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Abstract: Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such
as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies
for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for
triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired
or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms
underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming
that also account for the tumors’ metabolic plasticity. For metabolic therapy to be efficacious there
is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as
well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding
the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very
interesting questions being tackled by researchers today as they pertain to altered metabolism in
breast cancer. What are the metabolic differences between the different subtypes of breast cancer?
Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis?
How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus
and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect
metabolic reprogramming and vice-versa? This review addresses these issues along with the latest
updates in the field of breast cancer metabolism.
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1. Introduction

As an emerging hallmark of cancer, altered metabolism has gained significant traction for
therapeutic intervention over the last decade. The emergence of this field stemmed from a seminal
observation made by Dr. Otto Warburg that cancer cells, unlike normal cells, preferentially undergo
glycolysis in the presence of an oxygen rich environment [1]. This phenomenon, termed the Warburg
effect, was one of the first indicators of a metabolic vulnerability observed in cancer cells. With the
advent of new technologies, a number of recent studies have reiterated the importance of metabolic
reprogramming in various cancers. While the importance of glycolysis in the survival and progression
of certain cancers is undeniable, it has increasingly become evident that cancer cells may preferentially
utilize a number of alternative metabolic pathways to drive their phenotype [2,3]. Interestingly, recent
reports suggest that cancer cells may use one or multiple metabolic pathways depending on their stage
in the metastatic cascade [4]. Furthermore, cancer cells may adopt a specific metabolic program based
on the site to which they metastasize [5–8]. Both cell extrinsic and intrinsic cues are believed to govern
the type of metabolic program adopted by a cancer cell [9].
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Altered metabolism is a characteristic feature of both treatment-naive and treatment-resistant
breast cancer. The current treatment options for breast cancer depend on the broad classification of
breast cancer into (i) estrogen receptor α (ERα)-positive, progesterone receptor (PR)-positive; (ii) human
epidermal growth factor receptor 2 (HER2) enriched, and (iii) triple negative breast cancer (TNBC)
that do not express any of these three receptors [10–13]. About 70% of the breast cancer cases present
as ERα+ and are treated with hormone therapy [12]. HER2 overexpressing cancers occur in 25–30% of
the cases and are frequently treated with Trastuzumab [14,15]. There is no targeted therapy for TNBC
that constitutes 15–20% of breast cancer cases and therefore, conventional cytostatic chemotherapy
remains the only therapeutic option. Treatment failure in all these breast cancer types occurs as a
consequence of inherent or acquired resistance [16,17]. One of the ways cells become resistant to
therapy is by rewiring their metabolism; therefore, these metabolic alterations can potentially be
exploited for therapeutic intervention. The combination of metabolic intervention along with the
above-mentioned standard-of-care (SOC) treatment has been investigated but the results have been
mixed. While significant strides have been made in this area of research, several questions still warrant
deeper investigation. What are the metabolic differences between the different subtypes of breast
cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis?
How do the cell intrinsic and extrinsic cues dictate the metabolic phenotype? How does crosstalk
between the nucleus and cytoplasm/mitochondria regulate metabolism? How does sensitivity or
resistance to SOC affect metabolic reprogramming and vice-versa? This review attempts to address
these important issues while summarizing the developments made in the field of altered metabolism
in breast cancer.

2. Determinants of Metabolic Reprogramming

Several factors contribute towards driving metabolic reprogramming in cancer cells. These can be
broadly classified into cell-intrinsic and -extrinsic cues. Intrinsic cues include oncogenes and tumor
suppressor genes that regulate metabolic pathways at multiple levels in different cellular compartments.
There are several regulators of breast cancer metabolism such as phosphatidylinositol-4,5-bisphosphate
3-kinase (PI3K), MYC, ER, breast cancer susceptibility gene 1 (BRCA1), and p53 [18–29]. Furthermore,
there is functional interplay between MYC, ERα, BRCA, and p53 [30–33]. This review focuses on
how ER and p53 intricately regulate breast cancer metabolism on their own or via inter-dependent
mechanisms including protein–protein interactions.

In addition to the cell-intrinsic cues, cell-extrinsic cues comprise of nutrient availability, hypoxia,
acidosis and the interaction of the tumor with components of its microenvironment (TME), including
surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells,
lymphocytes, and the extracellular matrix. These factors create a selection pressure on cancer cells,
where only those cells that undergo a favorable metabolic transformation survive. The changes in
metabolic pathways/fluxes induced by either extrinsic or intrinsic factors often impinge on each other
providing avenues for several feedforward and feedback loops. Both of these factors are discussed in
greater detail in the following sections.

2.1. Cell Intrinsic Cues: Role of Estrogen Receptors and p53 in Breast Cancer

Estrogen receptors alpha and beta (ERα and ERβ) play a critical role in mediating the development
and maturation of the normal mammary gland. The two estrogen receptors vary significantly in their
tissue distribution. While ERα is predominantly expressed in the nuclei of epithelial cells, ERβ on
the other hand has been reported to be expressed in both cytoplasmic and nuclear compartments of
a variety of cells [34]. ERβ’s expression has been reported in luminal epithelial cells, myoepithelial
cells, intralobular stromal cells, endothelial cells lining blood vessels as well as in lymphocytes. In the
normal mammary gland, ERβ’s expression is far more widespread than ERα [35]. Studies involving the
genetic deletion of these receptors in mice have reported that ERβ−/− but not ERα−/− undergo normal
mammary gland development, highlighting the importance of ERα in this process [36]. Although early
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studies showed that mice that were homozygous null for p53 had overall normal development [37,38]
and were normal in mammary gland involution and remodeling [39], p53 has been shown to play a
critical role in regulating mammary stem cell properties such as self-renewal and differentiation [40,41].
Notably, a delay in apoptosis and involution was observed in p53−/− mice compared to mice bearing
wild-type p53 [42]. When the effect of p53 dosage on mammary gland development was analyzed
utilizing the p53+/m virgin mouse, defect in mammary gland ductal morphogenesis was observed.
This phenotype was rescued by the induction of pregnancy or treatment with estrogen, progesterone,
combination of both, or IGF1 [43].

A number of studies have reported p53 playing a tumor suppressive role in mammary
tumorigenesis [44–47]. Furthermore, several epidemiological studies have shown a reduced risk of
breast cancer in women who underwent full-pregnancy early in their lives [48–51]. These observations
were further validated in several in vivo models [52–56]. Subsequently, it was shown that treatment
with the combination of estrogen and progesterone or human chorionic gonadotrophin mimicked
the protection to a carcinogen challenge similar to early stage, full-term pregnancy as mentioned
above [55,57,58]. Elegant studies have shown p53 to play a crucial role in mediating hormone-induced
refractoriness to carcinogen-induced breast cancer [45,56]. Together, these studies showed that
hormone treatment induced a sustained induction of nuclear localization of functional p53 and
that loss of p53 abrogated the hormone-induced refractoriness to breast cancer.

2.1.1. Role of ERα in Regulating Breast Cancer Metabolism

Adipose tissue is abundant in the breast tumor microenvironment. Hormones, growth factors
and adipokines (a heterogeneous group of signaling molecules) influence the growth and progression
of breast tumors [59,60]. It is important to understand the role of ERα in regulating the metabolism of
the adipose tissue when studying breast cancer as the interactions between the adipocytes and the
surrounding mammary epithelial cells can have significant metabolic consequences. 17β-estradiol
(E2) increases the expression of insulin receptors and decreases the lipogenic activity of lipoprotein
lipase in the adipose tissue [61]. Ovariectomized rats display high levels of fasting glucose and
insulin, decreased phosphorylation of adenosine monophosphate kinase (AMPK) and acetyl-CoA
carboxylase (ACC) in the adipose tissue. Genes involved in glucose homeostasis such as peroxisome
proliferator-activated receptor coactivator-1 α (PGC-1 α), adiponectin and uncoupling protein 2(UCP2)
were decreased, while levels of resistin were increased. Hypoglycemia was reverted to normoglycemia
on treatment with E2 with concomitant inversion of expression levels of the genes mentioned above [62].
In mice, adipose triglyceride lipase signaling was increased on ovariectomy that was subsequently
attenuated on treatment with E2 [63]. The administration of tamoxifen to ERβ−/− mice significantly
decreased glucose transporter 4 (GLUT4) expression indicating that ERα regulates GLUT4 in the
adipose tissue [64].

