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Abstract: Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins.
At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin,
can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus
section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most
important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus,
and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs,
hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk
and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate
the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at
high levels. AFs thus remain a current and continuously pressing problem in the world.

Keywords: aflatoxigenic microfungi; aflatoxins; food

Key Contribution: As of 2020, 60 years have passed since the discovery of aflatoxins. A total of
22, 4, and 2 Aspergillus producers of section Flavi, Nidulantes, and Ochracerosei produce aflatoxins,
respectively. Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius are the most important
aflatoxin producers of section Flavi. Groundnuts, pistachio nuts, dried figs, hazelnuts, spices, al-
monds, rice, melon seeds, Brazil nuts, and maize are the most common commodities contaminated
with aflatoxins.

1. Introduction

Aflatoxins (AFs) are some of the most important and harmful mycotoxins. As of 2020,
60 years have already passed since their discovery. AFs are one of the five agriculturally
most important mycotoxins [1–4]. Chemically, the AFs are difuranocoumarin derivatives
with a bifuran group attached to the coumarin nucleus and a pentanone ring (in the case
of aflatoxin AFBs) or a lactone ring (in case of aflatoxin AFGs) [5]. There are more than
20 known AFs, but the most common are aflatoxin B1 (AFB1) (PubChem CID: 186907),
aflatoxin B2 (AFB2) (PubChem CID: 2724360), aflatoxin G1 (AFG1) (PubChem CID: 14421),
and aflatoxin G2 (AFG2) (PubChem CID: 2724362) (PubChem, 2020), from which AFB1 is
the major representative in food crops [6]. Aflatoxin M1 (AFM1) (PubChem CID: 15558498)
and M2 (AFM2) (PubChem CID: 10903619) are the hydroxylated metabolites of AFB1 and
AFB2 [7–9].

AFs are acutely toxic, hepatotoxic, immunosuppressive, mutagenic, teratogenic,
and carcinogenic compounds [10–14]. The International Agency for Research on Can-
cer (IARC) evaluated the carcinogenicity of naturally occurring AFs (AFB1, AFB2, AFG1,
and AFG2) for humans as Group 1 “carcinogenic to humans” in 1987 [10,15], and re-
evaluated in 2012 [16,17]. AFM1 is often misclassified in the literature as Group 1; however,
it was classified as Group 2B “possibly carcinogenic to humans” in 1993 [1] and has not been
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re-evaluated since. For these reasons, AFs need to be monitored and their concentrations
in food should be kept at the lowest possible levels.

While acute exposure to a high dose can result in vomiting, abdominal pain, and even
death, chronic exposure to low doses may lead to liver cancer [18,19], which is generally
considered to be the most significant impact of AFs on human health [10,20]. According to
the latest data from the Global Cancer Observatory, liver cancer is the sixth most common
cancer for both sexes of all ages, with a total of 905,677 new cases estimated in 2020 [21].
It has been estimated that AFs contribute to 4.6% to 28.2% of all global hepatocellular
carcinomas [22].

Nowadays, AFs are of great interest as they are one of the most serious contaminants
that can significantly affect the food chain. Humans, at the top of the food chain, often
consume contaminated foodstuffs of both plant and animal origins. Besides human health,
food insecurity caused by AFs contamination can also affect humanity at the social, political,
and economic levels [23].

Therefore, in this article, attention is paid to AFs in terms of AF producers and the
occurrence of AFs in foods around the world.

2. Producers of Aflatoxins

To date, AFs are produced by 28 species of the genus Aspergillus. Aspergillus subgenus
Circumdati section Flavi contains some of the most important species in the genus, which
usually produce AFs [24–26].

The accurate identification of Aspergillus section Flavi requires a polyphasic approach
that includes the morphological characters (the microscopic structures, such as the uni-
or biseriate conidial heads, the production of dark-colored sclerotia by certain species,
and yellow-green to brown shades of conidia), and the chemical (extrolite data) and
molecular (partial sequences of calmodulin, β-tubulin, and internal transcribed spacer
region) approaches, as these species are closely related and could not be easily distinguished
by morphological characteristics alone [24–26].

