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Microbubble-enhanced focused ultrasound (FUS) can enhance the delivery of therapeutic agents into the brain for brain tumor
treatment. The purpose of this study was to investigate the influence of brain tumor conditions on the distribution and dynamics
of small molecule leakage into targeted regions of the brain after FUS-BBB opening. A total of 34 animals were used, and the
process was monitored by 7T-MRI. Evans blue (EB) dye as well as Gd-DTPA served as small molecule substitutes for evaluation of
drug behavior. EB was quantified spectrophotometrically. Spin-spin (R,) relaxometry and area under curve (AUC) were measured
by MRI to quantify Gd-DTPA. We found that FUS-BBB opening provided a more significant increase in permeability with small
tumors. In contrast, accumulation was much higher in large tumors, independent of FUS. The AUC values of Gd-DTPA were well
correlated with EB delivery, suggesting that Gd-DTPA was a good indicator of total small-molecule accumulation in the target
region. The peripheral regions of large tumors exhibited similar dynamics of small-molecule leakage after FUS-BBB opening as
small tumors, suggesting that FUS-BBB opening may have the most significant permeability-enhancing effect on tumor peripheral.
This study provides useful information toward designing an optimized FUS-BBB opening strategy to deliver small-molecule

therapeutic agents into brain tumors.

1. Introduction

Focused ultrasound beams (FUS) in the presence of cir-
culating microbubbles can temporarily open the blood-
brain barrier (BBB opening) of capillaries in the central
nervous system (CNS) parenchyma [1-3]. Bursts of acoustic
ultrasound induce microbubble cavitation in the vasculature,
and the resultant shear stress temporarily disrupts tight
junctions to enhance blood-brain permeability. This BBB-
opening process can be carried out at moderate acoustic
pressures to minimize adverse effects on vascularture and
prevent damage to neurons [3-7], while facilitating localized

delivery of chemotherapeutic agents from the vasculature to
the pathological brain parenchyma and CNS [8-11]. Since
more than 95% of the therapeutic agent normally cannot pen-
etrate CNS tight junctions [12], this novel approach provides
a unique opportunity for local delivery of therapeutic agents
across the BBB and into the targeted site, thus opening a new
frontier of CNS drug delivery.

Brain tumors could potentially be treated by FUS-BBB
opening to enhance chemotherapeutic agent delivery. In
the United States, at least 18,000 patients are diagnosed
with glioblastoma multiforme (GBM) each year, comprising
more than half of the malignant primary brain tumors [13],
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FIGURE 1: Schematic showing the experimental setup of the focused ultrasound exposure system.

and chemotherapy is an important treatment modality [14].
Recent preclinical studies showed that FUS-BBB opening
can effectively enhance local deposition and concentration of
chemotherapeutics including BCNU [11], liposomal doxoru-
bicin [9, 15], and chemodrugs carried by novel nanocarriers
[16].

Currently, FUS-mediated CNS drug delivery is moni-
tored by magnetic resonance imaging (MRI) by intravenous
(IV) injection of gadolinium diethylenetriamine penta-acetic
acid (Gd-DTPA) contrast agent together with chemother-
apeutic drug. The MRI signal intensity increase caused by
the leakage of Gd-DTPA thus serves as an indicator to
estimate drug concentration [4, 8, 9, 17]. Most studies have
focused on analyzing the effects of FUS exposure parameters
such as acoustic pressure amplitude, ultrasound frequency,
pulse length, pulse repetition frequency, exposure duration,
and microbubble dose on BBB opening [5, 18-23]. How-
ever, pharmacodynamic analysis including the dynamics and
distribution of the specific molecular agent in the brain
is critical for evaluating specific drug delivery. MRI could
also be used for pharmacological endpoint evaluation using
concurrently administered MR contrast agents as surrogate
indicators of therapeutic drug concentrations. Although the
kinetics of contrast agent permeability of a defective blood-
brain barrier have been measured using MR compartment
modeling [24-26], these studies were performed in normal
animal brains, and so far the detailed pharmacodynamic
behavior of contrast agents after FUS-BBB opening remains
uncertain in brain tumors.

