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Platelet detection and counting play a greatly significant role in medical field, especially in routine blood tests which can be used to
judge blood status and diagnose related diseases. Therefore, platelet detection is valuable for diagnosing related blood diseases
such as liver-related diseases. Blood analyzers and visual microscope counting were widely used for platelet detection, but the
experimental procedure took nearly 20 minutes and can only be performed by a professional doctor. In recent years,
technological breakthroughs in artificial intelligence have made it possible to detect red blood cells through deep learning
methods. However, due to the inaccessibility of platelet datasets and the small size of platelets, deep learning-based platelet
detection studies are almost nonexistent. In this paper, we carried out experiments for platelet detection based on commonly
used object detection models, such as Single Shot Multibox Detector (SSD), RetinaNet, Faster_rcnn, and You Only Look
Once_v3 (YOLO_v3). Compared with the other three models, YOLO_v3 can detect platelets more effectively. And we
proposed three ideas for improvement based on YOLO_v3. Our study demonstrated that YOLO_v3 can be adopted for platelet
detection accurately and in real time. We also implemented YOLO_v3 with multiscale fusion, YOLO_v3 with anchor box
clustering, and YOLO_v3 with match parameter on our self-created dataset and, respectively, achieved 1.8% higher average
precision (AP), 2.38% higher AP, and 2.05% higher AP than YOLO_v3. The comprehensive experiments revealed that YOLO_v3

with the improved ideas performs better in platelet detection than YOLO_v3.

1. Introduction

Routine blood examination [1] (commonly known as
“complete blood count”) is one of the most important and
commonly used examination items in hospitals at all levels.
It is used for in-depth examination, preliminary data analy-
sis, and exclusion of suspected diseases, which is of great sig-
nificance for disease diagnosis. In blood routine, the platelet
count is indispensable and can be achieved by platelet detec-
tion. Platelets are blood cells released into the blood by
degranulation after megakaryocytes mature [2]. Their shapes
are various and irregular. Normal platelets are 2-4 m in diam-
eter. They are the smallest cells in the blood and have no
nucleus. The main function of platelets is coagulation [3],
that is, they would coagulate rapidly when a wound occurs,
thereby reducing blood flow. If they decrease, there may be
bleeding problems such as thrombocytopenic purpura, and
when they increase, the blood is hypercoagulable and the
potential for thrombosis is high [4]. In addition to the above
cases, when the number of platelets is higher than the normal

value, but the change is not very large, it is generally influenza
or other mild illness, and it will return to the normal value as
long as the condition improves. Significant reduction in
platelets indicates that the body has coagulation problems,
such as acute leukemia [5] and acute radiation sickness. At
this time, timely treatment measures should be taken to pre-
vent the further development of the disease.

The most commonly used cell detecting methods in
medicine include the visual microscope detecting method
[6], the blood cell analyzer method [7], and the detecting
method based on machine learning [8]. Visual microscope
detection method includes ordinary optical microscope [9]
detection method and phase contrast microscope [10]
method. But, optical microscopes have far less resolution
than electron microscopes. In the ordinary optical micro-
scope detection method, it is necessary to destroy red blood
cells when processing the blood sample. However, red blood
cells are not completely destroyed if diluted 20 or 40 times
with red salt platelet thinner. The phase-contrast microscope
counting method uses ammonium oxalate as the diluent
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[11], counts under a transparent microscope, and checks the
count after taking pictures. The method is highly accurate,
and platelets are easy to identify. Blood cell analyzers are
typically implemented by principles based on impedance
[12] or light scattering [13] measurements. However, these
methods have shortcomings for platelet detection. On the
one hand, these methods cannot distinguish platelet from
erythrocyte debris and nonnegligible interfering particles.
Because of their approximate size to platelet, these particles
may be counted as platelets, resulting in less accurate platelet
detection. On the other hand, large platelet is ignored in
platelet detection algorithms used in hematology analyzers.