Adiponectin, one of the adipocytokines secreted by the adipose tissue, has an important role
in obesity-associated breast cancer [65]. AMPK, a key protein in adiponectin signaling is activated
by LKB1. Recently, it has been reported that ERα-LKB1 interaction negatively interferes with AMPK
phosphorylation by LKB1 leading to inhibition of TSC2/mTOR/p70S6k signaling [66]. Importantly,
while adiponectin inhibits AMPK activity in ERα-positive MCF-7 cells, it activates AMPK in the
MDA-MB-231 TNBC cells. Therefore, the anti-tumorigenic/anti-metastatic effect of adiponectin
appears to be dependent on the ERα status of breast cancer.

E2 and ERα have also been shown to reprogram metabolism based on glucose availability. In the
presence of high levels of glucose, it has been reported that E2 enhances glycolysis while repressing
the tricarboxylic acid (TCA) cycle activity. When glucose levels are low, E2 stimulates the increased
utilization of the TCA cycle to meet the energy needs of the cancer cell [67]. ERα has also been shown
previously to mediate the transcription of hypoxia inducible factor-1α (HIF-1α) which is upregulated
at times of hypoxic stress. HIF-1α has also been previously reported to induce a glycolytic signature of
metabolic genes and hence, ERα can indirectly activate glycolysis via the activation of HIF-1α [68].
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In addition to their nuclear functions, ERs and E2 also play an important role in the mitochondria.
The mitochondrial electron transport chain comprises of several complexes formed by proteins that are
encoded by the nuclear or mitochondrial genome. ERα and E2 have been reported to be involved in
regulating transcription of both nuclear and mitochondrial genes, encoding proteins that are important
for mitochondrial functioning. This will be discussed in further detail later in the review.

2.1.2. Role of ERβ in Regulating Breast Cancer Metabolism

The pioneering discovery of ERβ almost 20 years ago [69–73] led to a reevaluation of the actions
mediated by E2. ERβ and ERα are encoded by separate genes; however, they bear a significant
similarity in their structure and function. ERβ’s maximal sequence homology to ERα lies in its DNA
binding domain (DBD: 96%) and the least similarity in its transactivation domain (TA: 30%). The two
receptors also share a 53% sequence homology in their ligand-binding domain (LBD), indicating that
specific ligands can be used to differentiate receptor-specific activity [34,70,74]. While the distribution
of these receptors varies widely across different organs, both ERs are expressed in the breast tissue.
Interestingly, while a consensus exists on ERα’s ability to promote breast tumorigenesis [75], conflicting
reports have emerged regarding ERβ’s role as pro- or anti-tumorigenic [76–84]. Several reports indicate
that ERα and ERβ have different transcriptomic overlap based on whether they exist as mono-receptors
or are co-expressed in the tissue of interest [85–87]. Studies from our laboratory (Mukhopadhyay et al.,
manuscript in revision), and others have reported context-dependent pro/anti-tumorigenic functions of
ERβ in breast cancer [83,88–90]. This apparent duality of ERβ function has very important therapeutic
implications, especially in cancers such as triple negative breast cancer that do not express the
‘druggable’ ERα.

Similar to ERα, ERβ has also been shown to regulate metabolism. After ovariectomizing (Ovx)
ERα knock out (ERαKO) mice, there was a decrease in body and fat pad weight as well as adipocyte
circumference compared to sham-ovariectomized ERαKO mice. OvxERαKO mice also showed a
reduction in insulin intolerance and increased glucose metabolism. All the observed metabolic
differences between the ovx ERαKO and the sham-ovx ERαKO mice were reversed on treatment
with E2. The authors hypothesized that ovariectomizing ERαKO mice removed the E2/ERβ signaling
cascade and hence the observed metabolic changes were an indirect consequence of ERβ functioning.
These observations suggest ERβ and ERα had opposite effects on fat metabolism [91]. Another study
found no change in GLUT4 expression in the adipose tissue when ERαKO mice were treated with
Tamoxifen. However, Tamoxifen treatment in ERβKO mice substantially decreased GLUT4 expression
indicating that ERα was the major regulator of GLUT4 expression in the adipose tissue [64]. These
studies, along with others, suggest that regulation of GLUT4 by ERs is complex and tissue type-specific.

Recent studies in malignant mesothelioma cells revealed that ERβ repressed the expression of
succinate dehydrogenase B (SDHB) a critical component of complex II (C-II) of the electron transport
chain. This led to a decrease in complex-II activity and subsequently impaired mitochondrial oxidative
phosphorylation (OXPHOS) [92]. Another study [93], investigated the role of ERβ in regulating the
metabolism of breast cancer stem cells (BSCs) and the potential therapeutic implications of targeting
ERβ in these cells. While the BSCs were ERα-negative they did express ERβ protein which was
elevated in tumor-derived mammospheres and stem cells compared to differentiated cells. On the
metabolic level, ERβ activation by a specific agonist 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN)
induced a glycolytic gene signature, increased lactate secretion in the growth media, and decreased
oxygen consumption rates (OCR) that could be rescued by treating with an ERβ specific antagonist
4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP). Knocking down
ERβ reduced the expression of glycolytic genes while increasing the expression of mitochondrial
genes involved in OXPHOS. In this regard, both ERα and ERβ seem to enhance glycolysis while
repressing OXPHOS.
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2.1.3. Role of p53 in Regulating Cancer Metabolism

p53 is one of the most extensively studied tumor suppressor gene. Its importance to cancer
cell growth is underscored by the fact that it is one of the most frequently mutated genes across
all cancers including breast cancer [94–97]. A summary of numerous elegant studies led to the
conclusion that p53 mediates its tumor suppressive functions by regulating the expression of genes
that activate cell cycle arrest, apoptosis and senescence [98]. A seminal study [99] demonstrated
that p53 was able to suppress tumorigenesis as well as tumor growth even in the absence of these
three key programs. By mutating three essential acetylation residues (p533KR/3KR) p53’s ability
to activate cell cycle arrest, apoptosis and senescence was attenuated while its ability to regulate
metabolism and ROS production was intact. Moreover, p533KR/3KR mice did not exhibit early onset
of tumorigenesis similar to p53 null mice. This suggested that the ‘non-classical’ functions of p53
such as regulation of metabolism and ROS production are critical for suppressing the early onset
of spontaneous tumorigenesis. This study brought to light the importance of inhibiting metabolic
transformation as an essential tumor suppressive function of p53. p53 has been reported to regulate
the function of various metabolic pathways at multiple levels [100]. Broadly, wild-type p53 has been
reported to suppress glycolysis and activate OXPHOS. Wild-type p53 has been shown to suppress
glycolysis by repressing the expression of glucose transporters GLUT1, GLUT3, and GLUT4 [101,102].
It regulates the expression of several enzymes involved in the glycolytic pathway either directly or
indirectly, for e.g., hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), phosphoglycerate mutase
(PGM), pyruvate dehydrogenase (PDH), parkin 2 (PARK2), and pyruvate dehydrogenase kinase
(PDK2) [103–107]. Overall, p53 increases mitochondrial respiration through a number of mechanisms.
It upregulates the expression of synthesis of cytochrome c oxidase 2 (SCO2), an enzyme involved in the
electron transport chain [108]. Besides activating SCO2, p53 elicits multiple transcriptional programs
promoting the expression of genes related to mitochondrial biogenesis [109] such as apoptosis-inducing
factor (AIF) [110,111] and ferredoxin reductase (FDXR) [112]. Mitochondrial citrate transporter protein
(CTP, encoded by SLC25A1) is activated by mutant p53 [113]. p53 promotes fatty acid oxidation (FAO)
by upregulating the expression of carnitine palmitoyltransferase 1C (CPT1C), malonyl-coenzyme A
decarboxylase (MCD), lipin 1 (LPIN1), and pantothenate kinase (PANK1) [114–117]. Wild-type p53
also upregulates the expression of glutaminase 2 (GLS2), that increases the conversion of glutamine
to glutamate [118,119]. The increased glutamate subsequently fuels the TCA cycle. This pathway is
essential for replenishing NADPH and glutathione (GSH) pools, crucial antioxidants that counter
oxidative stress. On the contrary, mutant p53 has been shown to drive glycolysis through the activation
of RhoA/ROCK/GLUT1 signaling cascade [101]. Mutant p53 has also been shown to repress the
activation of AMPK thereby repressing catabolic activities such as FAO while promoting anabolic
processes such as increased fatty acid synthesis [120]. However, there are context-dependent exceptions
to the general observation that wild-type p53 activates OXPHOS whereas mutant p53 activates
glycolysis. For example, wild-type p53 has been reported to transcriptionally activate muscle specific
PGM in cardiac and skeletal muscle of rats, potentially increasing glycolysis [121]. Furthermore,
different p53 mutants can have diverse effects on metabolism [122].

