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Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer deeply
affecting human health. Diagnosing early-stage PDAC is the key point to PDAC patients’
survival. However, the biomarkers for diagnosing early PDAC are inexact in most cases.
Therefore, it is highly desirable to identify an effective PDAC diagnostic biomarker.
In the current work, we designed a novel computational approach based on within-
sample relative expression orderings (REOs). A feature selection technique called
minimum redundancy maximum relevance was used to pick out optimal REOs. We
then compared the performances of different classification algorithms for discriminating
PDAC and its adjacent normal tissues from non−PDAC tissues. The support vector
machine algorithm is the best one for identifying early PDAC diagnostic biomarker.
At first, a signature composed of nine gene pairs was acquired from microarray
gene expression data sets. These gene pairs could produce satisfactory classification
accuracy up to 97.53% in fivefold cross-validation. Subsequently, two types of data
from diverse platforms, namely, microarray and RNA-Seq, were used to validate this
signature. For microarray data, all (100.00%) of 115 PDAC tissues and all (100.00%)
of 31 PDAC adjacent normal tissues were correctly recognized as PDAC. In addition,
88.24% of 17 non-PDAC (normal or pancreatitis) tissues were correctly classified.
For the RNA-Seq data, all (100.00%) of 177 PDAC tissues and all (100.00%) of 4
PDAC adjacent normal tissues were correctly recognized as PDAC. Validation results
demonstrated that the signature had a good cross-platform effect for early detection of
PDAC. This work developed a new robust signature that might be a promising biomarker
for early PDAC diagnosis.

Keywords: pancreatic ductal adenocarcinoma, biomarker, relative expression orderings, diagnosis, support
vector machine

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant carcinomas
and it accounts for at least 95% of all pancreatic cancer cases (Tanaka, 2016). PDAC has
a poor survival outcome (Zhang et al., 2018b) by reason of the difficulty of diagnosing
and assessing PDAC at an early stage. Most patients with PDAC do not present any
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specific early characteristics during the early stage, which means
that early PDAC cannot be detected timely and thus causes
missed chances for surgery. At present, the most commonly
and widely used tumor biomarker for early PDAC diagnosis
is carbohydrate antigen 19-9 (CA19-9) (Goggins, 2005), but it
is not an ideal biomarker because of its relatively low level of
sensitivity and specificity (70% with a 5% error rate, for diagnosis
of PDAC) (Goonetilleke and Siriwardena, 2007; Datta and
Vollmer, 2014). Therefore, a reliable signature with exquisitely
high sensitivity and specificity is urgently needed to facilitate
early PDAC diagnosis.

The main shortcoming of the existing diagnostic signatures
is that they are basically obtained by using signature genes’
absolute expression value (Klett et al., 2018; Liao et al., 2018; Lu
et al., 2018; Cheng et al., 2019b; Zou and Ma, 2020). Therefore,
the batch effects could influence the choice of diagnostic
signatures. Luckily, we could obtain diagnostic signatures with
qualitative transcriptional information through exploiting the
relative expression ordering (REO) method. The REO method
is highly robust to experimental batch effects (Eddy et al., 2010;
Cai et al., 2015; Zhao et al., 2016) and platform differences
(Guan et al., 2016; Cheng, 2019). Therefore, it is possible
to find robust and reliable disease signatures by using the
datasets integrated from different platforms. Moreover, the
REO strategy has been successfully used to identify the early
diagnosis signature of malignant carcinoma, such as gastric
cancer (Yan et al., 2019), hepatocellular carcinoma (Ao et al.,

Abbreviations: PDAC, pancreatic ductal adenocarcinoma; REOs, relative
expression orderings; mRMR, maximum relevance minimum redundancy; IFS,
incremental feature selection; SVM, support vector machine.

2018), and colorectal cancer (Guan et al., 2019). Consequently,
it is worth employing the within-sample REO method to
develop a robust qualitative signature for diagnosing early-
stage PDAC.