Although the above two methods are relatively accurate,
they have some defects, such as the need for more skilled
and professional experimental operators, because they
greatly affect the accuracy of the experimental results. This
experimental process takes a lot of time. When there are
many experimental samples, a large number of professional
inspectors are required. Finally, the subjectivity of the exper-
imenter is an inevitable source of error in this experiment.
With the rapid development of computer technology, the
machine learning method came into being. More and more
scholars have gradually applied the machine learning
method to the field of medical testing and counting. Kaur
et al. [14] proposed a combination method of Ostu and
watershed to detect blood boards. The Secretion Curve
Threshold [15] method can be used to separate red blood
cells with the background. In general, the visual microscope
detection method and blood cell analysis instrumentation
are time-consuming and cannot be effectively used. The
process of manually extracting characteristics based on
machine-learning of blood cell detection methods is trouble-
some. For example, LBP (Local Binary Pattern) and HOG
(histogram of oriented gradient) are artificially designed
algorithms for feature extraction. Then, the feature consti-
tutes the input vectors of classifier as feature vectors. This
study solves the problems from the perspective of liberation
and saving time.

Due to the rapid development of the image processing
field in recent years, related technologies have also been
introduced into medical image processing. This paper
focuses on the detection of platelet by deep learning. The
commonly used target detection methods are divided into
single-stage and multistage [16] target detection. Given that
a single-stage method is relatively simple to process than a
multistage and better in real time, the core idea of multistage
network is to convert detection into regression, which can
complete target positioning and classification at one time.
YOLO_v3 [17] draws on YOLO_vl and YOLO_v2.
Although there are not many innovations, it improves the
detection accuracy while maintaining the speed advantage
of the YOLO family, especially for small objects. The main
idea of SSD [18] is to use Convolutional Neural Network
(CNN) to extract features and evenly perform dense sam-
pling at different positions of the picture. Different scales
and aspect ratios can be used for sampling. RetinaNet [19]
is a combined application of the original Feature Pyramid
Network (FPN) and Fully Convolutional Network (FCN).
YOLO_v4 [20] enhances the learning ability of CNN,
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remove computational bottlenecks, reduce the use of video
memory, and speed up the inference speed of the network.
YOLO_v4-tiny [21] is a simplified version of YOLO_v4,
with less structure, but the speed is greatly increased.

In this paper, a single-stage target detection method is
called YOLO_v3 [17]. Finally, YOLO_v3 outperforms multi-
stage methods both in terms of accuracy and detection time
of platelet detection.

The main contributions of this paper are as follows:
establishing a platelet dataset, improving the network struc-
ture of YOLO_v3, improving the representation of matching
parameters, improving the prior framei%(Eand carrying out
the experiments for platelet detection based on YOLO_v3,
SSD (Single Shot Multibox Detector) [18], RetinaNet [19],
and improved YOLO_v3.

2. Materials and Methods

To realize the platelet detection timely, the methods based
on deep learning were applied to the detection task. In this
section, we introduce our approach to implementing platelet
detection, namely, the YOLO_v3 network which used the
Darknet_53 as the feature extraction network. Then, we
show the relative improvements based on YOLO_v3.

2.1. YOLO_v3. YOLO_v3 is a single-stage CNN model for
end-to-end detection. It consists of the backbone network
Darknet_53 (except for the full connection layer) and a scale
fusion network. The entire model structure is shown in
Figure 1 [22].

In the figure above, “CBL” consists of three network
layers: conv2d, Batch Normalization, and Leaky Relu.
“ResX” denotes X residual blocks, and a residual block con-
tains two convolution blocks and an “add” layer. Darknet
53 is mainly stacked with 5 subsample convolutions and
residual blocks. The convolution layer subsamples images
by varying the stride of the convolutional kernel to obtain
feature maps with different sizes. The structure uses five
residual blocks to complete the identity mapping and avoid
gradient extinction as much as possible.

The “Neck” network is used for multiscale feature fusion
[23] and outputs feature maps of different scales. If the size
of the input image to the network is 416 x 416, the Neck’s
output would be feature maps of three sizes 13 x 13, 26 x
26, and 52 x 52. The feature map 13 x 13 is more suitable
for large target detection, and 52 x 52 is more suitable for
small target detection.

The “Head” architecture’s output contains the class
probability, the confidencei’4(Eand the boundary box
coordinates.

2.2. Improved Ideas Based on YOLO_v3

2.2.1. Improved Network Based on YOLO_v3. The shallow
feature layer [24] of the neural network (close to the input
layer) extracts low-level features. Low-level features are gen-
eralized and easy to express such as texture, color, and edges.
High-level features are often complex, indescribable seman-
tic information, such as blonde hair, ladybird wings, and
colorful flowers. Therefore, it is not enough to directly use
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Ficure 1: YOLO_v3’s network.

shallow or deep features, so high and low features need to be
integrated into the head network.

