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RNA-binding protein MEX3D promotes cervical carcinoma
tumorigenesis by destabilizing TSC22D1T mRNA
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RNA-binding proteins (RBPs) have been related to cancer development. Their functions in cervical cancer, however, are virtually
unknown. One of these proteins, Mex-3 RNA-binding family member D (MEX3D), has been recently found to exhibit oncogenic
properties in a variety of cancer types. In this present study, the functional roles and the regulatory mechanisms underlying MEX3D
were examined in cervical cancer. The detection of MEX3D mRNA expression levels in cervical tissues was performed using reverse
transcription-quantitative PCR. For functional analysis, for detecting apoptosis and cell proliferation in cervical cancer cells, the Cell
Counting Kit-8, colony formation, and flow cytometry were utilized (SiHa and CaSki). The potential mechanisms of MEX3D were
assessed and elucidated utilizing western blot analysis, RNA pull-down, RNA immunoprecipitation, and mRNA stability assays. For
verification of MEX3D role in vivo, mouse xenograft models were established. When compared to normal cervical tissues, MEX3D
expression was observed to be higher in cervical cancer tissues. MEX3D expression was increased in human papillomavirus (HPV) 16
positive cervical cancer tissues and positively regulated by HPV16 E7. When MEX3D expression was knocked down in cervical
cancer cells, cell proliferation was decreased, colony formation was inhibited, and apoptosis was promoted. Furthermore, in a
mouse xenograft model, knocking down MEX3D expression reduced cervical cancer tumor growth. In addition, MEX3D acted as an
RBP to reduce TSC22 domain family protein 1 (TSC22D1) mRNA stability by directly binding to TSC22D1 mRNA. The findings
revealed that MEX3D is upregulated by HPV16 E7 and has a crucial oncogenic in cervical cancer development via sponging
TSC22D1 for destabilizing its mRNA levels. According to the findings of this study, MEX3D may be a potential therapeutic target for

treating cervical cancer patients.
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INTRODUCTION

World’s fourth most prevalent malignancy in women is cervical
cancer, with ~270,000 deaths and 530,000 new cases per year
[1, 2]. Despite the effectiveness of HPV vaccination and well-
organized screening in lowering cervical cancer incidence in
developed countries, its usage in low-income countries is
constrained, and progressive cervical cancer remains prevalent
[3]. In total, low-income countries account for ~90% of world’s
cervical cancer-related mortalities [4-6]. With a 5-year survival rate
of only 16.7% for patients with progressive cervical cancer, the
curative effect is suboptimal [7]. Therefore, the identification of
novel molecular aberrations that lead to cervical cancer develop-
ment may be used to achieve optimal therapeutic management
for this malignancy.

RNA-binding proteins (RBPs) are critical for the transcriptome as
they have the ability to modulate practically every step of the
post-transcriptional process, from alternative splicing to stability
and decay of RNA [8]. Hence, RBPs dysfunction affects practically
every phase of cancer formation and progression, including
angiogenesis stimulation, cell proliferation, immune surveillance

evasion, invasion, metastasis activation and apoptosis resistance
[9].