Aspergillus section Flavi currently contains a total of 34 species in 8 clades: the As-
pergillus alliaceus-, A. avenaceus-, A. bertholletius-, A. coremiiformis-, A. flavus-, A. leporis-,
A. nomius-, and A. tamarii-clade [24–27]. The three new clades A. texensis-, A. agricola-,
and A. toxicus-clade with three species were presented in the year 2020 [28,29].

Table 1 gives an overview of the current identity of Aspergillus species from Aspergillus
section Flavi as AF producers focus on foodstuffs [24–30].

The most important and most well-known AF-producing species of section Flavi in
foodstuffs are Aspergillus flavus [31,32], A. parasiticus [33–35], and A. nomius [36,37]. While
Aspergillus flavus produces AFB1 and AFB2, A. parasiticus and A. nomius can produce AFB1,
AFB2, AFG1, and AFG2.

Aspergillus minisclerotigenes and A. parvisclerotigenes also belong to section Flavi. Both
have morphological and physiological similarities to A. flavus; however, they produce
more but smaller sclerotia. In contrast to A. flavus, this is usually coupled with a high and
consistent production of both the B and G type of AFs [24].

In addition to Aspergillus flavus, four other A. species (A. agricola, A. pseudotamarii,
A. togoensis, and A. toxicus) only produce AFB1 and AFB2. Seventeen other Aspergillus
species can produce AFB1, AFB2, AFG1, and AFG2. It is generally accepted that A. flavus is
unable to produce AFs type G, but it is also reported that some Korean strains are capable
of producing both AFG1 and AFG2 [25]. However, some Aspergillus species from Aspergillus
section Nidulantes [38] or Aspergillus section Ochraceorosei [32,39] can also produce AFs.
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Table 1. Aflatoxigenic Aspergillus species from Aspergillus section Flavi.

Species AF Producer Year of
Identification Occurrence

A. flavus B1, B2 1962 Peanuts, maize, spices
A. parasiticus B1, B2 G1, G2 1963 Maize, peanuts

A. nomius B1, B2 G1, G2 1987 Wheat, turmeric
A. pseudonomius B1, B2 G1, G2 1997 Brazil nut
A. pseudotamarii B1, B2 2001 Brazil nut

A. parvisclerotigenes B1, B2 G1, G2 2005 Peanuts
A. arachidicola B1, B2 G1, G2 2008 Carob flour

A. luteovirescens a B1, B2 G1, G2 2008 Brazil nut
A. minisclerotigenes B1, B2 G1, G2 2008 Peanuts, curry, red chili
A. pseudocaelatus B1, B2 G1, G2 2011 Peanuts, Brazil nut

A. togoensis B1, B2 2011 Fruit of Landolphia spp.
A. mottae B1, B2 G1, G2 2012 Maize

A. novoparasiticus B1, B2 G1, G2 2012 No occurrence in food b

A. sergii B1, B2 G1, G2 2012 Almond
A. transmontanensis B1, B2 G1, G2 2012 Almond

A. texensis B1, B2 G1, G2 2018 Maize
A. aflatoxiformans B1, B2 G1, G2 2019 Peanuts, sesame

A. austwickii B1, B2 G1, G2 2019 Rice, sesame
A. cerealis B1, B2 G1, G2 2019 Rice, maize, peanut

A. pipericola B1, B2 G1, G2 2019 Black pepper
A. agricola sp. nov. B1, B2 2020 Maize
A. toxicus sp. nov. B1, B2 2020 Maize

a Formerly named Aspergillus bombycis; b Sputum of leukemic patient.

The identification of Aspergillus section Nidulantes requires a polyphasic approach
which includes the morphological characters (the microscopic structures such as the color,
shape, size, and ornamentation of ascospores, the shape and size of conidia and vesicles,
and growth temperatures), and the chemical (extrolite data) and molecular (internal tran-
scribed spacer region, partial β-tubulin, calmodulin, and RNA polymerase II the second
largest subunit (RPB2) gene sequences) approaches [38]. Based on this polyphasic ap-
proach, Aspergillus section Nidulantes was subdivided into 7 clades and 65 species [38]. The
majority of section Nidulantes species can produce a sexual state, and those species were,
in the dual name nomenclature system, assigned to the genus Emericella. Because of the
adoption of the “one fungus: one name” nomenclatural system, all Emericella species were
transferred to Aspergillus [40]. AFB1 was produced by four species: Aspergillus astellatus [41],
A. miraensis [42,43], A. olivicola [44], and A. venezuelensis [45]. Aspergillus ochraceoroseus and
A. rambellii belong to section Ochraceorosei [32]. A. ochraceoroseus produce AFB1 [11,39,46,47],
and A. rambellii also produce AFB1 [32,39].