The purpose of this study was to conduct an MRI
pharmacodynamic analysis of FUS-BBB opening in brain
tumors in an animal model. Injected Gd-DTPA contrast
agent was used to characterize pharmacodynamic changes
as a function of time after BBB opening, in both normal
and brain-glioma animals. We also attempted to establish
the correlation between deposition of Gd-DTPA by in vivo
semiquantification and the quantitation of another surrogate,

Evans blue dye, by spectrophotometry after sacrifice. Finally,
we evaluated the pharmacodynamic changes affected by FUS-
BBB opening in various grades of gliomas.

2. Methods

2.1. FUS Setup. A focused ultrasound transducer was used
to generate ultrasound focal energy (IMASONIC, France;
diameter = 60 mm, radius of curvature = 80 mm, frequency =
400 kHz, and electric-to-acoustic efliciency = 70%) (Figure1).
An arbitrary function generator (33120A, Agilent, Palo Alto,
CA and DS345, Stanford Research Systems, Sunnyvale, CA)
was used to generate the driving signal, which was then fed
into a radiofrequency power amplifier (150A100B, Amplifier
Research, Souderton, PA). The focal zone distribution of
the intensity of the ultrasound field was measured in an
acrylic water tank filled with deionized, degassed water. The
measured diameter of the half-maximum pressure amplitude
was 2mm, and the length of the produced focal zone was
15mm. Animals underwent isofluorane anesthesia before
ultrasound treatment. The animal was laid prone and placed
directly under an acrylic water tank (with a window of
4 x 4cm?® at its bottom sealed with a thin film to allow
entry of the ultrasound energy), using ultrasound gel to
fill the interspaces between the animal head and the thin-
film window. SonoVue SF6-coated ultrasound microbub-
bles (2-5pm mean diameter, 2.4 uL/kg; Bracco Diagnos-
tics Inc.) were IV administered by burst injection with
0.1 mL of saline solution containing 0.0l mL heparin. After
injecting the microbubbles, burst-tone mode ultrasound at
a pressure of 0.4 MPa (peak negative value; measured in
the free-field) was delivered to the brain with the center
of the focal zone positioned at a penetration depth of 4-
5mm under the scalp (burst length = 10 ms, pulse repe-
tition frequency = 1Hz, and total sonication duration =
905).
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FIGURE 2: (a) Experimental protocol for Ist- and 2nd-group animal experiments. MRI images were acquired in time slots I/II for group
1 animals and in time slots I/II/III for group 2 animals; double asterisks (**) indicate group-2 experiments only. (b) FUS-exposed brain
of a normal animal with Evans blue extravasations to identify the location of BBB opening. (c) R, accumulating map showing Gd-DTPA
accumulation in the BBB-opening location of a normal animal over time.

2.2. Animal Experiment Design. All animal experiments
were approved by the Institutional Animal Care and Use
Committee of Chang Gung University and adhered to the
experimental animal care guidelines. A total of 34 animals
(male Sprague-Dawley rats (250-300 g)) were used, including
normal (n 18) and tumor animals (n = 16). Experi-
ments were divided into two groups. In group 1, the aim
was to confirm the correlation between Gd-DTPA leakage
(concentration measured by relaxometry) and Evans blue
(EB) dye (concentration measured spectrophotometrically)
after FUS-BBB treatment. Subgroups included (1) normal rats
(n = 18) and (2) tumor rats (n = 4), and the first subgroup
underwent FUS-BBB opening. Subgroups were confirmed
by dynamic contrast-enhanced (DCE) MRI with Gd-DTPA
(molecular weight = 938 Da). In addition, EB dye (molecular
weight = 960 Da) was IV injected into the animals, and
the amount of EB deposited in the brain was quantified
spectrophotometrically (procedure described below). In the
first subgroup of group 1, contrast-enhanced T),-weighted
imaging was first performed to estimate Gd-DTPA concen-
tration after BBB opening, followed by T,-weighted imaging
to provide a reference of tumor morphology. The second
subgroup underwent the same scanning process without FUS
induced.