Wild-type and mutant p53 have opposite roles in regulating fatty acid metabolism. Wild-type p53
prevents the shunting of the glucose carbon towards anabolic pathways such as the pentose phosphate
pathway (PPP) by binding to and inhibiting glucose-6-phosphate dehydrogenase (G6PD) [123].
The oxidative phase of the PPP is responsible for the generation of NADPH which is required for the
synthesis of lipids and essential precursors for nucleotide biosynthesis. Unlike wild-type p53, mutant
p53 fails to inhibit G6PD activity [123]. p53 has an important role in lipid metabolism, including
enhancing fatty acid oxidation and inhibiting fatty acid synthesis. As mentioned earlier, wild-type
p53 enhances lipid oxidation by inducing the expression of LPIN1 [116]. However, wild-type p53 can
also repress transcription of SREBP1c (sterol regulatory element-binding protein 1c) that activates
the expression of fatty acid synthesis enzymes, including FASN and ACLY. Wild-type p53 has been
reported to negatively regulate the mTOR pathway and the PPP, two pathways activated in tumors that
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regulate fatty acid synthesis [123,124]. On the contrary, mutant p53 increases lipid synthesis through
its interaction with SREBPs, a family of transcription factors on sterol gene promoters. In particular,
one study reported that mutant p53 upregulated genes involved in the mevalonate pathway which
was subsequently shown to be involved in mediating the malignant phenotype induced by mutant
p53 [125]. Importantly, mevalonate kinase (MVK) impacts regulation of mutant p53 by preventing the
ubiquitination of a subset of p53 mutants (conformational mutants). In the presence of MVK these
p53 mutants bound DNAJA1 (heat shock protein-40 family member) and this interaction protected
mutant p53 from being ubiquitinated by CHIP (C-terminus of Hsc70-interacting protein) E3 ubiquitin
ligase [126]. The two studies mentioned above hint at a possible positive feedback loop between
mutant p53 and mevalonate pathway activation, suggesting potential therapeutic benefits of statins in
subsets of cancers harboring p53 mutations. Aromatase, an enzyme responsible for the biosynthesis
of estrogen from testosterone, is also regulated by p53. It has been reported that wild-type p53 can
transcriptionally activate aromatase and that loss of wild-type p53 impairs the aromatase activity and
leads to lipid accumulation in the livers of p53−/− mice [127]. Interestingly, a study reported p53
mutations in ~38% of aromatase inhibitor-resistant breast tumors [128]. Broadly, these studies depict
the crosstalk between p53 and sterol (cholesterol) synthesis pathways. This regulation is particularly
interesting given the role of estrogen signaling via ER in breast tumorigenesis and that the crosstalk
between ER-p53 can have important consequences on the numerous pathways that these two proteins
regulate. This will be described in greater detail in the subsequent section.

2.1.4. ER-p53 Crosstalk and its Implications in Breast Cancer Metabolism

Estrogen receptors and p53 play a critical role in mammary tumorigenesis, tumor maintenance and
proliferation. Interestingly, these proteins have been reported to interact with each other with important
functional consequences. Our studies have shown that ERα interacts with p53 and functionally
antagonizes it [129–131]. Subsequently, transcriptional activation of ERα gene (ESR1) by p53 [132]
and transcriptional repression of certain p53-target genes by ERα [133] have also been reported.
More recently, studies from our laboratory (Mukhopadhyay et al., manuscript under revision) and
others [88,89,134] have also shown that ERβ can interact with both wild-type and mutant p53 with
different functional consequences. Functional antagonism of wild-type p53 by either estrogen receptor
is detrimental, while that of mutant p53 is advantageous when considering tumor suppression.
The primary read out of functional antagonism of p53 in these studies have been its classical tumor
suppression functions, i.e., cell-cycle arrest, apoptosis, and senescence. However, it is now known that
the tumor suppressive properties of p53 extend beyond these classical functions [99]. Questions
remaining to be answered in this domain include: Can ERα bind mutant p53 and functionally
antagonize it? Can p53 (mutant or wild-type) functionally antagonize ERα in certain cellular contexts?
What are the implications of functional antagonism between ERs and p53 on their metabolic roles?
Shown in Table 1 and Figure 1 are known p53 metabolic targets that are also regulated by ERα.
The dual regulation of these genes by ERα and p53 suggest potential crosstalk, either cooperative or
antagonistic. The molecular mechanisms underlying such crosstalk remain unclear.

Table 1. List of genes and proteins regulated by both ERα and p53.

Metabolic
Targets of p53 Regulation by p53 p53 Status ∗ Regulation by

ERα
p53 Status ∗ References

G6PD Repression wt Activation wt [135,136]

SREBP1 Repression wt
Activation wt [136]

Repression wt [135]

PFK1(PFKM) Repression wt
Repression wt [135]

Activation wt [137]

PGM1 Repression wt Repression wt [136,138]
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Table 1. Cont.

Metabolic
Targets of p53 Regulation by p53 p53 Status ∗ Regulation by

ERα
p53 Status ∗ References

PDK2 Repression wt Repression wt [135]

PCK1 Repression wt Activation wt, R280K [139,140]

HK2 Repression/Activation G103S, E256G
Repression wt [141,142]

Activation wt [136,138,143]

GLUT1(SLC2A1) Repression wt
Repression wt [136,142,144]

Activation wt, R280K, E285K [135,138,140,143,145–147]

GLUT4(SLC2A4) Repression wt Activation wt [135,148]

ME1 Repression wt
Repression wt, L194F, E285K [135,138,149]

Activation wt [136,139,141]

ME2 Repression wt
Repression wt [136]

Activation wt [138]

TIGAR Activation wt Activation wt, L194F, E285K [149]

PARK2 Activation wt Repression wt [150]

SCO2 Activation wt
Activation wt [144]

Repression wt [138]

LPIN1 Activation wt Activation wt [150]

CPT1C Activation wt Repression wt [136]

GLS2 Activation wt Repression wt [135]

MCD (MLYCD) Activation wt Repression wt [136]
∗ p53 status of cell lines used to determine the ability of p53 and ER to regulate the metabolic enzymes listed in the
table. wt: wild-type.Cells 2019, 8, x FOR PEER REVIEW  7  of  35 
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Figure 1. Metabolic crosstalk between ERα and p53. Metabolic targets regulated by both p53 and
ERα are shown. These targets maybe regulated in the same direction (yellow: activated or repressed),
opposite direction (red: repressed by one and activated by the other) or are bi-directionally regulated
(orange: both activated and repressed).
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2.2. Cell Extrinsic Cues and Metabolic Interactions with the Tumor Microenvironment

The role of the tumor microenvironment in altering the metabolism of tumor cells can be explained
by the following classical example. As tumors proliferate rapidly, they outstrip their oxygen supply
leading to a hypoxic environment. This in turn leads to the stabilization of HIF-1α which initiates the
transcription of a number of enzymes involved in glycolysis while at the same time downregulating
the expression of enzymes involved in the TCA cycle [151–155]. The switch from aerobic respiration to
glycolysis would in part alleviate the hypoxic stress. However, this example explains only a part of the
big picture as other molecular mechanisms play an important role in dictating the metabolic rewiring.