The Mex-3 RNA-binding family member D (MEX3D) gene
functions as an RBP and is one of four human homologous
MEX-3 genes MEX-3 is a K-homology (KH) domain-containing RBP,
which was initially defined as a translational repressor in
Caenorhabditis elegans. In human and mouse genus, four MEX3
homologous genes have been discovered: MEX3A, MEX3B,
MEX3C, and MEX3D. These genes encode for enzymes with E3
ubiquitin ligase activity mediated by a ring finger domain at the C
terminal. They are also considered critical for RNA degradation
[10, 11]. The ring finger domain confers the human MEX3 protein
the potential to modulate target protein ubiquitination, hence
affecting their protein stability and subcellular localization
[10, 12, 13]. MEX3A has been associated with cancers develop-
ment, including glioma, gastric cancer, and breast cancer,
according to studies [14-17]. MEX3B was reported to enhance
the invasion of gastric cancer cells [18]. MEX3C was shown to
promote osteosarcoma malignant progression and bladder
tumorigenesis [19, 20]. Previous studies have shown that MEX3D
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is an oncogenic driver in prostate cancer [21, 22]. In cervical
cancer, the role and expression of MEX3D, however, are poorly
understood. In our previous RNA sequencing (RNA-seq) results, in
cervical cancer tissues, MEX3D mRNA expression was elevated
compared to the corresponding expression noted in normal
cervical tissues [23]. The intention of this study is determining
MEX3D the significant role in cervical cancer. The RNA-binding
protein MEX3D role as a tumor promoter in cervical cancer was
assessed in this study. MEX3D effect on cell viability, colony
formation, and cell apoptosis was investigated in cervical cancer
cells. Subsequently, HPV16 oncogene E7 influence on MEX3D
expression was evaluated. The data indicated that MEX3D was
associated with TSC22 domain family protein 1 (TSC22D1) RNA
levels and that TSC22D1 knockdown could reverse MEX3D
knockdown-induced tumorigenesis in cervical cancer cells. The
current study presented a theoretical basis for using this target in
the management of patients with cervical cancer and identified a
new post-transcriptional mechanism involving MEX3D-mediated
TSC22D1 transcript destabilization.

RESULTS

MEX3D expression is frequently upregulated in cervical cancer
tissues

MEX3D mRNA was noticed to be substantially elevated in cervical
cancer tissues than the corresponding expression noticed in
normal cervical tissues in our prior RNA-seq data (Fig. 1A) [23]. To
confirm our sequencing data, reverse transcription-quantitative
PCR was utilized for measuring MEX3D mRNA expression levels in
an additional cohort of 25 normal cervical tissues and 38 human
cervical cancer tissues. In cervical cancer tissue specimens, MEX3D
mMRNA expression levels were significantly elevated than in normal
cervix specimens (Fig. 1B). Following that, the MEX3D protein
expression level was assessed in 465 cervical tissues, comprising
30 normal cervix tissues, 147 low-grade squamous intraepithelial
lesions (LSIL), 129 high-grade squamous intraepithelial lesions
(HSIL), and 159 cervical cancer tissues. Immunohistochemistry
(IHC) was used for the analysis. The MEX3D protein expression
level in normal and LSIL tissues showed no significant differences.
It is interesting to note that MEX3D protein overexpression was
noted in HSIL and cervical cancer samples compared to LSIL or
normal tissues. Furthermore, MEX3D protein expression was
considerably greater in cervical cancer tissues (Fig. 1C, D). To
examine whether High-risk HPV infection influences the altered
expression of MEX3D protein, IHC scores of cervical tissues with or
without HPV16 infection were studied further. The following
results were found: MEX3D protein level was increased in HPV16-
positive HSIL compared to HPV16 negative normal tissues.
Similarly, expression level of MEX3D protein was higher in
HPV16-positive cervical cancer than in HPV16-positive HSIL tissues.
As depicted in Fig. 1E. The findings suggested that MEX3D, as an
oncogene, may have a role in cervical cancer. HPV16 infection may
lead to increased expression of MEX3D.

MEX3D inhibits cervical cancer cells apoptosis and promotes
proliferation

Considering that uncontrolled cell proliferation is a hallmark of
cancer [24, 25], this study evaluated whether inhibiting MEX3D
suppressed the proliferation of cervical cancer cells. Two
sequences of MEX3D-specific small interfering RNA (siRNA) were
utilized to eliminate MEX3D expression in CaSki and SiHa cervical
cancer cells. MEX3D protein expression knockdown reduced cell
proliferation and promoted cellular apoptosis in two cell lines.
(Supplementary Fig. S1A, B and Fig. 2A-D). Subsequently, the role
of MEX3D overexpression was investigated in CaSki and SiHa cells
utilizing a constructed plasmid for MEX3D expression upregula-
tion. MEX3D overexpression increased cellular proliferation while
suppressing apoptosis (Supplementary Fig. S1C and Fig. 2E-H).
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Taken together, these data reinforce the hypothesis suggesting
that MEX3D serves as a tumor promoter in cervical cancer
progression and facilitates the malignant phenotype of cervical
cancer.