With the development of modern molecular biological and chromatographic methods,
other new AF producers will certainly be identified soon and bring new research to
this area.

3. Aflatoxin Occurrence in Foods

The contamination of foods with AFs, like with other mycotoxins, has become a global
problem [48]. For several years, a statement claiming that a total amount of 25% of the
world’s crops are affected by molds and mycotoxins, supposedly estimated by the Food
and Agriculture Organization (FAO), has been circulating worldwide [12,49]. However,
this estimation has been challenged in the most recent studies dealing with the background
of this matter, as this statement was not possible to trace back, since even FAO experts
were not able to do so [50]. On the basis of an extensive study by the BIOMIN Company in
2004–2011, 72% of samples of feed (mainly maize, wheat, barley, and silage) and feed raw
materials (especially for swine, poultry, and cows) from all over the world, but mainly from
Asia (40%) and Europe (38%), contained a detectable amount of at least one mycotoxin
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including AFs. Moreover, a co-occurrence of two or more mycotoxins was confirmed in
38% of samples [51], and of course, AFs can interact in synergy with other mycotoxins. This
fact is alarming since the major intake of mycotoxins into human organisms is usually due
to dietary exposure [52], and even a low concentration of AFs is hazardous for humans [53].

In general, inappropriate storage is considered a major cause of foods contamination
with mycotoxins—especially in developing countries [54,55], in which approximately
20% of the global volume of potentially highly contaminated commodities originate [56].
In some cases, contamination of crops with mycotoxins may already occur in the field
due to stress factors such as insects or drought that facilitate the contamination [57].
Climate conditions, such as high temperatures, heavy rainfalls, and high relative humidity,
are likely to contribute to crop contamination as well, as they make plants more susceptible
to fungal, and thus mycotoxin, contamination [58,59]. Contamination during transport and
processing is also possible [23]. Good agricultural, manufacturing, and hygienic practices,
good plant disease management, and adequate storage conditions can limit mycotoxin
levels in the food chain, yet these practices do not eliminate mycotoxins completely [60,61].

Fortunately, some contamination-reducing chemical (ammonization, hydrogen perox-
ide, sodium bisulfate, organic acids, ozone, and plant extracts), physical (separation, solvent
extraction, mineral adsorbents, heating, extrusion, microwaving, irradiation, and UV ra-
diation) and biological (enzymes, bacterial cells, yeast cells, and non-toxigenic strains)
technologies have been developed to enhance food safety [20,23]. However, the European
Union legislation, in Section 2 of the Annex “Mycotoxins”, does not allow any foods
contaminated with mycotoxins to be detoxified by the chemical approach [62]. Moreover,
foods treated by sorting or other physical means must not be mixed with foods intended for
direct human consumption nor with foods intended to be used as food ingredients [62]. Bio-
logical control, depending on the competition between non-toxigenic and toxigenic strains,
is the most commonly used method, especially in countries where AFs pose a significant
threat [63]. For example, a product AflasafeTM has begun to be applied to reduce AFs with
an average efficiency of 99% (76%–100%) in maize and groundnuts [64–66]. The principle
of its use lies in the contamination of crops with non-toxigenic strains before they are
contaminated by toxigenic strains of Aspergillus flavus. AflasafeTM is a relatively cheap and
easy-to-apply product that ensures a long-lasting reduction of AFs (up to consumption
level) [64].

AFs contaminate a wide range of foods of both plant and animal origin. AFB1,
AFB2, AFG1, and AFG2 are major contaminants in commodities of plant origin, mainly
groundnuts, tree nuts, spices, seeds, dry fruits, and cereals [67–69]. The daily intake of AFs
at the level of nanograms to micrograms per person per day is mainly achieved through
the consumption of contaminated maize and groundnuts [70]. Animal products are less
likely substrates for AF producers; however, the metabolites AFM1 and AFM2 are typical
in milk, including human breast milk [71,72], and dairy products of lactating ruminants
that have been fed with contaminated feed (carry-over to dairy milk) [73–76]. AFM1 has
also been detected in cheese worldwide [77–79] and AFs (in low concentrations) have been
reported to occur in certain products of animal origin, such as meat and meat products, or
eggs, etc. (carry-over of AFs in products of animal origin) [74].