As external cues, hypoxia, acidosis, and the extracellular matrix govern certain aspects of the
metastatic and invasive phenotype of cancer cells (Figure 2). In order for cancer cells to metastasize
they need to detach from the extracellular matrix (ECM) and suppress anoikis for survival during
circulation in the blood or lymphatic system. Among other processes, detachment from the ECM can
induce changes in metabolic pathways detrimental to the survival of cancer cells such as reduced
glucose uptake, PPP flux, and cellular ATP levels while increasing the production of reactive oxygen
species (ROS). In order to survive, the cancer cell must be able to counteract these fatal metabolic
alterations, especially managing ROS levels. Studies have reported that upon detachment, normal
mammary epithelial cells upregulate PDK4 via estrogen related receptor gamma thereby limiting the
availability of the glucose carbon for mitochondrial oxidation, consequently suppressing anoikis [156].
Breast cancer cells on the other hand have inherent advantages of increased glycolysis and are hence
able to survive in suspension. Stimulating PDH however, restores glucose oxidation and sensitizes
the cells to anoikis while attenuating their metastatic potential [156]. Another way breast cancer
cells counter increased ROS production is through the induction in expression of catalases such
as manganese superoxide dismutase (MnSOD). Studies have demonstrated an increase in MnSOD
expression in human breast cancer metastases compared to the primary tumor, while also reporting a
positive correlation between MnSOD expression and tumor grade [157]. In an experimental metastasis
model, where breast cancer cells were injected through the tail vein of immunocompromised mice,
reduction in catalase levels resulted in a reduction in lung tumor burden [158]. Complimentary
studies using a breast cancer mouse model have reported the importance of glutamate cysteine ligase
modifier (GCLM) expression in increasing the production of endogenous antioxidants such as GSH
for primary tumor formation. Loss of GCLM impaired the tumors ability to metastasize. Despite the
threats posed by ROS, mitochondrial respiration is upregulated in circulating tumor cells compared to
primary tumor cells [159]. It has been reported that proline dehydrogenase (PRODH) mediated proline
catabolism is required for breast cancer cells grown in 3D culture. There was an increase in PRODH
expression in metastatic compared to primary tumors in breast cancer patients as well as in a 4T1
mouse model. Targeting PRODH resulted in a decrease in lung metastases while sparing the normal
tissue in the mouse model [160]. Changes in the density of extracellular matrix via collagen deposits
also have a significant impact on the metabolic reprogramming of metastatic breast cancer cells [161].
When mouse mammary carcinoma cells were grown in high-density matrices, they displayed a
reduction in utilization of the glucose carbon by the TCA cycle; instead the TCA cycle was fueled by
glutamine. These functional changes were mirrored by changes in metabolic gene expression in the
metastatic 4T1 cells.

Under conditions of metabolic stress such as hypoxia and nutrient deprivation, the enzyme
acetyl-CoA synthetase 2 (ACSS2) enables the cancer cells to utilize acetyl-CoA as a source of carbon
for lipid/biomass synthesis. There was a gain in copy number of ACSS2 in breast tumors and a
positive correlation between its expression and disease progression [162]. Hypoxia leads to the
stabilization of HIF-1α and the initiation of glycolytic transcriptional program. Lactate, the end
product of glycolysis is released from the cell along with H+ ions with the help of monocarboxylate
transporters and hydrogen ion pumps, causing extracellular acidification. This removal is crucial as
accumulation of lactate and H+ ions in the cell would decrease the intracellular pH leading to cell death.
The excess CO2 generated during mitochondrial metabolism is diffused into the extracellular space and
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subsequently converted into H+ and HCO3
− by carbonic anhydrases [163]. This reaction also leads

to extracellular acidification, in turn stimulating the proteolytic activity of matrix metalloproteinases
and the subsequent extracellular matrix remodeling, facilitating tumor invasion [164]. Extracellular
lactate has also been reported to increase tumor invasion by stimulating the production of hyaluronic
acid from the surrounding fibroblasts [165]. In addition, increased extracellular lactate induces the
secretion of vascular endothelial growth factor (VEGF) by tumor associated stromal cells leading to
increased angiogenesis [166].
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The increase in extracellular lactate has implications on the immune system as well. Increased
lactate levels provide tumor cells with an immune-conducive environment through the reduction
in dendritic and T-cell activation [167]. Hypoxia and the extracellular acidification have also been
reported to weaken immune cell function. Hypoxia facilitates the migration and accumulation of
tumor-associated macrophages while at the same time inhibiting its phagocytosing potential. It allows
for an increase in the release of cytokines and growth factors while preventing antigen presentation
to T-cells [168,169]. Another way tumor cells suppress immune surveillance is by competing with
T-cells for nutrients in the tumor microenvironment. T-cells originate from the lymphoid organs which
are essentially nutrient replete. As they enter the harsh tumor microenvironment they are faced with
several challenges that force a metabolic rewiring in order to survive, proliferate and function. Tumor
cells can express indoleamine 2,3-dioxygenase (IDO) which inhibits T-cell proliferation by depleting
tryptophan [170]. Aerobic glycolysis is required for optimal T-cell function but is not important for its
proliferation or survival [171,172]. Tumor cells by restricting tumor infiltrating T lymphocytes (TILs)
from undergoing aerobic glycolysis diminish their functional capabilities [173].

Tumor cells along with altering their own metabolic program affect the metabolism of stromal cells
in their vicinity. Cells that form the core of the tumor and are spatially distanced from nutrient/oxygen
rich vasculature, opt for a more glycolytic program than those located close to such vasculature. These
cells release lactate which is taken up by the neighboring tumor/stromal cells and utilized as metabolic
intermediates for biosynthesis or to meet their bioenergetics needs through OXPHOS [174]. It is
estimated that about 80% of the breast cancer constitutes of stromal cells [175]. Cancer associated
fibroblasts (CAFs) form a major component of the stromal cells. Tumor cells actively participate
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in rewiring the metabolic program of adjacent fibroblasts, converting them into cancer-associated
fibroblasts. In co-culture experiments, MCF-7 cells induced oxidative stress and HIF-1α in adjacent
fibroblasts, resulting in mitophagy and increased aerobic glycolysis. The lactate produced by the CAFs
was then utilized by the tumor in a phenomenon known as the “reverse Warburg effect” [176,177].
Tumor suppressor genes such as BRCA1 may also affect the metabolic phenotype of stromal cells in the
tumor microenvironment. HCC 1937 breast cancer cells harboring mutant BRCA1 induced oxidative
stress and a glycolytic phenotype in co-cultured stromal fibroblasts. The altered stromal metabolic
phenotype was caused by an increase in monocarboxylate transporter 4 (MCT4) and a loss in caveolin-1
(Cav-1) expression. The increase in expression was reverted when wild-type BRCA1 was overexpressed
and caused the cancer cells to undergo apoptosis [26]. Similar to lactate, metabolomic profiling of
CAFs revealed that they also produce glutamine, among other metabolites [178]. Supporting this
data, it was subsequently demonstrated in co-culture experiments with MCF-7 cells that these cells
displayed increased glutamine uptake transporters, increased glutamine catabolism, and reduced
glutamine synthesis [179]. Fatty acids, another important metabolic fuel known to support tumor
growth, have also been reported to be provided by the tumor microenvironment. Interestingly, tumor
cells can also cause the transformation of adjacent adipocytes into “cancer associated adipocytes
(CAAs)” [180]. As a toxic by-product of cellular metabolism, most cells dispose ammonia that is
eventually degraded via the urea cycle. Tumor cells can acquire and assimilate ammonia present in its
microenvironment giving it a growth advantage. The ammonia from the tumor microenvironment
may be utilized by tumor cells as a nitrogen source for increased amino acid synthesis via increased
glutamate dehydrogenase activity [181]. Another study involving both patient samples and in vitro
co-culture experiments found that ovarian cancer cells adjacent to adipocytes accumulated both lipid
droplets and an increased rate of FAO [182]. A similar observation was also noted in prostate cancer
co-cultured with adipocytes. Incidentally, prostate cancer almost exclusively relies on FAO to meet
its energy requirements [183]. As one can appreciate, with regards to altered metabolism, tumor cells
may co-opt for a symbiotic relationship with stromal cells to enhance their growth and proliferation.