Machine-learning techniques, which can be used to uncover
biological principles and mechanism, is a good choice for
biological knowledge mining (Liu et al., 2013, 2019; Cao et al.,
2017; Cheng et al., 2018a,b; Du et al., 2018; Zou et al., 2018;
Stephenson et al., 2019). Hence, this work was devoted to
develop an artificial intelligence-based approach to identify
early-stage PDAC diagnostic signature. In the first step, all
REOs were used for initial diagnosis descriptor. Subsequently,
the minimum redundancy maximum relevance (mRMR), a
features selection technique, was utilized to remove redundant
REOs. The support vector machine (SVM), decision tree,
logistic regression, random forest, naïve Bayes, and Bayes net
algorithms were used for classification. Finally, 9 salient and
genuine gene pairs including 16 genes were screened as the
diagnostic signature for diagnosing early-stage PDAC. The nine
gene pairs’ signature displayed good diagnosis performance
for early-stage PDAC in different diagnosis platforms by
combining with SVM.

MATERIALS AND METHODS

The Construction of Datasets
The microarray gene expression data and RNA-seq
data used in current paper were collected from two

TABLE 1 | Statistics of all data sets.

Data set Platform PDAC PDAC_adjacent Pancreatitis Normal

GSE62452 Affymetrix GPL6244 69 61 – –

GSE28735 Affymetrix GPL6244 45 45 – –

GSE22780 Affymetrix GPL570 8 8 – –

GSE15471 Affymetrix GPL570 39 39 – –

GSE50827 Illumina GPL10558 103 – – –

GSE106189 Affymetrix GPL570 35 – – –

GSE84219 Illumina GPL14951 30 – – –

GSE98399 Affymetrix GPL570 43 – – –

GSE62165 Affymetrix GPL13667 118 – – 13

GSE32676 Affymetrix GPL570 25 – – 7

GSE101462 Illumina GPL10558 6 – 10 4

GSE101448 Illumina GPL10558 24 – – 19

GSE41368 Affymetrix GPL6244 6 – – 6

GSE60601 Affymetrix GPL570 9 – – 3

GSE71989 Affymetrix GPL570 13 – – 8

GSE89120 Affymetrix GPL1352 – – – 14

Total 573 153 10 74

Samples for assessing the efficiency of the signature

TCGA RNA-Seq 177 4 – –

Total 177 4

PDAC, pancreatic ductal adenocarcinoma tissues; PDAC_adjacent, PDAC adjacent normal tissues.
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FIGURE 1 | Schematic workflow of analyses.
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TABLE 2 | Comparison of different methods for identifying early PDAC diagnostic biomarker.

Methods Training set Testing set

ACR (%) SES (%) SPF (%) MCC ACR (%) SES (%) SPF (%) MCC

SVM 97.53 97.96 93.22 0.8615 98.77 98.65 100.00 0.9330

Decision tree 96.91 97.78 88.52 0.8278 95.09 97.92 73.68 0.7518

Logistic regression 96.91 98.11 86.15 0.8314 96.93 99.30 80.00 0.8513

Random forest 96.60 97.61 86.89 0.8104 96.93 99.30 80.00 0.8513

Naïve Bayes 96.14 98.94 76.25 0.8124 96.32 99.30 76.19 0.8274

Bayes net 95.83 98.59 75.64 0.7933 95.70 99.29 72.73 0.8051

PDAC, pancreatic ductal adenocarcinoma tissues; PDAC_adjacent, PDAC adjacent normal tissues; ACR, accuracy; SES, sensitivity; SPF, specificity; MCC, Matthews
correlation coefficient.

databases: the GEO database1 and TCGA database2.
The detailed description of all data sets is elucidated in
Table 1.

Microarray data performed by the platform of Affymetrix
and Illumina were freely downloaded from the GEO database.
It contained 573 PDAC samples (Set1), 153 PDAC adjacent
normal samples (Set2), 10 pancreatitis samples (Set3), and 74
normal samples (Set4). For data performed by Affymetrix,
the raw data were directly downloaded from GEO and then
the robust multi-array averaging (Bolstad et al., 2003; Irizarry
et al., 2003a,b) was used to do the background correction
and normalization. For data performed by Illumina, the
originally processed data (series matrix files) were used. For
all microarray data, the mapping information of probe IDs
and Entrez gene IDs can be found in the corresponding
platform files. For one gene with multiple probes, we used
the arithmetic mean of these probes’ values as this gene’s
expression value.