Drought periods combined with high temperatures significantly increase AF produc-
tion in the fields [80]. It has been estimated that at least 4.5 billion people worldwide are
chronically exposed to AFs from foods, especially in “hot zones” in the regions situated
between 40◦ N and 40◦ S latitude [81]. Climate change and the trend of global warming
may lead to an increased occurrence of mycotoxins, for the production of which higher
temperatures are needed, and the same goes for AFs [82]. This might be the case in North-
ern [82] or Western [83] Europe, for example, where AFB1 contamination of maize was
recently observed [84]. It should be emphasized that even in the current modern age, cases
of acute aflatoxicosis leading to human death may occur due to climate change [85]. Cli-
mate change is dealt with in more detail in the Special Issue of Toxins entitled “Mycotoxins
in Relation to Climate Change”.
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On the other hand, it is known that the AFs belong to the dominant mycotoxins in
the African and Asian continents, as well as North and South America and the Australian
continent [86]. Additionally, despite all efforts to mitigate AFs in foods, there are still cases
of high AF concentrations in foods. Therefore, to enhance food safety, there is a global need
for regulatory limits and food contaminant monitoring tools.

3.1. The Occurrence of Aflatoxins in Food in the African Continent

In African countries, maize and groundnuts represent the largest exposure to AFs [87,88],
where maize is a staple crop for the majority of the African population [88,89]. The case of
highly contaminated (1–46, 400 µg/kg) maize in Kenya in 2004, associated with 125 human
deaths, is historically relevant [85].

There are still cases of concentrations exceeding the limits set in many countries.
Recently, high concentrations of AFs in maize grains of up to 9091.8 µg/kg (AFB1) were
found in Kenya [89], up to 3760 µg/kg for total AFs (where AFT is the sum of AFB1, AFB2,
AFG1, and AFG2) in Uganda [90], up to 2806.5 µg/kg (AFT) in the Democratic Republic of
Congo [91], up to 1460 µg/kg (AFT) in Nigeria [88], up to 945 µg/kg (AFT) in Ghana [92],
and up to 107.6 µg/kg (AFT) in Zambia [93].

3.2. The Occurrence of Aflatoxins in Food in the Asian Continent

Practically all tropical countries face the problem of AFs [94]. The climate of Asian
countries is very favorable for AF-producing microfungi [95], especially when it comes to
commodities such as cereals—mainly maize and rice, cereal products, beans, groundnuts,
and other oily products—which is alarming, as cereals and groundnuts are considered
major items in the Asian diet [94].

AFs were found in maize in concentrations of up to 1572 µg/kg (AFB1) in Vietnam [96].
However, in Asia, rice is the most important crop in terms of its consumption [55,97], and es-
pecially production, as approximately 90% of the world’s rice is produced in Asia, of which
nearly two-thirds are produced by China, India, and Indonesia [98]. High concentrations of
AFs in rice have been reported in many scientific studies. In the case of AFB1, reported con-
centrations reached up to 361.0 µg/kg in India [99], up to 185.0 µg/kg in Sri Lanka [100],
and up to 26.6 µg/kg in Thailand [101]. In the case of AFT concentrations, they were
found to reach up to 96.3 µg/kg in Malaysia [102], up to 77.8 µg/kg in Vietnam [55], up to
21.4 µg/kg in Turkey [103], and up to 21.0 µg/kg in China [104].

3.3. The Occurrence of Aflatoxins in Food in the American Continent

America is the largest producer of maize (565 million tons in 2019; 49.2% of world pro-
duction). The United States, Brazil, Argentina, and Mexico belong to the top 10 producers
worldwide [98]. Alongside sub-Saharan Africa and Southeast Asia, maize is a staple food
in Latin America [105], especially in Guatemala [106] and Mexico [107].