2.3. Cytoplasmic/Mitochondrial-Nuclear Crosstalk Regulates Breast Cancer Metabolism

A significant crosstalk through various feedforward and feedback loops occurs between the
nucleus and cytoplasm/mitochondria in order to regulate cancer metabolism. Metabolites present
in the cytoplasm/mitochondria may dictate DNA methylation and gene transcription while several
transcription factors may shuttle between the nucleus and the mitochondria to transcribe genes that
regulate metabolism. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) lead to a
failure in decarboxylation of α-ketoglutarate (α-KG) to isocitrate, while increasing the conversion and
accumulation of 2-hydroxyglutarate (2HG). Structurally similar to α-KG, 2HG acts as a competitive
antagonist inhibiting the activity of α-KG dependent dioxygenases leading to global changes in
DNA and histone methylation. This phenomenon occurs more commonly in gliomas and myeloid
malignancies such as AML [184–188]. Interestingly, while the occurrence of IDH1/2 mutations in
breast cancer is relatively rare, there have been mixed reports regarding its correlation with 2HG
levels [189,190]. It was shown that high levels of 2HG were present even in the absence of IDH
mutations and such high levels of 2HG correlated with MYC expression and glutamine consumption.
Furthermore, tumors with elevated levels of 2HG were associated with increased DNA methylation
and poor prognosis [191]. Similar to 2HG, succinate and fumarate too act as competitive antagonists
to α-KG dependent dioxygenases, affecting DNA, and histone methylation. However, their role
in breast cancer is relatively understudied and warrants further investigation. Another important
metabolite involved in epigenetic regulation is acetyl-CoA. Histone acetyl transferase activity (HAT)
and hence histone acetylation is regulated by the availability of acetyl-CoA. The levels of acetyl-CoA
depend primarily on ATP citrate lyase (ACLY) and expression levels of its substrate, citrate. These
expression levels maybe driven by oncogene mediated metabolic reprogramming. An in vivo study
showed that induced expression of myristolated Akt (myrAkt) in mammary epithelial cells caused
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an increase in phospho-ATP citrate lyase (p-ACLY) levels as well as a pronounced increase in global
histone acetylation [192]. Nuclear localization of ACLY and its phosphorylation by Akt facilitate the
recruitment of BRCA1 and are essential for mediating DNA double strand break repair via homologous
recombination [193]. DNA and histone methylation are important epigenetic modifications that are
responsible for regulating access of the chromatin to the transcriptional machinery. These methylation
events are carried out by DNA-methyltransferases (DNMTs) and histone methyltransferases (HMTs)
that transfer methyl groups from a donor molecule. One of the major methyl group donors is
S-adenosyl methionine (SAM), a derivative of methionine, an essential amino acid found in one’s diet.
Methionine can also be formed by homocysteine via one carbon metabolism. Low levels of dietary
folate (another methyl donor) have been reported to cause lymphocyte DNA hypomethylation in
healthy postmenopausal women [194,195]. A similar correlation was observed between cervical tissue
serum folate levels and DNA methylation [196].

On the other hand, epigenetic changes such as DNA methylation and histone modifications may
also lead to changes in expression of genes involved in metabolism. For example, expression levels of
Fructose 1,6 bisphosphatase 1 and 2 (FBP1 and FBP2) are silenced via promoter methylation. These
enzymes are involved in gluconeogenesis and oppose glycolytic flux [197]. Increased expression
levels of GLUT1 were regulated by promoter silencing of Derlin-3, a key gene involved in GLUT1’s
proteasomal degradation [198]. The expression of the M2 isoform of pyruvate kinase (PKM2),
another gene involved in glycolysis is regulated by promoter hypomethylation [199]. The promoters
of genes such as PTEN, LKB1, and prolyl-hydroxylase domain family of enzymes (PHD1-3) are
hypermethylated to “silence their suppression” of PI3K/AKT/mTOR and HIF-1α pathways which are
known to drive glycolysis [200–202]. Histone modifications also play a role in regulating the metabolic
phenotype. The sirtuin family of genes (SIRT) possessing histone deaceytlating activity has been
extensively studied. One of the members, SIRT3, functions by destabilizing HIF-1α and consequently
opposing its ability to induce glycolytic genes. However, its expression in tumor versus normal tissue
and its implied metabolic consequence is debatable [203,204].

Additionally, metabolic enzymes may exhibit non-canonical (non-metabolic) functions which
are critical for the survival and growth of cancer cells. As a metabolic enzyme, PKM2 plays an
important role in regulating anabolic processes by diverting the glycolytic flux to the PPP and serine
synthesis pathways (SSP). In MCF-7 cells, Jumonji C domain-containing dioxygenase (JMJD5) has been
reported to bind PKM2. This interaction facilitates PKM2’s ability to translocate from the cytosol to
the nucleus and enhance HIF-1α mediated transcriptional reprogramming [205]. Phosphoglycerate
mutase 1 (PGAM1) responsible for the conversion of 3 phosphoglycerate to 2 phosphoglycerate has
also been shown to modulate the cytoskeleton. In an in vitro breast cancer model, PGAM1 directly
interacted with α-smooth muscle actin (ACTA2) and modulated actin filament assembly, cell mobility,
and migration. Knocking down PGAM1 decreased the metastatic potential of breast cancer cells
in vivo [206]. FBP1, a gluconeogenic rate limiting enzyme, converts fructose 1,6 bisphosphate to
fructose 6 phosphate. Expression of FBP1 is repressed in a number of cancers including breast
cancer [197]. In clear cell carcinoma, it has been reported that FBP1 binds to HIF-1α and represses
its transcriptional activity [207]. While it has not been addressed directly, a similar inhibition of
HIF-1α-mediated transcriptional regulation by FBP1 may exist in breast cancer. The transcriptional
coactivators YAP/TAZ have been reported to interact with transcription factors from the TEA domain
family to regulate gene transcription involved in survival and proliferation [208]. PFK1 has been
shown to bind TEAD1 and 4 in the nucleus and is important for the stability of the YAP/TAZ/TEAD
complex. Furthermore, overexpression of the allosteric activator of PFK1 has been shown to enhance
YAP/TAZ mediated transcriptional activity [209].

Metabolite levels have also been recently shown to induce somatic mutations. Urea cycle
dysregulation (UCD) has been seen across multiple cancer types including breast cancer. The authors of
a recent study have quantified changes in enzymes involved in the urea cycle to generate a UCD score
and reported a positive correlation between the UCD score of a tumor and its growth and proliferation.
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A high UCD score was shown to cause high pyrimidine to purine ratios and induce pyrimidine-rich
transversion mutational bias in the sense strand of the DNA during transcription. This led to mutations
in the DNA along with the presentation of neoantigens more susceptible to immune therapy [210].
These results also suggest that dietary differences might induce metabolite imbalances potentially
contributing to disease risk [211]. Compartmentalization of metabolic intermediates and enzymes play
a key role in modulating transcriptional regulation. The previously mentioned ACSS2 enzyme is one
such example fulfilling distinct functions based on its cytosolic versus nuclear localization. A recent
study showed that the utilization of exogenous acetate is predominantly controlled by ACSS2 and
ACSS1 for lipogenic and mitochondrial purposes, respectively. On the other hand, in hypoxic regions of
tumor, nuclear localization of ACSS2 is increased where it maintains histone acetylation by recapturing
the acetate released from histone deacetylation for recycling by histone acetyl transferases [212].