The RNA-Seq data set included 177 PDAC and 4 adjacent
normal samples. We downloaded the free RNA-Seq profiles
from TCGA (up to November 19, 2019) website using
the TCGAbiolinks R package (Colaprico et al., 2016).
The gene symbol expression matrix was obtained by using
Ensembl gene IDs.

1http://www.ncbi.nlm.nih.gov/geo/
2https://portal.gdc.cancer.gov/

FIGURE 2 | A plot to show the IFS curve. The black dotted line showed that
nine gene pairs reached the highest accuracy of 97.53%.

To make the evaluation of the model more objective,
each category of samples (Set1, Set2, Set3, Set4) were
divided into two subsets of data: training set (80% of
each category of samples) and testing set (20% of each
category of samples). Ultimately, the training set contained
580 tumor samples (458 PDAC samples and 122 PDAC
adjacent normal samples) and 67 non-tumor samples (59
normal samples and 8 pancreatitis samples). The testing
set contained 146 tumor samples (115 PDAC samples
and 31 PDAC adjacent normal samples) and 17 non-
tumor samples (15 normal samples and 2 pancreatitis
samples) for the performance evaluation of the signature.
In addition, the RNA-Seq data set and testing set belong to the
independent test data sets.

Relative Expression Orderings (REOs)
To obtain a more robust and reliable signature from gene
expression profiles, REO methodology was utilized for feature
construction. The REO for gene pair (i and j) is formulated
as Gi > Gj or Gi < Gj, where Gi and Gj represent the
expression values of gene i and j. For the gene pair, if more
than 85% of the samples have the same REO, we deem this
REO as a stable REO of this gene pair. The stable reversal
gene pairs represent the gene pairs that have stable REOs in
both tumor tissues and control tissues, but REO patterns are
different (Gi > Gj or Gi < Gj in tumor tissues but Gi > Gj
or Gi < Gj in non-tumor tissues). Also, the reversal stable
gene pairs between tumor and control samples were chosen
as the candidate REO-based qualitative diagnostic signature.
We later gained the consistent genes of all preprocessed data
sets and its corresponding gene expression profiles. Whereafter,
based on the reversal gene pairs and gene expression profiles,
we gained new profiles by using 0, 1, and −1 to denote
Gi > Gj, Gi < Gj, and other cases (Gi or Gj does not
exist), respectively.

Minimum Redundancy Maximum
Relevance (mRMR)
The mRMR (Peng et al., 2005) approach can omit the redundant
features and choose the high-relevancy features to the target
class, and thus significantly improve the classification accuracy.
mRMR is on the base of information theory and it can be
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TABLE 3 | The nine gene pairs’ signature ranked by mRMR.

Order Feature (gene pair)

Gene i Gene j

1 UBE2C FITM1

2 SERPINB5 ZNF100

3 NUSAP1 ONECUT1

4 LAMC2 RBM33

5 BCAR3 FBXO42

6 CTSE PRRC2C

7 HOXB7 MYO19

8 NUSAP1 TNKS

9 RRM2 ONECUT1

The absolute expression value of gene i is higher than that of gene j in PDAC
patients compared with non-PDAC patients.

accomplished through mutual information (MI) operation, and
the MI is formulated as follows:

MI(vi, C) =

∫
p(vi, C)ln

(
p(vi, C)

p(vi)p(C)

)
dvidC (1)

where v represents the feature vector and C represents the
class to be targeted.

The mRMR is estimated as

mRMR =
1
|9|

∑
vi∈9

MI(vi, C) −
1
|9|2

∑
vivj∈9

MI(vi, vj) (2)

where 9 denotes the set of ranked features, MI (vi, C) denotes
mutual information between the vi feature and class C, and IM
(vi,vj) denotes mutual information between vi and vj .