However, concentrations of AFB1 of up to 2656 µg/kg were observed in maize in
Guatemala and are potentially high throughout the rest of Central America and Mex-
ico [106]. Lower concentrations of up to 282.5 µg/kg (AFB1) and 303.9 µg/kg (AFT) were
detected in maize kernels in South Haiti [108], and concentrations of up to 49.9 µg/kg
(AFT) were found in Brazil [109]. Processed maize products are also contaminated with
AFs. For example, tortillas and popcorn have been reported to be contaminated with up to
287.23 µg/kg (AFB1) [110] and up to 120 µg/kg (AFT) [111], respectively, in Mexico.

Of course, the problem is not only maize as a staple food, as high levels of AFs are
also found in other local commodities, including up to 33.3 µg/kg (AFT) in nuts, up to
176.4 µg/kg (AFT) in Capsicum spices in Chile [112], and up to 70.9 µg/kg (AFT) in the
case of Brazilian rice [113].

3.4. The Occurrence of Aflatoxins in Food in the Australian Continent

In Australia, hot and dry conditions typical for the arid and semi-arid areas cover-
ing much of the continent are the main stress factors that allow for the contamination of
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crops with AFs. This represents a major problem in Australia in terms of peanut degra-
dation [114,115]. The occurrence of AFs is not quite as common in Australian maize [116],
and when it occurs, it is in low or moderate concentrations [117] for unknown reasons [115].
Nevertheless, maize is only a small part of the human and animal diet in Australia [115].

The occurrence of AFs in Australian maize is usually in the range of 1–5 µg/kg,
but can also occasionally reach higher concentrations of up to 200 µg/kg [118]. However,
higher concentrations of AFT in maize (up to 311.1 µg/kg), and also in peanuts (up to
384.8 µg/kg), sorghum (up to 138.3 µg/kg), and wheat (up to 26.8 µg/kg), have been
found in Australia [115,119–121].

3.5. Aflatoxin Regulations in the European Union and around the World

The discovery of AFs and their serious negative effects on human and animal health in
the early 1960s led many countries in the world to establish certain regulations of mycotox-
ins in foods to protect consumers from the harmful effects caused by mycotoxins [122,123].
The first limit regulating mycotoxins, namely AFs, was set in the late 1960s, and by 2003
approximately 100 countries in the world had already regulated mycotoxins in foods [123].
Although the number of countries regulating mycotoxins in foods is increasing [123], most
African countries and other developing countries lack regulations [92], as the compliance
with the limits in developing countries would result in a shortage of food, and thus an
increase in its price.

From the perspective of all mycotoxins, the regulations of AFB1, AFT, and AFM1 are
the greatest concern of worldwide legislation [124]. The Codex Alimentarius specifies an
AF maximum limit of 15 µg/kg (for almonds, hazelnuts, Brazil nuts, peanuts, and pistachio
nuts for further processing) and 10 µg/kg (for almonds, Brazil nuts, hazelnuts, and pista-
chio nuts for direct consumption and dried figs), and AFM1 maximum limit of 0.5 µg/kg
for milk [125]. However, the maximum levels of AFs in foods vary throughout different
countries depending on the type of product and also on the import/export regime [69].

The European Union (EU) has one of the most comprehensive and strictest regulations
on AF levels, set by the commission regulation 1881/2006 [62], and later on by its amending
supplement 165/2010 [126], that are binding upon the 27 member states of the EU. These
levels are in ranges 0.1–12 µg/kg, 4–15 µg/kg, and 0.025–0.05 µg/kg for AFB1, AFT,
and AFM1, respectively, in the case of various foods [62,126].

For comparison with other countries, the maximum limit/regulatory limit/action level
(or the range) for AFB1 has been set at 30 µg/kg in India, at 20 µg/kg in the Philippines, at
15–20 µg/kg in Indonesia [127], at 0.5–20 µg/kg in China [128], at 5–10 µg/kg in Japan,
and at 0.1–10 µg/kg in Korea [127].

The maximum/action limit (or the range) for AFT has been set at 20–35 µg/kg
in Indonesia [127]; at 5–15 µg/kg in Malaysia [129]; at 30 µg/kg in Sri Lanka [127];
at 20 µg/kg in the United States [130–133], Thailand, the Philippines [127], and Nige-
ria [134]; at 15–20 µg/kg in Hong Kong [127]; at 1–20 in Brazil µg/kg [135]; at 15 µg/kg
in Canada [136], Korea [69,127], Australia [137], and Zimbabwe [134]; at 0–15 µg/kg
in Taiwan, at 10 µg/kg in Japan, Vietnam [69,127], Kenya, Mozambique, South Africa,
and Uganda [134]; and at 5 µg/kg in Singapore [127].