In experimental group 2, our aim was to monitor the
increase in Gd-DTPA accumulation in tumor-bearing ani-
mals after conducting FUS-BBB opening. Animals were
divided into two subgroups: (1) animals receiving FUS
exposure 10 days after tumor implantation (tumor volume
typically <0.05cm?®) with FUS-BBB opening (n 6) and
(2) animals receiving FUS exposure 17 days after tumor
implantation (tumor volume typically >0.05 cm’) with FUS-
BBB opening (n 6). Tumor volume was measured by
T,-weighted MRI. In group 2, animals were subjected to
three 80-minute-long MR relaxometry-based imaging ses-
sions (before FUS exposure, and 10-min and 120-min after
FUS exposure). Detailed experimental procedures are shown
in Figure 2.

2.3. Rat Brain Glioma Model. C6 glioma cells were harvested
by trypsinization and cultured at a concentration of 1 x
10° cells/mL for implantation. For intracranial injection into
the striatum of rat brains, cells were washed once with
phosphate buffered saline (PBS). Male Sprague-Dawley rats
(250-300g) were anesthetized by intraperitoneal admin-
istration of ketamine (100 mg/kg) and immobilized on a
stereotactic frame. A sagittal incision was made through the



skin overlying the calvarium, and a small dental drill was used
to make a hole in the exposed cranium, 0.5 mm anterior and
3 mm lateral to the bregma on the left side of skull. C6 cell
suspension (5mL) was injected at a depth of 4.5 mm from
the brain surface. The injection was performed over a 10-
minute period, and the needle was withdrawn over another
2 minutes. Ten days after implantation, tumor sizes were
measured by MRI.

2.4. Spectrophotometric Quantitation of Evans Blue Dye. EB
dye (3% in saline) was IV injected (2mg/kg), and the
animals were sacrificed two hours later. All animals were first
deeply anesthetized with 10% chloral hydrate and infused
with heparinized saline through the cardiac ventricle until
colorless infusion fluid was obtained from the atrium. After
the rats had been sacrificed by decapitation, the hemispheres
of the brain were separated along the transverse suture. Then
both hemispheres were weighed and placed in formamide
(1mL/100 mg) at 60°C for 24 h. The sample was centrifuged
for 20 mins at 14,000 rpm. The concentration of dye extracted
from each brain was determined spectrophotometrically at
620nm and was compared with a standard graph created
by recording optical densities from serial dilutions of EB in
0.9% sodium chloride solution. The EB tissue content was
quantified using a linear regression standard curve derived
from seven concentrations of the dye.

2.5. MRI. For in vitro measurements, Gd-DTPA (Omniscan,
0.3 mL/kg, Magnevist) was diluted with physiological saline
to 0.12, 0.24, 0.49, 0.97,1.96, and 3.9 uM. Circular wells (inner
diameter = 5mm) were filled with 200 A of contrast agent
sample or physiological saline as control and were placed
in the MR scanner (Clinscan, Bruker, Germany; 7 Tesla).
Spin-lattice relaxivity maps were calculated from two T,-
weighted images with different flip angles (gradient recalled
echo sequence, TR/TE = 2.3ms/0.76 ms, slide thickness =
0.8 mm, matrix = 132 x 192, and flip angle = 5°/20%). The
correlation between R, (= I/T;) mapping and Gd-DTPA
concentration was determined [27].

In the animal experimental group, FUS-induced BBB
opening was monitored by MRI with a 7-Tesla magnetic reso-
nance scanner (Bruker ClinScan, Germany) and a 4-channel
surface coil. The mouse was placed in an acrylic holder,
positioned in the center of the magnet, and anesthetized with
isoflurane gas (1-2%) at 50-70 breaths/min during the entire
MRI procedure.