For small-sized targets, the shallow features extracted by
the network contain some of its details. However, as the
number of layers deepens and the receptive field increases,
the geometric details in the extracted features may disappear
completely.

So we added a shallow feature layer 104 x 104 for the
“Head” input in Figure 2 and abandoned the high-level fea-
ture 13 x 13; it is because the high-level feature 13 x 13 loses
more original information. And the improved network is
shown in the following figure:

2.2.2. Anchor Boxes Using k-Means. YOLO_v3 adopted the
k-means clustering mechanism to obtain anchors with the
purpose of multiscale learning. The anchors are several
boxes of different sizes obtained by statistics or clustering
from the real boxes in the training set. After observation, it
is found that the anchors generated by YOLO_v3 are closely
connected with the data sets, and the size of the gap between
platelets in this paper and the original data set (VOC2007) is
too large. This paper improves it to produce anchor boxes of
size 3, 6], [16, 18], [13, 19], [29, 29], [13, 25], [24, 30], [24,
39], [39, 42], and [45, 60] by k-means clustering method.

2.2.3. Improved Match Parameter. In the experiments, there
will be certain problems in the use of matching parameters
between the real frame and the predicted frame, that is, if
the two targets do not overlap, it will be 0, and the distance
between the two targets will not be reflected at this time. In
the case of the nonoverlapping target, if IOU was used as a
matching parameter, the gradient would be 0 and cannot
be optimized. IOU is defined in the following formula:

area(C) Narea(G)

10U(¢.6) = area(C) Uarea(G)

(1)

IOU refers to the overlap ratio between the prior box C
and the ground truth G. area(C) refers to the area of the
prior box C, and area(G) refers to the area of the real box
G. When the prior box is completely close to the real box,
the value of IOU between the two boxes is 1.

Therefore, CIOU +IOU will be used as the matching
parameter of the model, instead of the original matching
parameter. CIOU +IOU means that the two values are
added. Then, even though the real frame and the predicted
frame do not overlap, the matching parameter still can mea-
sure how much the two boxes overlap. It is because that the
CIOU takes into account the position information of the two
boxes, such as the distance of central points of two boxes and
the diagonal length of the smallest enclosing box covering
two boxes. CIOU is shown in the following formula:

area(b) N area (b%") b))

CIOU =
area(b) U area(bgt) c?

av, (2)

where b represents the predicted frame, b?" represents the
real frame, area(b) represents the area of the predicted frame
area, area(b?") represents the area of the real frame area, p?
(b, b9") represents the center distance between the predicted
frame and the real frame, ¢ represents the diagonal distance
of the smallest area that can include the predicted box and
the ground-truth box, « is a parameter used for balance,
and v is a parameter used to measure the consistency of
the aspect ratio.

2.3. Data Preparation. As platelet dataset is hard to get
online, we exploited a homemade platelet dataset to carry
out experiments to evaluate the proposed method.

Given the color of background proximity of platelets
when whole blood cells are not processed, it is difficult to
distinguish. Therefore, we colored the blood cells.
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FIGURE 2: The improved YOLO_v3’s network.

We identified the platelets under the microscope by
observing the internal staining of the platelets when dynam-
ically adjusting the focal length. Then, we used Labellmg to
draw a rectangular box to surround the corresponding plate-
lets to the most accurate degree; then, we can obtain the
location information and category information of platelets
for each picture. The total number of the dataset was 412;
then, 296 were for training and 33 for validationi%(Eand
83 for testing.

2.3.1. Blood Cell Image Acquisition System. The image collec-
tion system in platelets was composed of two parts of hard-
ware and software (shown as Table 1). The hardware is an
electronic biooptical microscope, and the physical picture
of the microscope is shown in Figure 3.

Figure 3 shows a microscope with model L208-3M50.
The microscope consists of the following parts: body tube,
coarse adjustment, fine adjustment, objectives on nosepiece,
limb, stage, joint, substage condenser, mirror, condenser
adjustment, eyepiece, objective lens, and foot. We placed
the blood smear on the stage and observed and saved the
blood smear field map through the computer connected to
the electronic eyepiece. We used ImageView as the software
for the image collecting system, and the software interface is
shown in Figure 4.