In this work, a reversal stable gene pair was considered
as a feature. The feature selection process was essential
for exact classification between tumor samples (positive
samples) and non-tumor samples (negative samples).
Thus, we utilized mRMR method to pick out effective
features (gene pairs).

Incremental Feature Selection (IFS)
Based on mRMR techniques, we gained a list of ranked
features (gene pairs). The incremental feature selection
(IFS) (Li et al., 2019) strategy was adopted to find the
optimal feature subset which could produce the best
diagnosis for PDAC. During IFS process, the gene pair
was added one by one to feature subset and the optimal
features (gene pairs) were determined when the highest
accuracy was obtained.

Classification Algorithms
As a popular supervised learning approach, SVM was first
introduced by Vapnik and has been widely used in various
bioinformatics classification problems (Song et al., 2009;
Shoombuatong et al., 2012; Win et al., 2017, 2018; Chen
et al., 2019b; Laengsri et al., 2019; Manavalan et al., 2019b;
Schaduangrat et al., 2019; Hasan et al., 2020; Liu and Chen,
2020). Herein, the free LibSVM (version 3.23) package

(Chang and Lin, 2011) was employed to execute SVM.
The LibSVM with fivefold cross-validation and radial basis
function was employed to perform classification. The grid
search with fivefold cross-validation was used to determine
the C and γ values for SVM. As a result, we obtained the
optimal values 32 and 0.03125 for C and γ, respectively.
Apart from SVM, decision tree, logistic regression, random
forest, naïve Bayes, and Bayes net were also utilized as
classification algorithm and performed by using Weka
(version 3.8.3) (Frank et al., 2004). Within this research,
the aforementioned six classification algorithms with fivefold
cross-validation were used.

Performance Measurements
In the current paper, six indexes were used to measure
the effectiveness of our model. They are accuracy (ACR),
sensitivity (SES), specificity (SPF), Matthews correlation
coefficient (MCC) (Li et al., 2015; Bao et al., 2019; Chen
et al., 2019a; Cheng et al., 2019a, 2020), the receiver
operating characteristic (ROC) curves, and the area under
the ROC curve (AUC). Especially, taking into consideration
the class imbalance of tumor tissues and non-tumor
tissues, we appointed MCC as the major performance
measurement in this work. The details about ACR, SES,
SPF, and MCC can be found from Tang et al. (2017); Basith
et al. (2019), Manavalan et al. (2019a); Patil and Chouhan
(2019), and Basith et al. (2020).

RESULTS

Derivation of PDAC Diagnostic Signature
The whole procedure of deriving the diagnostic signature is
provided in Figure 1. First, with the relative expression orderings
elaborated in Materials and Methods section, for 458 PDAC
samples and 122 PDAC adjacent normal samples in the training
set, there were 30,865,512 and 49,177,748 stable gene pairs,
respectively. Also, there were 17,842,291 consistent stable gene
pairs in total. Likewise, for 8 pancreatitis samples and 59
normal samples in the training set, there were 53,719,117 and
44,523,890 stable gene pairs, respectively. There were 25,687,362
consistent stable gene pairs in total. Among 17,842,291 and
25,687,362 gene pairs, there were 16 stable reversal gene pairs
between the two sets of samples. Then, on the basis of the
novel profiles (see Materials and Methods), we captured the
optimal feature set from the 16 gene pairs by using mRMR
with SVM, decision tree, logistic regression, random forest,
naïve Bayes, and Bayes net. The comparison results of the
aforementioned six classification algorithms are listed in Table 2.
It was obvious that the SVM algorithm was the best one for
identifying early PDAC diagnostic biomarker. The accuracy,
sensitivity, specificity, and MCC of SVM were, respectively,
97.53%, 97.96%, 93.22% and 0.8615. Therefore, the final model
used for early PDAC diagnostic biomarker identification was
built based on SVM algorithm. The blue curve in Figure 2
displayed the process of IFS method. As we could see from
Figure 2, with fivefold cross-validation, the nine gene pair
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TABLE 4 | Classification efficiency of the nine gene pairs in independent test data sets.