In the first experimental group, the distribution and
dynamics of Gd-DTPA leakage were investigated imme-
diately after conducting FUS-BBB opening. After FUS-
BBB opening, animals were immediately relocated into the
MR scanning room, and contrast-enhanced T,-weighted
images with different flip angles were acquired to calcu-
late spin-lattice relaxivity maps by transferring two images
with different flip angles (gradient recalled echo sequence,
TR/TE = 2.3ms/0.76 ms, slice thickness = 0.8 mm, slice
number = 14, matrix = 132 x 192, and flip angle = 5°/20°).
Images were sequentially acquired over 80 min with a time
interval of 60 seconds for area under the curve (AUC)
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calculation. Upon completion of the 10th acquisition, a
diluted bolus of Gd-DTPA was IV injected through a
catheter at an infusion rate of 6mL/s. In the second
experimental group, three sets of Gd-DTPA-leakage dis-
tribution/dynamics were investigated, including (I) before
FUS exposure, (II) immediately after FUS exposure, and
(IIT) two hours after FUS exposure. Immediately after
conducting FUS-BBB opening, turbo spin echo (TSE) T,-
weighted images were obtained as a reference to identify
the tumor region (repetition time (TR)/echo time (TE) =
2540/41ms, FOV = 34 x 40 mm?, in-plane resolution =
0.4 x 0.3 mm?, and slice thickness = 0.6 mm).

2.6. MR Analysis of Gd-DTPA Accumulation and Distribution
after FUS-BBB Opening. In R-map analysis, a region of
interest (ROI) was selected and compared with the non-
enhanced contralateral brain to determine the increase in
Gd-DTPA concentration caused by BBB opening. AUC maps
were then transferred from a series of time-dependent R,
maps (up to 80 min) to determine pharmacodynamic char-
acteristics of Gd-DTPA for comparison with the dynamics of
EB dye permeability. Thus, the total area (AUC) is given by
the following equation:

[ Cpt-at

AUCSO min — vV (1)

>

where Cpt are vertical segments under the Gd-DTPA con-
centration curve area and V is total ROI volume.

In experimental group 2, ROIs were selected in the tar-
geted tumor area which was based on the tumor dimensions
defined in T, images (the same ROI as in the contralateral
brain was selected). The distribution and dynamics of Gd-
DTPA leakage were evaluated for different tumor sizes
including 10 days after implantation (typically <0.05cm?)
and 17 days after implantation (typically >0.05 cm®) and were
divided by the tumor dimension. ROI including the entire
tumor and the contralateral area were selected. Moreover,
in order to evaluate the homogeneity of Gd-DTPA leakage,
tumors with dimension >0.05 cm® were further divided into
tumor core (inner half of the area) and tumor peripheral
(outer half of the area), based on T, images.

2.7. Histology. Albumin-bound EB dye was IV injected as
a bolus immediately after sonication. BBB opening was
quantified as extravasation of EB. Tumor model animals
were sacrificed about 2 h after sonication and MR scanning.
Brain samples were serially sectioned (2 ym thickness) using
the same slice direction as in MRI analysis. Representative
sections were stained with hematoxylin and eosin (HE).
Tumor morphology was histologically evaluated.

3. Results

BBB opening was clearly evidenced by staining with EB
dye. A typical image of a normal BBB-opened brain stained
with EB dye is shown in Figure 2(b). In addition, a series



BioMed Research International

20 0.25
02} -
/l //
Slope = 3.2936 ,~ . 7
R g 015 e
, [=} s
[=} 7
. S e
/‘ E //.
/// o 0.1 F //
g o
+7" y = 0.1945x + 0.0353
y = 3.2936x — 0.1446 005 o
R? = 0.9991 R? =0.9992
n " " " 0 1 1 1 1
1 2 3 4 5 0 02 04 06 08 1
Gd-DTPA (uM) Evans blue (ug)

(a) (b)

()