The center of Figure 4 is a view of a blood smear under a
microscope, which is transmitted from the microscope’s
electronic eyepiece to the computer. The part of the content
in blue font on the left is the relevant parameters for adjust-
ing the screen, such as resolution, format, color mode, and
color adjustment.

2.3.2. Annotation of Blood Cell Image Dataset. The experi-
ments for detecting platelet were carried out in a supervised
learning manner; hence, the labeling information of the
platelets was required. The labeling information was com-
posed of the platelet boundary location information and

TaBLE 1: Experimental platform.

CPU Ryzen 5 3600X
Memory 16 GB

GPU NVIDIA GeForce RTX 2060
Programming language Python3.6

Main library Pytorchl.6

FIGURE 4: ImageView’s visual interface.
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the platelet category information and was obtained by utiliz-
ing labeling. The format of the final generated Extensible
Markup Language file is the same as that of PASCAL
VOC. The image annotation process is shown in Figure 5.
The left side of Figure 5 is the software operation
options, such as “Open” which refers to opening a single
image, “Open Dir” which refers to opening a folder, and
“Change Save Dir” refers to the path where the image is
saved, and “Create RectBox” draws a callout box. The right
side of Figure 5 is an open image of blood cells. The green
marked box in the figure is an annotation for platelets, and
a “xml” file will be generated later. The information in the
file includes the location information, category, and name
of the marked cells. Therefore, after completing the work
of grasping the morphological characteristics of blood cells,
collecting blood cells, and acquiring blood cell images, the
preparation of the blood cell database is completed.

2.4. Experimental Environment and Parameter Setting. The
experimental platform for the paper is equipped as follows:

Based on the above configuration, we implemented a
total of five experiments employing Faster rcnn, SDD, Reti-
naNet, YOLO_v3, and the proposed improved YOLO_v3 for
the assessment of the performance of the platelet detection.
The number of iterations of the proposed improved
YOLO_v3 was set to 100. The learning rate (LR) was set to
0.001 when we first train the model and then was set to
0.0001 after 50 iterations. The LR was not fixed and adjusted
at every iteration with the multiplication factor of 0.92. And
the batch size was set to 4. The IOU threshold was set to 0.45
and the confidence threshold to 0.25 for obtaining a precise
detection result.

2.5. Evaluation Metric. To quantitatively evaluate and com-
pare five deep neural networks for detecting platelet, we uti-

lized a variety of standard metrics frequently used to
evaluate these methods including recall, precision, F1, and
AP (average precision). And these metrics are obtained
based on the confusion matrix in Table 2.

TP is true positive and indicates the number of positive
samples classified as positive samples; FP is false positive and
represents the number of negative samples that are misclassi-
fied as positive samples. FN is false negative and indicates the
number of positive samples that are misclassified as negative
samples. TN is true negative and indicates the number of neg-
ative samples that are classified as negative samples.

Precision is defined as follows:

TP
Precision= ———. 3
recision = —— (3)
Recall is defined as follows:
TP
Recall= ——— . 4
T TPy EN (4)

The F1 score can comprehensively evaluate the perfor-
mance presented by the two indicators of precision and
recall. When we create classifiers, we always make a compro-
mise between recall and precision, and it is difficult to com-
pare models with high recall and low precision compared to
models with high precision but low recall. F1 score is a
metric we can use to compare two models. F1 is defined as
follows:

2 1 1
1t —
F1  precision recall (5)
2TP
F1= —/—————.
2TP + FP + FN
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TaBLE 2: Confusion matrix. TaBLE 3: Comparative experiments of platelet detection based on
different methods.
True class Positive Negative
Predicted class & Method AP F1  Precision Recall  Time
Negative FP TN RetinaNet 20.37% 1% 100% 15% 29s
Positive TP FN SSD 47.95% 13% 85.51% 7.22% 3.31s
Faster_rcnn 33.75%  40% 27.08% 74.17%  2.95s
o it N y Yorows 84.20% 86%  8531%  86.86% 2.85s
AP (average precision) is the precision across a YOLO. v4 13.65%  14%  41.43% 376%  3.0s
elements of objects as defined in the following formula: )
YOLO_v4-tiny 24.67%  38% 48.27% 31.57%  2.95s

AP= i P(k)Ar(k), (6)

where M is the number of all targets predicted by the net-
work, P(k) refers to the corresponding precision value when
the model predicts k objects, and Ar(k) represents the differ-
ence between the recall rates when the model predicts k — 1
to k object value.