MEX3D is associated with TSC22D1 RNA levels and regulates
the stability of TSC22D1 mRNA in cervical cancer cells

In cervical cancer, the underlying molecular mechanism of the
MEX3D cancer-promoting effects was investigated. Given that
MEX3D is a member of the RBP family, the present study aimed to
identify its direct targets and its biological effects. Initially, the
identification of the endogenous RNA targets of MEX3D was
performed in cervical cancer cells by high-throughput RNA
immunoprecipitation (RIP) sequencing (analyzed by RiboBio,
Guangzhou, China). SiHa cervical cancer cells were used, which
were expressing Flag-tagged MEX3D. In addition, RNA-seq analysis
(analyzed by GeneChem, Shanghai, China) was conducted to
affirm the down-/upregulation of the expression levels of specific
genes identified in MEX3D knockdown cells. Via these analyses,
we identified nine genes (DCBLD2, CASP7, TSC22D1, ANXA7,
PRKAR2A, ZMYND11, CEBPZOS, ERLIN1, and PAK2) (Fig. 3A). In
addition, DCBLD2, CASP7, TSC22D1, ANXA7, PRKAR2A, ZMYND11,
and PAK2 have been reported to be tightly linked to tumor
malignancy in previous studies [26-32]. Therefore, they were
identified as possible MEX3D targets in cervical cancer. Subse-
quently, MEX3D overexpressing SiHa cells were constructed,
which were transfected with a Flag-label-inserted plasmid. The
TSC22D1 mRNA levels were significantly enriched in anti-flag
samples compared with the corresponding expression noted in
immunoglobulin G samples derived from SiHa cells (Fig. 3B).
TSC22D1 mRNA was bound to MEX3D. This binding was
confirmed in CaSki and SiHa cells utilizing RIP assay (Fig. 3Q).
The RNA pull-down and RNA-fluorescent in situ hybridization
assays were conducted to further confirm the interactions
between MEX3D and TSC22D1 (Fig. 3D, E). Furthermore, down-
regulation of MEX3D expression in CaSki and SiHa cells increased
TSC22D1 mRNA and protein levels (Fig. 3F, G). Considering that
one of the most important functions of RBPs is the regulation of
RNA stability, enhanced stability of TSC22D1 mRNA was found in
SiHa and CaSki cells following MEX3D knockdown (Fig. 3H).

Knockdown of TSC22D1 expression attenuates MEX3D-
mediated tumorigenesis

Given that TSC22D1 is a key MEX3D downstream effector, the
current study characterized the TSC22D1 functional role in
tumorigenesis of cervical cancer. In CaSki and SiHa cells, knock-
down of TSC22D1 expression with two different sequences of
siRNA was performed (Supplementary Table S2, Supplementary
Fig. S1D, E, and Fig. 4A). Knockdown of TSC22D1 expression
suppressed the cellular apoptotic rate and enhanced cellular
proliferation (Fig. 4B-D). A rescue experiment was carried out to
see if TSC22D1 was involved in the consequences of MEX3D-
mediated carcinogenesis in cervical cancer cells. Simultaneous
knockdown of MEX3D and TSC22D1 expression was performed in
SiHa and CaSki cells. TSC22D1 knockdown partially mitigated the
lower cell proliferation capacity and increased cellular apoptotic
rate caused by MEX3D knockdown, according to the findings (Fig.
4E-G). TSC22D1 was found to be a critical inhibitory factor in the
carcinogenesis of cervical cell, and TSC22D1 is essential for
reducing the tumorigenic potential of cervical cancer cells
induced by MEX3D.