FIGURE 3: (a) T, image and corresponding R, map for the in vitro Gd-DTPA phantom at increasing concentrations (1 and 2: water; 3: 0.12 uM;
4:0.24 uM; 5: 0.49 uM; 6: 0.97 uM; 7:1.96 uM; 8: 3.9 uM). (b) Dependence of R, on Gd-DTPA concentration; relaxivity was estimated as about
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FIGURE 4: Typical MRI for normal animals (upper) as well as animals after 10-day (middle) and 17-day (bottom) tumor implantations. (a)
Contrast-enhanced T, images before and after FUS exposure. (b) T, images (after FUS). (c) R, maps before and after FUS exposure. (d) Area
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of R, maps obtained at different time points after FUS-
BBB opening demonstrated the dynamic change in Gd-
DTPA accumulation in a normal brain, with particularly high
leakage at the sonication site (Figure 2(c)).

R, relaxivity of Gd-DTPA and ELISA measurements of
EB dye concentration were calibrated in vitro. The detected
R,-signal increased in a highly linear manner with Gd-DTPA
concentration (input concentrations of 0, 0.25, 0.5, 1, 2, and
4 uM) as shown by the calibration curve (r* = 0.9991)
(Figure 3(b)). The relaxivity of Gd-DTPA contrast agent was
found to be 3.3 at 7 Tesla. The detected ELISA signal also

increased in a highly linear manner with EB concentration
(Figure 3(c); r* = 0.9992). These calibration curves thus
allowed precise quantitation of Gd-DTPA and EB deposition
in the brain.

FUS-induced BBB opening was verified by CE-MRL
Typical CE-T, images, T, images, R; maps, and AUC maps in
normal, 10-day glioma, and 17-day glioma animals are shown
in Figure 4. In normal animals, the BBB-opened area was
clearly visible in T, -weighted images. T, -weighted images did
not show any evidence of FUS-induced damage at the target
location at pressure amplitudes of 0.4 MPa (Figure 4). In the
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The corresponding R, accumulation as a function of time over 80 minutes for (a)-(c).

first subgroup of experimental group 1, the R,-map signal of
the BBB-opening area was increased from 0.1 to about 1.2 by
FUS, and AUC maps showed an increase in accumulation of
Gd-DTPA deposition from 20 to about 600.

In tumor-bearing animals, the FUS-induced BBB area
clearly covered the tumor tissue (Figure 4; small (10-day) or
large (17-day) tumors). Sonication resulted in increased Gd-
DTPA accumulation in the tumor and in the peripheral BBB-
opened area as evidenced by signal enhancement in the R, -
map images. AUC maps showed maintained high staining
intensities after Gd-DTPA injection. In the small (10-day)
tumors, FUS resulted in an increase of R, signal from 1 to
about1.5s ' and an increase in Gd-DTPA deposition of about
200 (from 400 to 600). However, in large (17-day) tumors,
FUS did not lead to a significant change in the R,-signal,
which increased from 1.9 to 25!, or the AUC value which
increased by only about 50 (from 1000 to 1050).

The kinetics of Gd-DTPA accumulation were evaluated
after a single sonication treatment in thirty animals (normal
rats: n = 18; small-tumor model: » = 6; large-tumor
model: n = 6). An ROI from the BBB-opened area on T),-
weighted images (target) and the corresponding ROI from

the contralateral brain (contralateral) were used to infer Gd-
DTPA concentration from the R, signals and the AUC over
time in the 10-day tumors (volume < 0.05 cm?), 17-day tumors
(volume > 0.05cm?), or normal controls after sonication
(Figure 5). Figures 5(a)-5(c) showed the comparison of
changes in R, as a function of time (from 0 to 80 min)
for three typical animals. When considering the peak value
over the whole scanning process, FUS caused the highest
enhancement in R, signal of contrast agent in normal tissue
(from 0.2 to 0.84; Figure 5(a)). Sonication also led to a large
increase in R, signal in 10-day tumor, from 0.86 to 1.48s™"
(Figure 5(b)). However, the already high permeability of 17-
day tumor to Gd-DTPA was not significantly increased by
FUS, from 1.49 to 1.62s™" (Figure 5(c)).