The mitochondria produce bulk of the energy for normal cells. Only 13 of the 82 subunits
that constitute the mitochondrial respiratory chain (MRC) are encoded by the mitochondrial DNA
(mtDNA), while the remaining 69 subunits are encoded for by the nuclear genome. This indicates a
priori the necessity of a potential crosstalk and functional coordination between the two genomes for
the normal functioning of the mitochondria. Depleting breast cancer cells of their mtDNA resulted
in altered expression of genes involved in growth, apoptosis, metabolism, cellular architecture,
and differentiation [213]. An elegant study emphasized the role of mitochondria in tumorigenic
and metastatic potential. Tumors formed from cells initially depleted of mitochondria, later acquired
mtDNA from the host while recovering some respiratory functionality. The recovery of respiratory
ability correlated with the metastatic potential indicating the importance of mitochondrial respiration
in both tumorigenesis and metastasis [214]. Mutations in mtDNA, low mtDNA copy number, defects
in the transcription or assembly of either nuclear or mitochondrially encoded MRC subunits may all
contribute to dysfunctional mitochondria correlating with poor prognosis [215]. The development of
transmitochondrial cybrid systems [216–219] provided another approach to understand the impact
of the mitochondria on tumorigenesis, proliferation, and metastasis. In these systems, mitochondria
from different cells varying in their proliferative or metastatic potential were fused individually with a
common nucleus, hence avoiding the variability associated with the nuclear genome. Several studies
have adopted this approach in addition to depleting the mitochondria to delineate the impact of the
mitochondria on cell growth, proliferation, metastatic potential, as well as epithelial to mesenchymal
transition (EMT) [214,219,220].

ERα and p53 as mentioned previously are intricately involved in the mitochondrial-nuclear
crosstalk. While E2 stimulation of ERα has been reported to regulate the transcription of nuclear
encoded mitochondrial genes, it remains unclear whether ERα can directly regulate transcription
of mitochondrial genes via the mtDNA. ERα’s ability to induce the transcription of nuclear genes
encoding mitochondrial components occurs via a multi-step process. One such mechanism is via
the nuclear respiratory factor-1 (NRF-1) that binds its response elements present on the promoter
of these genes, thus regulating their transcription. NRF-1 has also been reported to regulate the
transcription of nuclear encoded mtDNA-specific transcription factor TFAM, thus integrating nuclear
and mitochondrial signals [221]. E2 has been shown to increase the transcription of NRF-1 mRNA
in breast cancer cell lines [222]. Hence, by increasing the transcription of NRF-1, E2 increases the
transcription of TFAM and its mitochondrial target genes including COX IV and ND1 [221].

p53 activates transcription of TFAM by binding to the p53 response elements present on its
promoter. Interestingly it has been shown that mutant p53 too can increase the expression levels of
TFAM mRNA and protein leading to an increase in aerobic exercise capacity [223–225]. In addition
to this, p53 has also been shown to regulate transcription of SCO2, one of the components of the
electron transport chain. Lower levels of SCO2 lead to decreased OXPHOS [108]. Also, p53 is involved
in maintaining the mitochondrial genome integrity along with its other non-metabolic functions;
this topic has been extensively reviewed elsewhere [226].
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3. Altered Metabolism in Primary versus Metastatic Lesions and Site-Specific Metabolic Alterations

One of the major challenges in cancer treatment deals with providing therapeutic options once the
primary tumor has metastasized to distant organs. Disease prognosis drops drastically once metastasis
has occurred and therapeutically recurrent primary and metastatic lesions are typically not sensitive
to first line therapy. The metastatic process is complex and multifactorial in nature. Cancer cells in
order to metastasize have to overcome a number of hurdles from intravasation to survival in the
circulatory system and extravasation to a distant site. For solid tumors such as breast cancer, in order to
survive anchorage independence, subsequent growth and proliferation in a foreign microenvironment
presents a significant challenge. One of the ways cancer cells overcome these hurdles is by altering
their metabolism. Several reports have looked into differences in metabolic reprogramming in primary
tumors compared with their metastatic counter parts [4–8].

A distinguishing feature between cancer cells with enhanced metastatic potential compared to
non-metastatic cancer cells is their metabolic plasticity (Figure 3). This means that metastatic cancer
cells do not overbearingly rely on a single metabolic pathway such as glycolysis or OXPHOS to meet
their metabolic needs. These cells often run multiple metabolic pathways in parallel, regulating the
utilization of the various pathways based on their adaptive needs as governed by cell extrinsic and
intrinsic cues. A study investigating metabolic pathway differences between primary, circulating,
and metastatic cancer cells in an isogenic mammary tumor background reported the importance of
increased mitochondrial biogenesis and OXPHOS for cancer cells to metastasize. The authors found
that several processes involved in the metastatic cascade such as invasion and migration favored
mitochondrial respiration and ATP generation compared to anabolic pathways. It was reported that
the transcription of PGC-1α was increased in circulating and metastatic cancer cells compared to the
primary cancer cells [4]. Clinical data analysis showed correlation between the expression of PGC1-α
in invasive cancer cells with their ability to form metastatic lesions. This study helped establish how a
cell intrinsic cue was modified to meet the specific metabolic requirements of invasive and metastatic
cancer cells. Another study utilizing dynamic magnetic resonance spectroscopy of radiolabeled
carbon isotopomers reported an increase in glycolysis and OXPHOS in the highly metastatic 4T1 cells
compared to non-metastatic 67NR breast cancer cells. This study also demonstrated that the metastatic
cells displayed metabolic plasticity in that they were able to regulate flux between glycolysis and
the TCA cycle depending on extrinsic cues [6]. A recurrent observation is that cancers originating
from a particular histology preferentially metastasize to specific organs. Breast cancer has often
been observed to metastasize to the lung, bone, liver, and brain. It has been hypothesized that the
microenvironmental niche of these organs favors the metastasis of primary tumors to these sites.
One might hence wonder if site-specific metastasis is governed by unique metabolic alterations. In a
study using stable isotope tracer assay and microarrays, liver metastatic as compared to bone and lung
metastatic breast cancer cells displayed an increase in glycolytic pathway and a reduction in glutamine
metabolism and OXPHOS. The study also reported that PDK-1 was required to form efficient liver
metastases and that the glycolytic phenotype observed in these cells was governed by both HIF-1α
and PDK1 [5]. A previous study investigating metabolic alterations in brain metastatic breast cancer
reported enhanced glycolysis coupled with mitochondrial respiration for energy production as well
as increase in PPP. Interestingly, brain metastatic breast cancer cells were less susceptible to glucose
deprivation as compared to parental or bone metastatic cells [7]. A recent study reported that increased
levels of PGC1-α augmented the ability of breast cancer cells to metastasize to the lung and bone.
This study argued the role of PGC1-α as a cell intrinsic cue responsible not only for promoting
metastasis but also for playing a vital role in dictating the specific site of metastasis. The elevated
expression levels of PGC1-α also provided metabolic flexibility to these cells, apart from increasing
their respiratory capacity. Increased expression of PGC1-α facilitated the cells’ ability to opt for an
alternate metabolic program when mitochondrial respiration was inhibited by biguanides such as
metformin [8]. A similar study demonstrated that brain metastatic breast cancer cells were able
to survive and proliferate independent of glucose by upregulating glutamine and branched chain
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amino acid oxidation [227]. As mentioned earlier, either local or distant recurrence poses a significant
treatment challenge. Recurrence arises from cancer cells that manage to survive treatment insults and
is broadly termed as minimal residual disease (MRD). A study investigating the metabolic changes
accompanied with MRD reported gene expression pattern depicting altered lipid metabolism along
with elevated ROS levels. Interestingly, they found that inhibiting either lipid synthesis or transport
for oxidation resulted in reduced ROS levels and DNA damage. This study provided rationale for
targeting lipid metabolism in MRD warranting further mechanistic and clinical evaluation [228].
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Figure 3. Metabolic plasticity of cancer cells during metastatic cascade. Cancer cells may adopt different
energy pathways, i.e., glycolysis or OXPHOS based on their stage in the metastatic cascade as well as
the site to which they metastasize.