3. Results

To ensure the fairness of experiments, the experiments were
implemented under the same hardware environment and
test images.

In order to well understand the effectiveness of YOLO_
v3 used to detect platelet, we carried out experiments to
compare the results of four methods. The experimental
effects of different methods for platelet detection are shown
in Table 3.

3.1. Comparative Experiment. To be specific, the average
precision (AP) values, F1, precision, and recall of the four
network models are shown in Table 3: YOLO_v3: 84.2%,
SSD: 47.95%, RetinaNet: 20.37%, and Faster_rcnn: 33.75%,
and the AP value of YOLO_v3 was 36.25%, 63.83%, and
50.45% higher than that of SSD, RetinaNet, and Faster_rcnn,
respectively. The recall values of the four network models
were as follows: YOLO_v3: 86.86%, SSD: 7.22%, RetinaNet:
15%, and Faster_rcnn: 74.17%, and the recall of YOLO_v3
was 79.64%, 71.86%, and 12.69% higher than that of SSD,
RetinaNet, and Faster_rcnn, respectively. The precision
values of the four network models were as follows: YOLO_
v3: 85.31%, SSD: 85.51%, RetinaNet: 100%, and Faster_rcnn:
27.08%, and the recall of YOLO_v3 was -0.2%, -14.69%, and
58.23% higher than that of SSD, RetinaNet, and Faster_rcnn,
respectively. The F1 values of the four network models were
as follows: YOLO_v3: 86%, SSD: 13%, RetinaNet: 1%, and
Faster_rcnn: 40%, and the F1 value of YOLO_v3 was 73%,
85%, and 46% higher than that of SSD, RetinaNet, and
Faster_rcnn, respectively. The values of average precision
(AP), precision, and F1 are demonstrated that the YOLO_
v3 model outperforms the comparison networks. The total
number of platelets SSD and RetinaNet recalled is much less
than YOLO_v3. Thus, their higher recall compared to
YOLO_v3 does not mean they are better than YOLO_v3.
The detecting time of models were as follows: YOLO_v3:
2.85s, SSD: 3.31s, RetinaNet: 2.9, and Faster_rcnn: 2.95s,
which indicates that four networks can detect platelet in real

time and YOLO_v3 achieved fastest detection of platelet
compared other three methods. In general, YOLO_v3 is a
competitive network for detecting platelet.

The above methods include single-stage target detection
methods and a multistage target detection method (Faster_
rcnn). As can be seen from Table 3, YOLO_v3 is more
accurate in detecting platelet than the other three methods with
a large margin and outperforms others in detecting speed.

The SSD network does not have a multiscale fusion
module, and the features used in the prediction are separate
deep features or shallow features. Therefore, it is not condu-
cive to the detection of a small target platelet. Faster_rcnn
was inferior to YOLO_v3 in platelet detection because the
detection principle of Faster_rcnn requires candidate region
screening, which can well separate the target from the back-
ground, while platelet is a small target, and there are not
enough pixel features used for its learning. In addition, the
pixel value of the platelet in the stained picture is close to
the background, which makes Faster_rcnn unable to give full
play to its advantages. RetinaNet detected platelet poorly
because there are only three feature layers used to predict
the platelet, and the shallow feature information contained
is insufficient. YOLO_v4 and YOLO_v4-tiny can hardly
learn the platelet’s features because their improvements
compared to YOLO_v3 are not suitable for platelet detec-
tion. The YOLO_v3 model has a multilayer feature map
output for predicting platelet, and it also uses a multiscale
fusion method, so that it can contain both shallow and deep
feature information for the model to detect platelet.

We carried out parametric experiments, and the experi-
mental results are shown in Figure 6.