The corresponding AUC (accumulation of R;) as a
function of time (from 0 to 80 min) in these three animals is
shown in Figures 5(d)-5(f). In the normal animal, total Gd-
DTPA accumulation in the BBB-opening area was increased
from 44.2 to 552.6 pmol by FUS (Figure 5(d)). Gd-DTPA
accumulation in the 10-day tumor increased from 411.7 to
5775 pmol, compared to only about 73 pmol over time in
the contralateral control hemisphere (Figure 5(e)). However,
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Gd-DTPA accumulated to about the same high value with
and without FUS (863.8 versus 867.3 pmol) in the 17-day
tumor (Figure 5(f)).

Gd-DTPA levels on the FUS-treated and contralateral
side were also evaluated at either 10 min or 80 min after a
single sonication treatment (Figure 6). The Gd-DTPA signal
intensity increased in the BBB-opening area 10 min after
sonication as evidenced by an increase in the R, signal from
0.3863 to 0.8313s™" for control and from 0.77 to 1.15s" for
small-tumor animals. However, the contrast agent signals
in the FUS-enhanced large tumors were the same as for
the contralateral region (about 0.136s™"). All R, signals in
these brain tissues returned to baseline (about 0.428s™}) at
80 min after sonication. The ratio of R; between the FUS-
exposed and control areas went from 2.48s™" at 10 min to
1.4s™" at 80min in normal tissue and from about 1.8 to
1s™" for the tumor-bearing animals (Figure 6(b)). The AUC
at 10 min and 80 min was compared between control and
BBB-opened brain regions. At 10 min after sonication, the
accumulated Gd-DTPA concentration of the BBB-opened

area increased to 465.99 uM, compared to 667.34 uM for the
small tumor and a limited increase to 896 uM for the large
tumor (Figure 6(c)).

Next we evaluated the correlation between EB leakage
(Figure 7(a)) and Gd-DTPA accumulation (estimated by
the AUC) in the same region of the brain. We found that
the accumulated distribution of Gd-DTPA (i.e., AUC) was
highly correlated with the distribution of EB (r* = 0.8897)
(Figure 7(b)). Thus, R;-based pharmacodynamic analysis
provided a reasonable map of the permeability of the BBB-
disrupted region to EB dye over time. EB dye and Gd-
DTPA accumulation showed the same tendency of higher
overall permeability in tissues of large tumors and less depen-
dence on FUS treatment, as evidenced from the ratios of
accumulation between contralateral and FUS-treated regions
(Figure 7(c)).

Next, we analyzed Gd-DTPA deposition dynamics in
experimental group 2 animals by AUC analysis for three
individual time slots: (I) before FUS, (II) immediately after
FUS, and (IIT) 2 hours after FUS. Gd-DTPA concentration
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and accumulation in the target area presented the same trend
at all three time points (Figure 8). As before, we observed a
transient peak of R; and the AUC in the BBB-opened brain
just after sonication (Figures 8(a) and 8(c)). However, the
increase in the ratio of R; or AUC again differed between
the normal and tumor-bearing animals (Figures 8(b) and
8(d)). The ratio was highest in the normal BBB-opening
area (R, signal 4.4 times than before FUS; AUC: 3.7 times),
followed by the small-tumor model (R, signal: 1.7 times;
AUC: 1.6 times), with no significant change in the large
tumor, confirming our previous observations that FUS did
not significantly further affect permeability in large tumors.
These ratios subsequently decreased at the time point 2 hours
after FUS induction, returning to approximately the same

values of DCE-MRI as originally observed before sonication.
This result implied that at 2 hours, the BBB-opening area had
recovered to the same baseline permeability level to contrast
agent as prior to sonication.