If a country has any regulation on AFM1 in milk or dairy products, it is usually set
at 0.5 µg/kg [128,135,138,139], which is in line with the Codex Alimentarius. However,
in the EU legislation, the AFM1 maximum limits (0.025–0.05 µg/kg) are 10–20 times lower
compared to the Codex Alimentarius (0.5 µg/kg) [62,125].

3.6. The Occurrence of Aflatoxins Based on Data by INFOSAN (2016–2020)

The International Food Safety Authorities Network (INFOSAN) is a global information
network jointly managed by the World Health Organization (WHO) and the FAO [140].
The INFOSAN has facilitated urgent international communication during food safety
emergencies between more than 600 members from 188 of the 194 FAO and WHO member
states since 2004. The INFOSAN aims to reduce the incidence of foodborne diseases that
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have a significant impact on public health and international trade [140,141]. Regarding
AFs, only two cases, both of which concerned maize in Tanzania, were reported in 2016
and 2017 [142]. There have been no reports on AFs in foods since.

3.7. The Occurrence of Aflatoxins in Food Based on Data by RASFF (2015–2020)

The Rapid Alert System for Food and Feed (RASFF) is an important warning system for
food and feed safety from the perspective of the EU countries [143]. Regarding the number
of notifications reported by RASFF in 2015-2020, most mycotoxin notifications were related
to AFs (approximately 88%), of which most were of the food category (approximately 94%)
and less were of the feed category (approximately 6%), as shown in Table 2 [144].

Table 2. The share of aflatoxin notifications in 2015-2020.

Substance/Year 2015 2016 2017 2018 2019 2020

Mycotoxins 495 549 579 655 584 423
AFs a 441 (89.1%) 478 (87.1%) 539 (93.0%) 567 (86.6%) 497 (85.1%) 370 (87.5%)

AFs in food 423 (95.9%) 461 (96.4%) 515 (95.5%) 510 (89.9%) 467 (94.0%) 348 (94.1%)
a AFs = aflatoxins; processed according to the Rapid Alert System for Food and Feed (RASFF) database [143].

Based on data from the last years (2015–2020), the vast majority of notified products
contaminated with AFs belong to the “nuts, nut products, and seeds” category, followed
behind by “fruits and vegetables”, “herbs and spices”, “cereals and bakery products”,
and others. Namely, the most often notified foods are, in descending order, ground-
nuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts,
and maize [144].

Throughout the years 2015–2020, cases of very high concentrations of AFs in foods
were notified. Based on these “high-level” notifications, groundnuts, pistachio nuts, al-
monds, dried figs, hazelnuts, chilies, melon seeds, and apricot kernels appear to be highly
contaminated (with the maximum concentration of AFB1 or AFT exceeding 1000 µg/kg).
Spices (other than chilies), tiger nuts, Brazil nuts, rice, pecan nuts, walnuts, and maize
represent the less contaminated foods [144]. There is a concern for the development of
aflatoxicosis associated with the consumption of foods with an AF concentration of at least
1000 µg/kg [145]. This implies that the group of above-mentioned highly contaminated
commodities may tend to cause aflatoxicosis in humans or animals. Some of the highest
values of aflatoxin contamination in 2015–2020 are shown in Table 3.

In the year 2020, groundnuts, pistachio nuts, dried figs, spices, hazelnuts, almonds,
and rice were the most notified products in relation to AF contamination. The other notified
products were mostly various seeds (melon, ogbono, sunflower, lotus, and sesame seeds)
and flours (wheat flour, chestnut flour, and banku mix). Single notifications concerned
Brazil nuts, apricot kernels, soya, milk, and date syrup. Most notifications originated in
Turkey (mainly dried figs and pistachio nuts), followed far behind by the United States
(mainly groundnuts) and India (mainly groundnuts and spices). A significant number
of notifications originated in Argentina (groundnuts only), Iran (pistachio nuts only),
Egypt (groundnuts only), China (mainly groundnuts), Pakistan (mainly spices and rice),
Nigeria (mainly groundnuts), and Georgia (hazelnuts only) (see Figure 1) [144]. Fewer
notifications (the number is given in brackets) originated in other countries: Spain (7); Sri
Lanka (6); Brazil (5); Italy and Ghana (3); Ethiopia, United Kingdom, Germany, Ukraine,
and Cameroon (2); and Angola, Vietnam, Hong Kong, South Africa, Jordan, Togo, Hungary,
Nepal, Bolivia, Cambodia, Paraguay, Indonesia, Belgium, Malaysia, Tunisia, Senegal,
and Azerbaijan (1). Two notifications were of unknown origin [144].