Figure 6(a) presents the relationship between threshold
and precision. As can be seen from Figure 6(a), the accuracy
rate will increase as the threshold (score_threshold)
increases. When the threshold value is close to 1, the accu-
racy rate reaches the peak and begins to fall. Figure 6(b)
shows the relationship between the recall rate and the
threshold. It can be found that the recall rate will decrease
as the threshold increases. It can be concluded that when
the precision value is high, the conservative classifier will
judge a positive sample as a positive sample when there is
sufficient evidence but judge a positive sample as a negative
sample when classifiers are not fully confident; then, recall
rate at this time is low. Therefore, it is necessary to balance
and integrate them. We would obtain balanceable results
when the threshold is set to 0.5.



Cyborg and Bionic Systems

Class: 86.59% = platelets precision
Score_threhold = 0.5

Class: 85.80% = platelets recall
Score_threhold = 0.5

1.0 4 1.0 4

0.8 0.8
5 0.6 - = 0.6 -
Kz s
e &
& 0.4 0.4

0.2 0.2 -

0.0 T T T T 0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Score_threhold Score_threhold
(a) (b)
FIGURE 6: (a) Precision-threshold; (b) recall-threshold.
Class: 0.86% = platelets F1
Score_threhold = 0.5 Class: 84.14% = platelets AP
1.0 4 1.0
0.8 0.8
§

0.6 % 0.6 A
— 19
o = |

[=9}

0.4 0.4

0.2 0.2

0'0 T T T T 0'0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Score_threhold
(a)

Score_threhold
(b)

FiGurk 7: Fl-threshold and P-R diagrams. (a) F1-threshold; (b) P-R diagram.

Figure 7(a) shows the relationship between F1 and the
threshold. It can be seen that F1 increases from the begin-
ning and starts to decrease when the threshold is 0.5, that
is, when the threshold is 0.5, the model would obtain the
most ideal effect when detecting platelet. Figure 7(b) pre-
sents the precision (P, precision) graph under the recall rate
(recall). It can be seen from the graph that precision and
recall are a pair of contradictory values. Thus, there is no
possibility that both are ideal.

3.2. Ablation Study. To validate the practicality of improved_
YOLO_v3 for detecting platelet, ablation experiments were
implemented and experiment results are shown in Table 4.
The results of a row are generated when the header correspond-
ing to v occurs but the header corresponding to x does not.

3.2.1. Impact of Multiscale Fusion. First of all, we studied the
impact of multiscale fusion on our model. To avoid

ambiguity, we treated the header as the first row in the table.
The second row in Table 4 shows the experimental results of
YOLO_v3, and the third row shows the results of the model
with new multiscale fusion architecture. The third row’s AP,
precision, and F1 are both larger than the second row’s. It
can be indicated that the new multiscale fusion architecture
was helpful to improve the average precision for detecting
platelet. The YOLO_v3 with the multiscale fusion architec-
ture achieves better effects of detection because the multi-
scale fusion architecture strengthened the extraction of
information from the shallow feature layer; the information
from shallow layers is more suitable for detecting small tar-
gets (platelet belong to small targets).

3.2.2. Impact of Anchor Box Clustering. We also analysed the
effect of anchor box clustering on our proposed method. The
fourth row in Table 4 presents the results of YOLO_v3 with
anchor box clustering. The fourth row’s AP, precision, and
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TaBLE 4: Experimental results of the improved method based on YOLO_v3.
BaseNet Multiscale fusion ~ Anchor box clustering ~ Match parameter AP F1 Precision Recall Time
YOLO_v3 X X X 84.20% 86% 85.31% 86.86% 2.85s
YOLO_v3 v X X 86% 87% 88.51% 86.10% 3.654s
YOLO_v3 X v X 86.58% 87% 87.11% 86.25% 2.688s
YOLO_v3 X X v 86.25% 87% 86.73% 86.86% 2.721s
YOLO_v3 X v v 87.31% 88% 89.06% 87.31% 4.07s
YOLO_v3 v X v 80.63% 84% 84.4% 83.12% 3.32s

F1 are both larger than the second row’s. The fourth row’s
recall is close to the second row’s. Thus, we can conclude
that anchor box clustering contributed to enhancing the per-
formance for detecting platelet. Since anchor box clustering
is approximate in size to the platelet dataset in this paper,
the model with anchor box clustering can locate the position
of platelet with less error.