HE staining of tumors 10 days after implantation showed
even staining without scattered red blood cells in the absence
of FUS (Figures 9(a) and 9(b)). Tumor cells were charac-
terized by dense nuclear distribution, and only tiny areas
of gliosis infiltrated with chronic inflammatory cells and
some hemorrhaging were found (Figures 9(c) and 9(d)).
HE staining of tumors 17 days after implantation revealed
a number of regions with extensive apoptosis and cavities
in the core of the tumor, and hemorrhagic structures with
scattered and spreading erythrocytes could be observed
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FIGURE 9: HE staining. (a) and (b) Small (10-day) tumor tissue without FUS exposure, 40x and 200x. (c) and (d) Small (10-day) tumor tissue
with FUS exposure, 40x and 200x. (e) and (f) Large (17-day) tumor tissue without FUS exposure, 40x and 200x. (c) and (d) Large (17-day)

tumor tissue with FUS exposure, 40x and 200x.
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around discontinuous vasculature (Figures 9(e) and 9(f)),
supporting our findings of high permeability of 17-day tumors
based on observation of Gd-DTPA deposition. This structure
did not change significantly after sonication (Figures 9(g) and
9(h)) with hemorrhagic regions remaining similar to those in
the unexposed tumor.

Previous reports showed that the tumor core consists
of a bulky necrotic mass without functional vasculature,
whereas the tumor periphery maintains a high degree of
vasculature structure [28, 29]. We therefore hypothesized that
microbubble-enhanced FUS exposure would have a bigger

effect on enhancing permeability in the peripheral tumor.
We further divided the 17-day tumor animals into core
and peripheral subregions and then repeated the MRI AUC
analysis (Figure 10). We observed that, after FUS exposure,
the 17-day peripheral tumor showed a similar trend to the 10-
day tumor, which showed a nearly 1.7-fold of instantaneous
increase and 50% accumulation increase in Gd-DTPA, and
the permeability dropped significantly two hours after FUS
exposure to about half (20%), which is similar to 10-day
tumor. In contrast, the 17-day tumor core mimicked the
behavior of the undivided 17-day tumor, accumulating high
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levels of Gd-DTPA both before and after FUS exposure
(AUC increase of only 10% after FUS exposure) (Figure 10).
This relatively low increase in the AUC persisted when the
tumor core was re-evaluated at 2 hours after FUS exposure
(9%). These observations suggest that the FUS-BBB opening
can provide the most pronounced drug delivery enhancing
effect on tumor peripheral or tumors with high-vascularity
stage tumors, yet only provides limited effects on bulky and
necrotic tumors.

4. Discussion

This study demonstrated the pharmacodynamic characteris-
tics of small-molecule leakage at various stages of tumors after
application of microbubble-enhanced FUS to open the BBB.
We analyzed two small molecules with similar molecular
weights to obtain complimentary data on pharmacodynamic
behavior. Gd-DTPA was used to provide contrast in MRI and
for semiquantitative verification of biodistribution in vivo,
and EB dye was used as a measure of drug accumulation
after animal sacrifice. These two molecules, which normally
do not enter the brain parenchyma from the bloodstream,
could potentially be used as surrogate markers for drug
delivery. Although the dynamic distribution of Gd-DTPA
may differ from that of Evans blue, we demonstrated that the
AUC accumulation of Gd-DTPA analyzed by MRI was highly
correlated with EB accumulation in the brain (r* = 0.8897),
implying that MRI AUC analysis of Gd-DTPA could predict
the concentration of EB accumulating in the brain, and may
thus have the potential to predict the pharmacodynamic
behavior and biodistribution of other therapeutic agents.
This study employed high-temporal-resolution dynamic
CE-MRI that could be utilized for small-molecule in vivo
distribution and semiquantification, as attempted in previous
studies [30, 31]. The unique features provided by dynamic
CE-MRI include the capability of rapid evaluation and high
spatial resolution, as well as kinetic analysis to evaluate tumor
perfusion [30]. Positron emission tomography (PET) has
also been used for pharmacological studies in several tumor
types [32, 33]. However, potential limitations of PET may
include its limited imaging resolution and complexity of
radiotracer synthesis. In small tumors, partial volume effects
may be significant if the tumor size is less than twice the
resolution of the scanner [34]. MRI methods provide the
advantage of having good spatial resolution equal to that
of corresponding morphologic images. In addition, MRI
is minimally invasive and poses little risk to patients. We
used voxels of about 0.26 x 0.26 x 1mm’ to construct
images sufficient for small-animal analysis. On the other
hand, PET relies on radiolabeled molecules that bind to
receptors to allow absolute quantification by detection of
isotopes. PET may also be limited by its high cost, limited
availability of radiotracer, and the need for a cyclotron as
well as onsite radiochemistry for radioisotope production
[35]. PET involves comprehensive conjugation of radiotracers
and specific tailor-made molecules limiting its general use
for pharmacodynamic analysis. Although Gd-DTPA can-
not be directly conjugated to therapeutic molecules, the
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detection of coadministered Gd-DTPA by CE-MRI is highly
correlated with targeted molecules, providing an excellent
tool for monitoring vasculature and evaluating tissue/tumor
permeability at high temporal/spatial resolution, suggesting
its continued usefulness for pharmacodynamic analysis of
brain drug delivery.

