used
later. Note, this ME produced and used on farm cannot be more than the market value
of alternative sources of ME off the farm, otherwise it would go to the higher value
alternative uses off the farm.

• At the time of the year when there is more pasture supplied than required by animal
feed demand, the value of the extra pasture, with further investment, becomes a
conserved product to be used later, or the value as agistment at the time it is grown.
This value is called the salvage value of the extra ME. Note: the extra ME must be
worth more than this value if it is used on farm in the production period.

Thus, there is an upper and lower value of extra pasture produced and used in a farm
system in a production period. Surplus pasture has a value equivalent to agistment or
standing hay value while ME from pasture dry matter that is in short supply is valued at
the value of substitute sources of ME. The true value of the extra pasture used in a farm
system lies between the upper (replacement ME) and lower (surplus ME) values.

In this study, as in the method discussed above, the replacement price was used to
value the extra pasture grown and used during times when the supply of feed is short
relative to the demand for feed by animals. For the regions of interest, this time was defined
as being from January to August. The salvage value was used to value the extra pasture
grown when the feed supply is surplus to animal demand, which was defined as the period
between September and December. This involved modelling pasture growth under historic
climate conditions.

A second scenario was considered to account for the impact a changing climate would
have on pasture growth and the associated value of pasture over the year. Cullen et al. [37]
argued that with a changing climate there will be a change in the seasonal pattern of pasture
growth, with a contraction of the spring growing season and higher pasture growth rates
in winter and early spring. Perera et al [14] also found that pasture growth patterns have
changed over the past 56 years in southeast Australia. To account for such a change in
seasonal growth rates occurring at the times when pasture supply is in surplus and in
shortage, the extra pasture grown in October to June was valued at the replacement cost
and the extra pasture grown in July to September was valued at the salvage value.

The replacement value of ME, such as the price of ME in grain, cannot be defined by a
single price for the life of the investment. Equally, the salvage value of surplus ME, which
could be the price of standing hay, cannot be defined by a single price for the life of the
investment. A probability distribution was used to define the range of possible values the
pasture could take over the life of the investment (Table 5).
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Table 5. The probability distribution and range of values considered for the value of pasture at different times in the year in
$/t and in $/MJ ME.

Species Distribution P5 P50 P95

Upper value of pasture
(replacement cost) PertAlt $190/t

$0.017/MJ ME
$260/t

$0.023/MJ ME
$350/t

$0.031/MJ ME
Lower value of pasture

(salvage cost) PertAlt $90/t
$0.013/MJ ME

$130/t
$0.018/MJ ME

$190/t
$0.026/MJ ME

1 The upper value of pasture was assumed to have 12.5 MJME/kg DM whereas the lower value of pasture was assumed to have 8 MJME/kg
DM. It was assumed 90% DM for both upper and lower value pasture. The lower value of pasture was based on market prices for hay less
than $60/t DM to estimate a standing hay price. To value the ME of pasture the following formula was used: ME$ = DM$/MEDM, where
ME$ is the value of 1 MJ ME pasture.

5. Conclusions

Deeper-rooted pasture grasses are often cited as an adaptation to warmer and drier
climate in temperate regions. However, this research has shown that pasture production
from deep-rooted species is not always substantially greater. This study in southern
Australia demonstrated that deeper-rooted species could be a good adaptation response,
assisting in maintaining farm profitability, for farmers in higher rainfall areas where soil
moisture was available for the deep-rooted species to access. However, soil moisture limited
the adaptation benefit for farmers in the lower rainfall areas. These results highlight that
the development of climate change adaptation options needs to consider local conditions,
including climate and soil types, to avoid maladaptive outcomes. Biophysical farm systems
models are an important tool to achieve this. This research has also shown that pasture
persistence is important to the profit of climate adaptation responses. Persistence pays and
should be incorporated when modelling climate impacts. Management options that focus
on summer dormancy and improve pasture persistence during hot, dry periods would
likely provide more benefit for dry areas than a focus on deep-rooted species, and the
potential for such options in a future climate warrants further investigation.
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