4. Effects of Treatment and Resistance to SOC on Metabolic Reprogramming

Response to SOC and development of resistance to it are dependent on the specific subtype of
breast cancer targeted.

4.1. Luminal A/B Subtype

Luminal breast cancer has been shown to exhibit an intermediate metabolic phenotype in the
glycolysis-OXPHOS spectrum. Compared to TNBC these cancers are more reliant on OXPHOS [229].
As mentioned earlier, based on the amount of glucose available, E2 can promote glycolysis
preferentially as compared to OXPHOS. Under conditions of high glucose E2 promoted glycolysis
while in the case of low glucose it promoted OXPHOS [67]. This depicts an example of how
external cues, in this case nutrient availability, can affect metabolic reprogramming. Nuclear
magnetic resonance spectroscopy and proton magnetic resonance imaging showed that E2 induced
glycolysis while Tamoxifen reduced it [230,231]. The induction of glycolysis by E2 and its reduction
by tamoxifen were replicated in an orthotopic mouse model. This regulation was mediated
via GLUT1 that was transcriptionally upregulated by E2 [232]. It has also been shown that E2
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induces membrane-initiated rapid activation of the PI3K-Akt pathway as well as the transcriptional
upregulation of 6-phosphofructo-2-kinase (PFKFB3) [233,234]. Both of these studies reveal additional
therapeutic targets to be used in conjunction with hormonal therapy. Based on hormone receptor status;
ER+ tumors had lower levels of glycine, choline, lactate, and glutamate (high glutamine) compared to
ER-tumors. Low glutamate to glutamine ratio correlates with lower levels of glutaminolysis observed
in ER+ tumors compared to TNBC [235].

Resistance to endocrine therapy occurs through multiple mechanisms. An increase in HER2
levels has been identified in tamoxifen resistant cells (TAM-R). One of the factors responsible for the
increased HER2 levels is its post-transcriptional regulation by miR-26a/b and the RNA-binding
protein human antigen R (HuR) [236]. Increased HER2 has been shown to regulate glycolysis
indicating a potential role of dysregulated glycolysis in TAM-R cells. Increased glycolysis has also
been observed in TAM-R cells via the activation of Akt/mTOR/HIF-1α axis. Inhibiting glycolysis via
hexokinase II inhibition decreased Akt/mTOR/HIF-1α signaling and restored Tamoxifen sensitivity
in antiestrogen-resistant breast cancer cells [237]. A study corroborating an increase in glycolysis in
TAM-R cells also observed a counter intuitive increase in NRF-1 and its target TFAM [238]. Similarly,
RNA sequencing studies to identify genes differentially expressed in tamoxifen-resistant vs. -sensitive
cells found gene expression pattern suggesting dysfunctional mitochondria and altered OXPHOS
in TAM-R cells [239]. Upregulation of these factors would typically increase mitochondrial activity
via an increase in mitochondrial biosynthesis. The miR-29 transcriptome has also been shown to
have differential effects in endocrine sensitive vs. resistant breast cancer cells. miR-29 has been
shown to suppress growth of TAM-R cells in part by repressing genes involved in mitochondrial
bioenergetics [240]. MYC has been found to be overexpressed in AI resistant breast cancer through the
crosstalk between ER and HER2 pathways. Glutamine transporter SLC1A5 and GLS was significantly
upregulated in AI resistant breast cancer cells and the inhibition of MYC, SLC1A5, and GLS was
found to decrease the proliferation of AI resistant cells [241]. Hormonal therapy resistant metastatic
cancer displays characteristics of enriched CD133, IL6 signaling, and low levels of ER. CD133hi/ERlo

leads to a suppression of mitochondrial OXPHOS [242]. A recent study reported a critical role of
branched chain amino acid transaminase 1 (BCAT1) in antiestrogen-resistant and ERα- breast cancers.
BCAT1 plays a major role in catabolizing the reversible transamination of branched chain amino acids
into branched chain keto acids that might serve as substrates for TCA cycle activity [243]. Another
study reported an increase in cholesterol/lipid and nucleotide metabolism in tamoxifen-resistant
breast tumors. The authors from this study reported MUC1-induced lipid metabolism-related gene
alterations, generating a gene signature predictive of response to tamoxifen treatment [244].

4.2. HER2-Enriched Breast Cancer

HER2+ breast cancer has been reported to exhibit a glycolytic phenotype. HER2 mediated
signaling promotes glucose utilization, regulates lactate dehydrogenase-A (LDH-A) levels, PFKFB3
levels, and lactate accumulation in tumors [245–249]. In addition to these mechanisms, it has been
reported in both cell lines and patient samples that HER2 translocates to the mitochondria in association
with mitochondrial heat shock protein-70 (mtHSP70). Mitochondrial HER2 negatively regulates
complex activity and oxygen consumption indirectly promoting glycolysis [250]. A novel EGFR/HER2
inhibitor KU004 was reported to decrease cancer cell proliferation via reduction in glycolysis [251].
Inhibition of PFKFB3 a critical enzyme involved in glycolysis suppressed growth of HER2 driven
cancers. Using a mouse model driven by HER2 activation and LKB1 loss it was identified that
therapies targeting mTORC1/mTORC2 and glycolysis provide the best therapeutic outcome [241].
Significantly higher expression of carnitine palmitoyltransferase-1A (CPT1A), perilipin-1(PLIN1),
fatty acid synthase (FASN) have been reported in HER2+ tumors and cell lines compared to other
subtypes [252]. It has also been observed that HER2+ tumors exhibit elevated levels of glycine,
glutamine, succinate, and creatinine while displaying a reduction in alanine levels as compared to
HER2- tumors [235].
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Trastuzumab resistant cells have been reported to exhibit increased glycolysis. Glycolytic
inhibition sensitized trastuzumab resistant (and responsive) HER2+ breast cancers to trastuzumab
treatment [253]. Several mechanisms have been attributed to trastuzumab resistance in HER2+
breast cancer. One study identified increased levels of the truncated form of the dopamine and
cAMP-regulated neuronal phosphoprotein 32 (t-Darpp) that interacts with the insulin growth factor
receptor (IGF-1R) stimulating activation of IGF-1R signaling and glycolytic capacity. Hence t-Darpp
was identified as a potential target inhibiting IGF-1R signaling and increased glycolysis in trastuzumab
resistant HER2 cancer [254]. In a similar study, citrate therapy was shown to inhibit the phosphorylation
of IGF-1R. By inhibiting the IGF-1R-Akt-PTEN-peIF2 pathway citrate therapy inhibited an inducible
Her2 driven breast cancer model via the inhibition of both the TCA cycle and glycolysis [255].
Another study reported Skp2 SCF complex as the E3 ubiquitin ligase responsible for HER2 mediated
Akt ubiquitination. Akt signaling cascade has been reported to increase glucose uptake and
glycolysis via increased GLUT1 transcription and membrane translocation. While targeting glycolysis
via Skp2, this study identified a means to sensitize HER2+ tumors to trastuzumab treatment [256].
The neuropeptide neuromedin U (NmU) has been shown to be increased in trastuzumab resistant
HER2+ cancers. Ectopic expression of NmU has been shown to increase glycolysis likely via PDK
activity positing as a potential therapeutic target [257].

In addition to the reliance of HER2+ breast cancers on glycolysis, these cells are also dependent on
fatty acid synthesis, increased levels of stored fats and disruption of synthetic processes. In the presence
of palmitate, FA synthesis was inhibited and glutamine, glucose, and serine/glycine metabolism was
significantly altered via the activation of AMPK [258]. High levels of EphA2 in HER2+ tumors increase
its dependency on glutamine metabolism via increase in transcription of glutamine transporter SLC1A5
and GLS identifying a novel therapeutic target in EphA2 [259]. These studies reflect the myriad of
mechanisms involved in resistance to SOC and how metabolic intervention can be used to re-sensitize
resistant cells to SOC.