Knockdown of MEX3D expression reduces xenograft tumor
growth

Following the investigation of the function of MEX3D in vitro,
animal experiments were carried out to confirm the findings
in vivo. Subcutaneous transplantation of SiHa/MEX3D-short hair-
pin RNA (shRNA) and SiHa/negative control (NC)-shRNA cells into
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Fig. 1 MEX3D expression is elevated in cervical cancer tissues. A RT-qPCR validation of MEX3D mRNA in seven cervical cancer tissues and
seven normal cervical tissues. B MEX3D mRNA expression levels in 25 cervical normal epithelium samples and 38 cervical cancer tissue
samples. C Representative IHC images of MEX3D expression of the normal cervix, LSIL, HSIL, and cervical cancer tissues. D IHC scores analyses
of MEX3D protein expression in normal cervix (n = 30), LSIL (n = 147), HSIL (n=129), and cervical cancer tissues (n = 159). E IHC scores
analyses of MEX3D protein expression in HPV16-negtive normal cervix (n =30), HPV16-positive HSIL (n =20), and HPV16-positive cervical
cancer (n =43). NS not significant; *P < 0.05, ***P < 0.001, ****P < 0.0001.
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Fig. 2 MEX3D stimulates cervical cancer cells proliferation whereas inhibits its apoptosis. A Western blot analysis was utilized for
estimating MEX3D protein expression levels in CaSki and SiHa cells after being transfected with a negative control siRNA or two MEX3D-
specific siRNAs. B The growth curve in CaSki and SiHa cells was estimated through CCK8 assays after being transfected with a negative control
siRNA or two MEX3D-specific siRNAs. C Knockdown of MEX3D with two MEX3D-specific siRNAs suppressed cell viability shown by colony
formation in CaSki and SiHa cells. D Apoptosis level in CaSki and SiHa cells after being transfected with two MEX3D-specific siRNAs or a
negative control siRNA. E Western blot was utilized for determining the levels of MEX3D overexpression in CaSki and SiHa cells utilizing a
constructed and control plasmid. F-H MEX3D overexpression stimulated cellular proliferation (F, G) whereas the suppressed rate of cellular
apoptosis in CaSki and SiHa cells (H). *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig.4 TSC22D1 knockdown attenuates MEX3D-mediated tumorigenesis. A TSC22D1 knockdown significantly by siRNAs in protein levels in
CaSki and SiHa cells. B-D TSC22D1 knockdown stimulated cellular proliferation, whereas the suppressed rate of cellular apoptosis. E-
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0.05, **P <0.01, and ***P < 0.001.
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non-SCID mice was done. SiHa/MEX3D-shRNA cell growth was
significantly lower than SiHa/NC-shRNA cell growth (Fig. 5A). In
addition, both the tumor size and weight of the animals injected
with SiHa/MEX3D-shRNA cells were lowered significantly com-
pared to the tumors obtained through the SiHa/NC-shRNA cells
(Fig. 5B-D). H&E staining was conducted to confirm tumorigenesis
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(Fig. 5E). To establish if MEX3D was capable of regulating cell
proliferation in vivo, the Ki-67 antigen expression levels (a well-
known cellular proliferation markers) were estimated utilizing IHC.
As listed in Fig. 5E, in tumors obtained through SiHa/MEX3D-
shRNA cells, a smaller number of Ki-67 antigen-positive cells was
observed than in tumors obtained through SiHa/NC-shRNA cells.
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In addition, this revealed that MEX3D expression knockdown
might inhibit cervical cancer cell proliferation.

HPV16 E7 in cervical cancer cells promotes MEX3D expression
HPV16 oncoprotein E6/E7 are critical in tumor cell growth. We
further investigated whether the increased expression of MEX3D
in cervical cancer was regulated by E6 or E7. We first treated CaSki
and SiHa cells expressing high levels of HPV16 E6/E7 with HPV16
E6 siRNA. There was no change observed in the expression of
MEX3D mRNA following HPV16 E6 knockdown (Supplementary
Fig. S1F, G). Then HPV16 E7 siRNA sequences underwent
incubation in CaSki and SiHa cells to examine if MEX3D is
implicated in the tumor-promoting properties of HPV16 E7.
MEX3D mRNA and protein levels were significantly lowered by
HPV16 E7 knockdown (Fig. 6A, B). As a result of these findings, it
was suggested that HPV16 oncoprotein E7 is capable of
upregulating MEX3D expression.