Toxins 2021, 13, 186 8 of 15

Table 3. The highest concentrations of aflatoxin B1 and total aflatoxins in foods notified by RASFF in
2015–2020.

No. Product AFB1
(µg/kg)

AFT a

(µg/kg) Origin Year

1 Peanut paste 707,000 907,000 Senegal 2016
2 Peanuts 180,200 220,900 China 2015
3 Groundnuts in shell 42,100 46,800 Egypt 2019
4 Groundnuts 17,000 38,000 Turkey 2016
5 Pistachios − 26,300 Germany 2020
6 Peanut in shell 24,000 26,000 China 2015
7 Almonds − 24,000 US 2018
8 Dried figs 15,300 − Turkey 2020

9 Roasted chopped
hazelnuts 4000 15,200 Turkey 2015

10 Shelled nuts 12,890 14,420 Turkey 2019

11 Organic groundnut
kernels 11,000 14,000 Egypt 2020

12 Dried red chilies 13,700 14,000 India 2020

13 Roasted and salted
watermelon seeds 13,700 − Turkey 2020

14 Shelled almonds 10,440 11,420 US 2019
15 Hazelnut kernels 7200 − Georgia 2019

a AFT = sum of aflatoxins B1, B2, G1, and G2; processed according to the RASFF database [144].

Figure 1. Aflatoxin notifications in food by the RASFF in 2020. Note: All products in the “Other products” category were
notified less than four times in 2020. The category “Other countries” includes notifications from 24 countries, in which less
than 9 notifications originated and 2 notifications were of unknown origin. Processed according to RASFF database [144].
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The amount of the world production of these commodities should be taken into
consideration as demonstrated in Table 4. Although groundnuts are the most often notified
product, pistachio nuts can be labelled as the relatively most frequently notified product,
with approximately one notification per 16,787 tons produced. In contrast, there is one
notification per 344,886 tons of groundnuts produced [144].

Table 4. The number of RASFF aflatoxin notifications concerning certain food products in relation to their average
world production.

Product
Average Annual Production

(2015–2019) a

(Tons)

Number of Notifications by
RASFF (2020)

Tons Produced per RASFF
Notification

Groundnuts 47,591,548 138 344,866
Pistachio nuts 1,057,587 63 16,787

Dried figs 1,185,768 62 19,125
Spices 14,541,902 30 484,730

Hazelnuts 939,927 17 55,290
Almonds 3,039,020 11 276,275

Rice 748,304,354 10 74,830,435
a Average annual spice production includes these categories: “Anise, badian, fennel, coriander”, “Chilies and peppers, dry”, “Cinnamon”,
“Cloves”, “Ginger”, “Nutmeg, mace, cardamoms”, “Mustard seed”, “Pepper, Piper pp.”, “Peppermint”, “Vanilla”, and “Spice not elsewhere
specified”. Processed according to FAOSTAT and RASFF databases [98,144].

4. Conclusions

The year 2020 has already passed 60 years of AF discovery. Since then, despite
the scientific progress in the knowledge on AFs and the efforts made to reduce the risk
they pose to public health, developing countries still have to tolerate a high level of AF
contamination of foods to not compromise the food supply. Selected research topics
concerning AFs continue to draw attention worldwide, such as research on the diversity
and genetic variability of AF production in Aspergillus flavus and other AF producers, or on
the problem of using biocontrol strategies for the non-aflatoxigenic strains of A. flavus with
the goal of the better protection of public health and the prevention of economic losses.
The recent occurrence data, the recent food consumption data, and the recent toxicological
data of AFs in foodstuffs are required for the assessment of the severity of AF toxicity,
the estimation of human dietary exposure, and health risk assessments.
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