Data set PDAC PDAC_adjacent Pancreatitis Normal ACR SES SPF MCC

Testing set 115 31 2 15 98.77% 98.65% 100.00% 0.9330

TCGA 177 4 – – – 100.00% – –

PDAC, pancreatic ductal adenocarcinoma tissues; PDAC_adjacent, PDAC adjacent normal tissues; ACR, accuracy; SES, sensitivity; SPF, specificity; MCC, Matthews
correlation coefficient.

signature could identify PDAC with up to 97.53% accuracy on
training set. That is to say, nine gene pairs illustrated in Table 3
were deemed as the optimal signature for diagnosing the early-
stage PDAC.

Examination of the Signature
We then assessed the classification ability of nine gene pairs
in independent test data sets, and the test results with fivefold
cross-validation are shown in Table 4. For 163 samples
in the testing set, our model reached accuracy, sensitivity,
specificity, and MCC values of 98.77%, 98.65%, 100.00%, and
0.9330, respectively. Furthermore, the signature 9 gene pairs
could accurately distinguish 177 PDAC samples and 4 PDAC
adjacent normal samples measured by RNA-Seq although the
training set did not contain any RNA-Seq information. This
test result, based on RNA-Seq data set, indicated that the
nine gene pairs have a good cross-platform effect for PDAC
early detection. For all 327 PDAC samples and 17 non-
PDAC samples collected from public databases, the accuracy,
sensitivity, specificity, and MCC are 99.42%, 99.39%, 100%, and
0.9365, respectively. Also, the AUC reached 0.9524 (95% CI,
0.8881–1; see Figure 3). According to independent tests on
testing set and RNA-Seq data set, it was concluded that the
signature could discriminate PDAC (PDAC and adjacent normal
tissues) patients from non-PDAC (pancreatitis and normal
tissues) patients.

DISCUSSION

Pancreatic carcinoma is a life-threatening malignant
tumor of the digestive system with bad prognosis due
to late diagnosis. The current imaging techniques and
existing tumor signatures have insufficient sensitivity
and/or specificity for early PDAC diagnosis. Herein, new
strategies for diagnosis at an early stage of the disease are
urgently needed. In the current work, we found a robust
qualitative diagnostic signature 9 gene pairs (16 genes),
which can discriminate PDAC (PDAC and adjacent normal
tissues) patients from non-PDAC (pancreatitis and normal
tissues) and might be a promising biomarker for early
diagnosis of PDAC.

Database PubMed was searched and retrieved appropriate
journal articles on the association between 16 genes in 9
gene pairs and PDAC published before August 18, 2020.
Seven genes in the nine gene pairs’ signature, including
UBE2C, SERPINB5, LAMC2, CTSE, HOXB7, RRM2, and
ONECUT1, had been reported to be related to PDAC. The
description of the association between seven genes and PDAC

is displayed in Table 5. They might play a vital role in PDAC
tumorigenesis and were critical genes for cancer. Notably,
CTSE (Keliher et al., 2013), HOXB7 (Chile et al., 2013;
Nguyen Kovochich et al., 2013), and RRM2 (Bhutia et al.,
2013) were overexpressed in PDAC. UBE2C could encode
a ubiquitin-conjugating enzyme which correlated with the
PDAC development and progression. Also, the proliferation and
epithelial–mesenchymal transition in PDAC could be inhibited
by silencing UBE2C (Wang et al., 2019). SERPINB5 had been
found to link to the prognosis of PDAC (Cheng et al., 2019b).
LAMC2 has relation with the occurrence and progression of
PDAC patients (Pan et al., 2018; Yang et al., 2018; Zhang
et al., 2018a). Furthermore, the high expression level of LAMC2
could facilitate the invasion of PDAC cell and thus increase
the risk of tumor recurrence (Yang et al., 2018). Patients with
pancreatic diseases (chronic pancreatitis) had a higher risk
of developing PDAC and thus the expression of CTSE in
pancreatic diseases might be the key to early PDAC detection
and PDAC progression. HOXB7, frequently overexpressed in
PDAC, closely connected with lymph node metastasis (Nguyen
Kovochich et al., 2013) and worse survival in PDAC patients
(Zhang et al., 2014). Knockdowning HOXB7 could cause cell
apoptosis and cell cycle arrest (Chile et al., 2013). RRM2