4.3. TNBC/Basal-Like-Cancer

The triple negative/basal-like subtype of breast cancer currently lacks therapeutic targets.
Coupled with an inherently aggressive phenotype, TNBC often have a poorer prognosis compared
to the other subtypes. TNBC has been reported to have a greater glycolytic phenotype as
compared to luminal breast cancer based on their high extra cellular acidification rate (ECAR)/OCR
ratio [229]. Other studies have reported increased glycolysis in TNBC via EGF signaling and that
c-MYC drives glucose metabolism by suppressing thioredoxin-interacting protein (TXNIP)—an
inhibitor of glycolysis [260]. In patients, the standard chemotherapy regimen in the adjuvant
and neoadjuvant setting is sequential anthracycline-taxane based that maybe supplemented
by platinum-based chemotherapy in some cases. Other regimens include combinations of
adriamycin-taxane-cyclophosphamide, and 5-fluorouracil-epirubicin-cyclophosphamide followed
by taxanes [261]. Combining doxorubicin with metabolic inhibitors such as metformin and sodium
oxamate maximized tumor growth inhibition as compared to any bi-drug combination [262].
The expression of transketolase (TKT), a metabolic enzyme involved in the non-oxidative branch of the
PPP also linking it to glycolysis, was found to correlate with tumor size in a syngeneic TNBC murine
model. Pharmacological inhibition of this enzyme by oxythiamine treatment sensitized TNBC cells to
doxorubicin or docetaxel [263]. The plant flavonoid luteolin, has been reported to reduce glycolytic flux
and sensitize mouse mammary 4T1 cells to doxorubicin treatment [264]. Doxorubicin resistant breast
cancers exhibit features of enhanced glycolysis as well as an increase in biosynthetic pathways. Using
orthotopic mouse models it has been reported that targeting glycolysis made doxorubicin-resistant
tumors sensitive to doxorubicin treatment. Others have reported that repressing phosphoglycerate
dehydrogenase (PHGDH) sensitizes TNBC to doxorubicin [265]. Another study reported an increase
in glucose metabolism in doxorubicin resistant cells mediated via an increase in FGFR4 expression
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levels. Inhibition of the FGFR4-Erk pathway led to a reduction in glucose metabolism and increased
chemosensitivity [266].

Illustrating the metabolic plasticity of TNBC, two recent reports highlight the importance of
OXPHOS in TNBC via an increased susceptibility to fatty acid oxidation inhibitors. In one study
the authors showed that the tumors expressing high levels of MYC were susceptible to fatty acid
oxidation while in the other study the authors showed that TNBC displayed elevated levels of fatty
acid oxidation and activation of Src. Significant heterogeneity in metabolic adaptation exists even
within TNBC [267,268]. Metabolic profiling of different subtypes of TNBC revealed differential
susceptibility to metabolic modulators [269]. In terms of metabolites, TNBC showed a decrease
in glutamine and an increase in choline and glutamate levels compared to triple positive breast
cancer (TPBC). Another study in tumors from African American women reported a similar increase
in glutaminolysis in TNBC compared to ER+ tumors. They also reported an increase in succinate,
fumarate, and isoleucine indicating potential increase in TCA activity in TNBC compared to ER+
tumors [270]. These studies while highlighting metabolic plasticity within TNBC also suggest multiple
potential adjuvant therapeutic targets.

5. Current Status of Metabolic Intervention in Breast Cancer: Challenges that Lie Ahead

The past decade has seen a massive resurgence in the field of altered metabolism and targeting
such pathways with a number of drugs in different stages of preclinical and clinical development
(Table 2). However, the extremely promising preclinical studies have had at best modest clinical
benefits. One of the major reasons for this stems from metabolic plasticity. This implies that drugs
targeting specific metabolic pathways have an increased likelihood of failure owing to the ability of
tumor cells to bypass the targeted pathway. This problem is often compounded by intra-tumoral
heterogeneity, interactions with the tumor microenvironment and metastases. Another problem
stemming from metabolic monotherapy and metabolic plasticity is that doses required to elicit an
adequate response are often high and lead to unacceptable toxicities [271–273]. Hence, drugs fail
due to insufficient dose and/or exposure to the tumor. To combat these problems, a multi-pronged
approach targeting multiple metabolic pathways is warranted. In some cases, this can be achieved by
using two or more drugs targeting different metabolic pathways. More importantly, in some cases
one could leverage of the impact of standard of care therapies on altered metabolism, complimenting
it with a drug targeting a compensatory metabolic pathway. Another approach to increasing the
efficacy of metabolic therapy is by stratifying patients based on their genetic susceptibility to a specific
intervention. Biguanides such as metformin and phenformin have been shown to be more efficacious
in p53 null cells compared to wild-type p53 harboring cells [274].

Table 2. Drugs currently in different stages of development as metabolic interventions in breast cancer

Target Protein and
Pathway Drug Type Indications Clinical Trials

Glycolysis

SGLT-2 Dapagliflozin Retrospective/Observational Incidence of breast and
bladder cancer NCT02695121

Hexokinase 2-deoxy-D-glucose
(2DG) Phase I Breast cancer and advanced

solid malignancies NCT00096707

TCA Cycle and MRC

PDK Dichloroacetate Phase II Metastatic breast cancer or
NSCLC NCT01029925

PDH/KGDH CPI-613 Phase II Advanced solid tumors NCT01832857

ME-344 Early Phase I Her2- metastatic breast
cancer NCT02806817

Complex I Metformin Phase I/Phase II/Phase III All breast cancer multiple clinical trials
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Table 2. Cont.

Target Protein and
Pathway Drug Type Indications Clinical Trials

Lipid Synthesis

FASN TVB-2640 Phase II
Her2+ metastatic breast

cancer resistant to
trastuzumab and taxanes

NCT03179904

Omeprazole Phase II Triple negative breast cancer NCT02595372

Conjugated Linoleic
Acid (CLA) Phase I Metastatic breast cancer NCT00908791

AA Metabolism

Glutaminase CB-839 Phase I/Phase II Advanced solid
tumors/advanced TNBC

NCT02071862
NCT03057600

Indoleamine 2,3
dioxygenase (IDO1) Indoximod Phase I/Phase II Metastatic breast cancer NCT01792050

NCT01042535

Epacadostat Phase I/Phase II TNBC and other selected
cancers NCT02178722

Arginine deiminase
(ADI) ADI-PEG20 Phase I Her2- metastatic breast

cancer NCT01948843

Currently, one of the most attractive therapeutic opportunities is targeting tumors harboring
mutations in IDH1/IDH2. This has been proven to be especially successful in hematologic
malignancies [275]. Similarly, auxotrophies created as a result of the genetic make-up of certain
tumors allow for a favorable therapeutic opportunity. For example, drugs that deplete arginine or
serine in ASS1-deficient or p53 mutant tumors may prove to be successful candidates for clinical
intervention [276].

6. Concluding Remarks

Altered metabolism as a therapeutic vulnerability is as promising as it is challenging. Metabolic
plasticity need not be inherent but may be adaptive, based on the stage of tumor progression, metastatic
site, and the type of treatment administered. Another layer of complexity arises from cell extrinsic
cues such as nutrient availability; hypoxia and extracellular pH levels that often dictate the metabolic
program of a cancer cell. The tumor microenvironment is often modified by tumor cells to aid in
their metabolic reprogramming facilitating their growth and proliferation in a symbiotic manner.
Information from these active areas of research should help in discovering new therapeutic strategies
and repurposing existing drugs for effective intervention. Effective metabolic therapy would require
precision medicine with integration of genomics, proteomics and metabolomics, stratifying patients
into groups likely to benefit from specific intervention.
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