3.2.3. Impact of Match Parameter. We conducted experi-
ments to discuss the contribution of the match parameter
to the proposed method. The relative results are shown in
the last three rows of Table 4. The results of the fifth row
show that match parameter is of benefit to improving the
precision of detecting platelet. In addition, we carried out
experiments of YOLO_v3 with match parameter and anchor
box clustering. The sixth row presents the largest values of
AP, precision, recall, and F1 and approximative value of
time compared with other rows. Consequently, we believed
that this method can achieve better performance for platelet
detection. The last row shows that YOLO_v3 with multiscale
fusion architecture and matching parameter achieved plate-
let detection with lower average accuracy than YOLO_v3
because the matching parameter component contradicts
the multiscale fusion architecture.

Thus, YOLO_v3 with anchor box clustering and match
parameter is our final chosen model. Figure 8 shows how
the final chosen model works when actually performing
the recognition task.

Figure 8 shows our final chosen model’s detection results
for a blood cell image. The image downloaded randomly is a
newly taken image that is not in the original dataset. Our
model judges that there is a platelet in each red rectangle.
The numbers in red represent our model’s confidence in
making a judgment. We can find that YOLO_v3 with anchor
box clustering and match parameters almost has detected all
platelets in the image taken randomly from the web, which
proved the robustness and accuracy of our method.

4. Discussion

In this paper, we realized the platelet detection task on the
whole via the YOLO_v3 network used a small number of
platelet images that are manually annotated. Our compara-
tive experiments show that YOLO_v3 can achieve better
detection results that close to clinical requirements. And
we proposed three ideas to enhance the detection perfor-
mance. The experimental results demonstrated that each
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FiGure 8: Prediction results.

improvement idea improves the detection effect compared
with YOLO_v3. Among them, simultaneous changes in
match parameter and anchor box clustering can obtain the
best AP (87.3%) in platelet detection and the AP lifts by
3.11%. Moreover, we achieved real-time platelet detection
at the same time and can significantly lighten the load of
doctors. Comprehensive experiments on our self-created
platelet dataset indicated the validity and superiority of our
method.
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The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

M.M. Fu designed and carried out the experiments and
wrote the original draft. R.T. Liu supervised the entire work
and helped to write the manuscript. C.H. Ren offered sug-
gestions about writing. Z.K. Chu helped investigating. J.C.
Guo helped proofreading the manuscript. All authors read
and approved the final manuscript.



Cyborg and Bionic Systems

References

(1]

o
)

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

E. Yavuz and C. Eyupoglu, “An effective approach for breast
cancer diagnosis based on routine blood analysis features,”
Medical & Biological Engineering & Computing, vol. 58,
no. 7, pp. 1583-1601, 2020.

D. Zucker-Franklin and C. S. Philipp, “Platelets production in
the pulmonary capillary bed: new ultrastructural evidence for
an old concept,” The American Journal of Pathology, vol. 157,
no. 1, pp. 69-74, 2000.

S. Palta, R. Saroa, and A. Palta, “Overview of the coagulation
system,” Indian Journal of Anaesthesia, vol. 58, no. 5,
pp. 515-523, 2014.

M. Gawaz, “Role of platelets in coronary thrombosis and reper-
fusion of ischemic myocardium,” Cardiovascular Research,
vol. 61, no. 3, pp- 498-511, 2004.

M. Sinisalo, O. Vapalahti, S. Ekblom-Kullberg et al., “Head-
ache and low platelet in a patient with acute leukemia,” Journal
of Clinical Virology, vol. 48, no. 3, pp. 159-161, 2010.

T. L. Hoffman, “Counting cells,” in Cell Biology, pp. 21-24,
Academic Press, 2006.

T. Fukuda, E. Asou, K. Nogi, and K. Goto, “Evaluation of
mouse red blood cell and platelet counting with an automated
hematology analyzer,” Journal of Veterinary Medical Science,
vol. 79, no. 10, pp. 1707-1711, 2017.

M. M. Alam and M. T. Islam, “Machine learning approach of
automatic identification and counting of blood cells,”
Healthcare Technology Letters, vol. 6, no. 4, pp. 103-108, 2019.

K. K. Ghosh, L. D. Burns, E. D. Cocker et al., “Miniaturized
integration of a fluorescence microscope,” Nature Methods,
vol. 8, no. 10, pp. 871-878, 2011.