DISCUSSION

The function of the RBP MEX3D and its mechanism of action in
cervical cancer were highlighted in this work. Alterations in RNA
processing events have a role in pathophysiology of cancer. In
RNA processing, RBPs interact mainly with RNA transcripts to form
ribonucleoprotein complexes and influence RNA quality via
splicing, polyadenylation, nuclear export, protein translation
modification, and RNA transcripts decay [33, 34]. It has been
shown that RBPs play tumor-suppressive or oncogenic roles that
affect the development of various cancer types, comprising breast
cancer, lung cancer, and ovarian cancer. This indicated RBPs
significant roles in the progression of cancer and can be utilized as
potential therapeutic targets for cancer treatment [35-38]. Even
so, RBPs’ biological function and potential utility in cervical cancer
are obscure. In this study, the RBP MEX3D was assessed with
regard to its oncogenic role in cervical cancer. MEXED was directly
bound to TSC22D1 mRNA and reduced its instability. These
findings demonstrated the necessity of post-transcriptional
regulation and RBPs in the development of cervical cancer.
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MEX3D was originally described as a member of the MEX3 gene
family (MEX3A-D) [10]. Shao et al. reported that MEX3D functioned
as an oncogene in prostate cancer [22]. Even so, the MEX3D gene
function in cancer is poorly characterized. To the best of our
knowledge, MEX3D has never been linked to cervical cancer.
MEX3D expression was higher in human cervical cancer cells,
suggesting that it may be a strong predictor for cervical cancer
tumorigenesis in this study.

It is generally considered that cervical cancer is a complex
pathological process during which cervical cancer cells undergo
proliferation and apoptosis. In this study, it was confirmed that
MEX3D acted as a functional protein that promoted proliferation.
Knocking down MEX3D expression decreased cervical cancer
growth and promoted apoptosis in both CaSki and SiHa cells. In
addition, MEX3D overexpression induced cervical cancer cell
proliferation and attenuated apoptosis. Therefore, the data
indicated that high MEX3D expression acted as a tumor promoter
in cervical cancer progression (Fig. 7).

Human TSC22D1 is a candidate suppressor, and its expression
has been confirmed in various cancer types, such as malignancies
of the salivary glands, prostate, and brain [28, 39-42]. The
mechanism of TSC22D1 in cervical cancer, however, is unknown.
In accordance with past findings, this study identified that
knockdown of TSC22D1 expression significantly promoted cell
proliferation and reduced induction of cell apoptosis. In addition,
knockdown of TSC22D1 expression partially neutralized cervical
cell tumorigenesis induced by MEX3D.

HPVs have been defined as the causal agents of cervical cancer,
with HPV-positive cervical malignancies, HPV16 is the commonest
isolated type [43, 44]. Two viral oncoproteins, namely E6 and E7,
are considered to contribute to tumor progression by inactivating
the tumor suppressor genes p53 and retinoblastoma (pRb) [45, 46].
The ability of the HPV E7 protein to bind to pRb is a critical
function, leading to altered activity of this cell-cycle regulator [47].
In this study, HPV16 E7 expression knockdown caused a dramatic
reduction in the expression levels of MEX3D. The data indicated
that the MEX3D/TSC22D1 complex regulated cancer-associated
functions as a consequence of HPV16 E7 overexpression.
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Fig. 7 This article schematic diagram. Sufficient quantities of
endogenous MEX3D generated during cervical cancer tumorigen-
esis are demonstrated by schematic diagram. HPV16 E7 activates
MEX3D expression in cervical cancer cells. MEX3D binds to the
TSC22D1 mRNA and destabilizes TSC22D1 mRNA and promoting
proliferation and reducing apoptosis of cervical cancer.

In conclusion, The RBP MEX3D expression levels were elevated
by HPV16 E7, according to the present research. MEX3D played a
vital role by reducing TSC22D1 mRNA stability in apoptosis and
tumor growth. Therefore, the present study demonstrated that in
cervical cancer, MEX3D could be utilized as therapeutic target and
potential diagnostic.

MATERIALS AND METHODS

Clinical samples

The Women's Hospital of Zhejiang University's Ethical Committee accepted
the study (IRB-20200263-R). Prior to sample collection, each subject who
underwent surgical resections signed a written informed permission form.
The trials were carried out in compliance with the instructions that had
been approved. From January 2013 to December 2018, at Women’s
Hospital, Zhejiang University School of Medicine’s, all human cervical
tissues were acquired. Two senior pathologists affirmed all tissue samples
pathologically and clinically. Supplementary Table S1 comprises the
patient data for all paraffin sections.