FIGURE 3 | The ROC curve of the independent test data sets.
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TABLE 5 | The description of the association between seven genes and PDAC.

Gene symbol The description of the
association between
seven genes and PDAC

UBE2C Silencing UBE2C could
inhibit the proliferation and
epithelial–mesenchymal
transition in PDAC
(Manavalan et al., 2019a)

SERPINB5 SERPINB5 links to the
prognosis of PDAC (Cheng
et al., 2019b)

LAMC2 LAMC2 is associated with
PDAC occurrence and
progression (54–56). The
high expression level of
LAMC2 could facilitate the
invasion of PDAC cell and
thus increase the risk of
tumor recurrence (Keliher
et al., 2013)

CTSE Because patients with
pancreatic diseases
(chronic pancreatitis) have a
strong risk of developing
PDAC, the expression of
CTSE in pancreatic
diseases might be the key
to detection of early PDAC
and progression of PDAC

HOXB7 HOXB7 is overexpressed in
PDAC. It is closely relevant
to lymph node metastasis
(Patil and Chouhan, 2019)
and worse survival of PDAC
patients (Chile et al., 2013).
Knockdowning HOXB7 can
cause cell apoptosis and
cell cycle arrest (Tang et al.,
2017)

RRM2 Gene expression of RRM2
was significantly higher in
PDAC tissues than normal
pancreatic tissues (Basith
et al., 2019)

ONECUT1 Loss expression of
ONECUT1 in PDAC cells
implied its tumor
suppressor function in this
malignant tumor (Wang
et al., 2019)

was involved in the process of deoxyribonucleotide synthesis.
Gene expression of RRM2 was significantly higher in PDAC
tissues than in normal pancreatic tissues, which brought about
the chemoresistance of PDAC to nucleoside analogs (Bhutia
et al., 2013). A loss of ONECUT1 expression in PDAC cells
implied its tumor suppressor function in this malignant tumor
(Jiang et al., 2008).

To further study the detailed information and functions of
the 9 gene pairs, we analyzed 16 genes (9 gene pairs) via

using online tools in Metascape3 (Tripathi et al., 2015). The
enrichment analysis included GO terms functional enrichment
and KEGG pathway enrichment. Pathways with P-value were
less than 0.05 and the number of enriched genes greater than
or equal to 3 was considered significant. Ultimately, based on
the GO enrichment, the 16 genes (9 gene pairs) enriched in
two terms in the category BP, including “regulation of cell cycle
process” and “regulation of mitotic nuclear division.” UBE2C,
RRM2, TNKS, NUSAP1, and MYO19 were included in the genes
enriched in regulation of cell cycle process, whereas TNKS,
UBE2C, NUSAP1, and MYO19 enriched in the regulation of
mitotic nuclear division. Collecting the aforementioned results,
the genes of the nine gene pairs might play a significant part in
the tumorigenesis of PDAC.

In conclusion, we had identified nine gene pairs’ signature
for early-stage PDAC diagnosis that could correctly
distinguish PDAC (PDAC and PDAC adjacent normal
tissues) tissues from non−PDAC (normal and pancreatitis
tissues) patients at individual level. Because the number of
normal and pancreatitis samples used in the current work
for distinguishing early-stage PDAC is relatively small, we
will try to collect more samples from more public databases
to further obtain a novel diagnostic signature with higher
accuracy on larger numbers of such specimens. Moreover,
we hope that some RNA signature (Fang et al., 2019;
Vaschetto, 2019; Wu et al., 2019) can be found and applied
in related fields.
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