F. Ding, Z. W. Shao, S. H. Yang, Q. Wu, F. Gao, and L. M.
Xiong, “Role of mitochondrial pathway in compression-
induced apoptosis of nucleus pulposus cells,” Apoptosis,
vol. 17, no. 6, pp- 579-590, 2012.

M. Zandecki, F. Genevieve, J. Gerard, and A. Godon, “Spurious
counts and spurious results on haematology analysers: a
review. Part I: platelets,” International Journal of Laboratory
Hematology, vol. 29, no. 1, pp. 4-20, 2007.

S. Gawad, M. Henschkel, Y. Leung-Ki et al., “Fabrication of a
microfluidic cell analyzer in a microchannel using impedance
spectroscopy,” in Ist Annual International IEEE-EMBS Special
Topic Conference on Microtechnologies in Medicine and Biol-
ogy. Proceedings (Cat. No. 00EX451), pp. 297-301, Lyon,
France, 2000.

R. Xu, “Particle characterization: light scattering methods,
[M.S. thesis],” Springer Science & Business Media, 2001.

P. Kaur, V. Sharma, and N. Garg, “Platelet Count Using Image
Processing,” in 2016 3rd International Conference on Comput-
ing for Sustainable Global Development (INDIACom),
pp. 2574-2577, New Delhi, India, 2016.

J. Wu, P. Zeng, Y. Zhou, and C. Olivier, “A novel color image
segmentation method and its application to white blood cell
image analysis,” in 2006 8th international Conference on Signal
Processing, Guilin, China, 2006.

S. Wu, J. Yang, X. Wang, and X. Li, “Iou-balanced loss func-

tions for single-stage object detection,” Pattern Recognition
Letters, vol. 156, pp. 96-103, 2022.

J. Redmon and A. Farhadi, “Yolov3: an incremental improve-
ment,” 2018, https://arxiv.org/abs/1804.02767.

(18]

(19]

(20]

[21]

(22]

(23]

(24]

W. Liu, D. Anguelov, D. Erhan et al., SSD: Single Shot Multibox
Detector, European Conference on Computer Vision, Springer,
Cham, 2016.

J. Chen, P. Li, T. Xu et al., “Detection of cervical lesions in col-
poscopic images based on the RetinaNet method,” Biomedical
Signal Processing and Control, vol. 75, article 103589, 2022.

N. Kumari, V. Ruf, S. Mukhametov, A. Schmidt, J. Kuhn, and
S. Kiichemann, “Mobile eye-tracking data analysis using object
detection via YOLO v4,” Sensors, vol. 21, no. 22, p. 7668, 2021.

J. Wang, Z. Gao, Y. Zhang, J. Zhou, J. Wu, and P. Li, “Real-time
detection and location of potted flowers based on a ZED cam-
era and a YOLO V4-tiny deep learning algorithm,” Horticul-
turae, vol. 8, no. 1, p. 21, 2022.

D. Xu and Y. Wu, “Improved YOLO-V3 with DenseNet for
multi-scale remote sensing target detection,” Sensors, vol. 20,
no. 15, p. 4276, 2020.

F. Deng, H. Ding, S. Yang, and R. Hao, “An improved deep
residual network with multiscale feature fusion for rotating
machinery fault diagnosis,” Measurement Science and Tech-
nology, vol. 32, no. 2, article 024002, 2021.

H. Huang, X. Tang, F. Wen, and X. Jin, “Small object detection
method with shallow feature fusion network for chip surface
defect detection,” Scientific Reports, vol. 12, no. 1, pp. 1-9,
2022.


https://arxiv.org/abs/1804.02767

	Platelet Detection Based on Improved YOLO_v3
	1. Introduction
	2. Materials and Methods
	2.1. YOLO_v3
	2.2. Improved Ideas Based on YOLO_v3
	2.2.1. Improved Network Based on YOLO_v3
	2.2.2. Anchor Boxes Using k-Means
	2.2.3. Improved Match Parameter

	2.3. Data Preparation
	2.3.1. Blood Cell Image Acquisition System
	2.3.2. Annotation of Blood Cell Image Dataset

	2.4. Experimental Environment and Parameter Setting
	2.5. Evaluation Metric

	3. Results
	3.1. Comparative Experiment
	3.2. Ablation Study
	3.2.1. Impact of Multiscale Fusion
	3.2.2. Impact of Anchor Box Clustering
	3.2.3. Impact of Match Parameter


	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