RNA extraction and qRT-PCR

In compliance with the manufacturer’s instructions, TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) was utilized for RNA extraction. The SYBR
Premix Ex Taq (TaKaRa, Japan) and PrimeScript RT Reagent Kit were utilized
for conducting gqRT-PCR experiments. All of the primers utilized in this
study are listed in Supplementary Table S2.

Cell culture

The American Type Culture Collection was utilized to provide the HPV16-
positive human cervical carcinoma cell line SiHa (ATCC, USA). Another
HPV16-positive human cervical cancer cell line CaSki, was retrieved from
the Cell Resource Center at the Shanghai Institute of Life Sciences of the
Chinese Academy of Sciences (China), where it was authenticated and
tested. SiHa cells underwent incubation in DMEM (B, Israel) with 10% FBS
(Everyday Green, Hangzhou, China) at 37 °C with 5% CO,. Whereas CaSki
underwent incubation in RPMI-1640 (BI, Israel) supplemented with
10% FBS.

Western blotting

Lysis buffer was used to extract cellular proteins. Using 10% SurePAGE
Egels (GenScript, US), 20ug of total protein was segregated and
transmitted to PVDF membranes (Bio-Rad, USA, 1620177). In compliance
with their manufacturer’s guidelines, Western blot analysis was carried out
utilizing the indicated antibodies. In this study, the following antibodies
were utilized: anti-MEX3D (Santa Cruz, USA), anti-E7 (Santa Cruz, USA), anti-
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GAPDH (Diagbio, China), anti-TSC22D1 (Proteintech, China), anti-pRb
(Santa Cruz, USA). Each trial was conducted three times independently.

Gene knockdown and overexpression

MEX3D small interfering RNAs (siRNA) were generated by GenePharma
(Shanghai, China). HPV16 E6 siRNA, HPV16 E7 siRNA, and TSC22D1 siRNAs
were designed by RiboBio (Guangzhou, China). DharmaFECT Transfection
Reagents were utilized for conducting siRNAs transfection (Thermo, USA).
Lentiviral vector GV493 (GeneChem, Shanghai, China) was used to
introduce short hairpin RNAs (shRNAs) and transduced them into SiHa
cells following the instructions. Puromycin resistance was used to obtain
stable cell lines. The MEX3D overexpression plasmid was constructed by
cloning the full-length MEX3D cDNA into the CMV-MCS-3FLAG-SV40-
Purocycin vector (GeneChem, Shanghai, USA). X-treme GENE HP DNA
Transfection Reagent was utilized to transfect the plasmids (Roche, China).
Supplementary Table S2 lists the shRNA and siRNA target sequences, as
well as the primer sequences utilized in this study.

CCK8 assay

In 96-well plates, 4000 SiHa and CaSki cells were planted. The CCK8 assay
was done at 24, 48, 72, and 96 h after being transfected (Dojindo, Minato-
ku, Tokyo, Japan). A spectrophotometer reader at 450 nm measured the
absorbance. Each trial was conducted three times independently.

Colony-formation assays

The ability of cervical cancer cells to clone was tested using colony-
formation tests. For colony-formation experiments, treated SiHa and CaSki
cells (1000 cells/well) were incubated for 14 days and planted into six-well
plates. At room temperature, the colonies were dyed with a 0.05% crystal
violet solution for 30 min. The images were taken with a Canon camera.
Each experiment was repeated three times.

Apoptosis assay

At 72 h following transfection, the rate of apoptosis of treated CaSki and
SiHa cells was evaluated utilizing an Annexin V-FITC/Pl Apoptosis Kit
(Mutisiences, China, AP101-100-kit). Cells were resuspended after rinsing
with PBS in a binding buffer containing Annexin V-FITC and PI. After 15 min
of incubation, a flow cytometer (BD Biosciences) were utilized for
investigating cells apoptosis rate. Each trial was conducted three times
independently.

RNA pull-down

Pierce™ Magnetic RNA-Protein Pull-Down Kit (Thermo Scientific, USA) was
utilized for conducting RNA pull-down assays. Biotin-labeled RNA probes
were designed at singlemoleculefish.com and synthesized by TsingKe
(China). Sequence of TSC22D1 sense probe was 5’-agtgtcttcagcagattgtt-3’
and sequence of oligo probe was 5’-aacaatctgctgaagacact-3’. For 30 min,
streptavidin magnetic beads underwent incubation at room temperature
with TSC22D1 sense and oligo probes. After washing three times at 4 °C,
the beads were coupled with proteins in RNA-Protein Binding Buffer.
Western blot analysis was utilized to elute proteins linked to beads.

RNA immunoprecipitation (RIP)

In compliance with the manufacturer's instructions, EZ-Magna RIP kit
(Millipore, USA) was utilized for performing RIP analysis. In the experiment,
an antibody specific for flag (MultiSciences, China) and isotype control
antibody (IgG) were utilized. Protein A/G magnetic beads underwent
incubation with antibodies for 30 min at room temperature. The beads
underwent incubation at 4°C overnight with cell lysates after being
washed three times with RIP wash buffer. gqRT-PCR was used to detect the
co-precipitated RNA. The input % was utilized for calculating Flag's relative
expression.

Fluorescence in situ hybridization (FISH)

The RiboTM Fluorescent In Situ Hybridization Kit (RiboBio, China) was
utilized to perform FISH as directed with Cy3-labeled probes. A confocal
microscope was utilized for visualizing In situ hybridization signals (TCS
SP2 AOBS). CY3-labeled TSC22D1 probe was designed at singlemolecu-
lefish.com and synthesized by Tsingke, China (illustrated in Supplemen-
tary Table S2). Anti-MEX3D antibody was purchased from Santa
Cruz, USA.
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RNA stability analysis

For evaluating the TSC22D1 mRNA half-life, actinomycin-D (5 pg/ml, Sigma,
A4262) was added for mRNA synthesis blockage. At various time points,
total RNA was isolated and subjected to RT-qPCR analysis. TSC22D1 mRNA
levels were standardized to GAPDH and plotted as a percentage of the
value at the time of the addition of actinomycin-D.

Nude mice xenograft experiments

Lentiviral vectors expressing shRNA targeting MEX3D were used to infect
SiHa cells. SiHa/MEX3D-shRNA and NC-shRNA (infected cells) (8 x 10°) were
subcutaneously injected into 4-week-old female non-SCID mice (n =6 in
each group) in the right-side flank area. Every 7 days following injection,
tumors were estimated utilizing precision callipers, and the volume of
tumor was determined utilizing the formula [(tumor length) x (tumor
width) x (tumor width)]/2. Following injection, at proper time points, all
animals were slaughtered. We weighed, excised, and photographed
subcutaneous tumors. After being fixed overnight in 10% paraformalde-
hyde, for further investigation, the tumor tissues were sectioned and
embedded in paraffin. All animal tests were undertaken in compliance with
the animal guidelines for utilization and laboratory animal care, which
were authorized by Zhejiang Chinese Medical University’s Animal Ethical
and Welfare Committee (IACUC-20201207-07).

Immunohistochemistry

Utilizing the MEX3D antibody (Abcam, China, 1:600) on paraffin-embedded
cervical tissue segments, immunohistochemistry (IHC) was done. Protein
immunohistochemical expression was determined utilizing a scoring
system depending on the staining range and product of staining intensity.
The staining intensity was graded as 0 (no staining), 1 (weak staining), 2
(moderate staining), and 3 (strong staining). The staining range was graded
as 0 (0% stained), 1 (1-25% stained), 2 (26-50% stained), 3 (51-75%
stained), and 4 (76-100% stained). In four consecutive high-magnification
fields (x200), surface area scores and staining intensity were multiplied for
generating an expression score. After then, the average value was
calculated. By multiplication of these two values, the final product score
was estimated, resulting in a range of 0 to 12.

Statistical analysis

All statistical analyses were conducted utilizing GraphPad Prism 9.0
Software (GraphPad Software, USA) and SPSS Statistics 20.0 (IBM, USA).
Data in compliance with normal distribution were expressed as mean
standard + deviation, and data across two groups were estimated utilizing
Student’s t tests. Besides that, the data were presented as median +
interquartile range, and Mann-Whitney tests were utilized. Differences
with P<0.05 were deemed statistically significant.
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