Tumor tissues are known to have high permeability due
to the presence of large endothelial cell gaps, incomplete
basement membrane, and the relative lack of pericyte or
smooth muscle association with endothelial cells [36, 37].
In addition, the network of vasculature in solid tumors is
markedly different from the normal hierarchical branching
patterns and contains leaky vessel structures. Variations in
permeability are also associated with the tumor grade as well
as various neoplastic effects that could disrupt the BBB [38].
In this study, we observed that tumors with different levels of
progression showed different characteristics of blood-vessel
permeability and small-molecule accumulation. We found
that the AUCg ,;, in small tumors was 452 + 122.5uM,
whereas in large tumors it reached 754 + 48.3 uM. More-
over, we confirmed that FUS-BBB opening provided a 50%
enhancement of accumulation of Gd-DTPA in small brain
tumors and a 40% enhancement at the large tumor periphery,
implying that FUS-BBB opening is an effective approach
to increase brain-tumor permeability and therefore enhance
delivery of therapeutic molecules.

Histological examination by HE staining showed that
smaller (10-day) tumors had well-ordered vasculature with
fewer abnormal endothelial cell gaps (Figures 9(a) and 9(b)).
The blood vessel density in small tumor was lower, resulting
in less Gd-DTPA and EB accumulation. In contrast, 17-
day tumor tissues contained more large fenestrae (Figures
9(e) and 9(f)), consistent with previous pathological findings
that high-grade brain tumors contain neovasculature and
apoptotic tumor cells, leading to hyperpermeability [39].
These pathological changes are consistent with the increased
Gd-DTPA and EB accumulation that we observed in 17-day
tumor tissues before sonication.

Although AUCq ;.. correlated well with the pharmaco-
dynamic behavior of another small molecule (EB), Gd-DTPA
accumulation can be very different even under the same
FUS exposure conditions, for example, varying from 365.2
to 900 uM (Figure 7(b)). These large variations were likely
due to differences in skull thickness and angle of incidence
between the FUS beam and the skull surface among the
animals [40], and the presence of standing waves produced
in the skull cavity that alter the peak pressure at the target
position and thus the level of BBB opening [41]. Since FUS-
BBB opening may vary substantially, it is essential to perform
an AUC analysis during CE-MRI to monitor small-molecule
delivery into the brain for individual subjects and targets.

5. Conclusion

In this study, we characterized the dynamics of BBB opening
in normal and tumor tissues using DCE-MRI with Gd-
DTPA contrast agent, and related them to the concentrations
of Evans Blue determined from tissues after sacrifice. The
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concentrations of the surrogate tracer (Gd-DTPA) and EB
dye showed a strong linear correlation. With this dynamic
information of tumor permeability, the pharmacodynamic
model can be modified to eventually take into account
parameters that affect drug delivery over time. Tumor periph-
eral or high-vascular tumor may have the most significant
benefit on blood-brain or blood-tumor permeability increase,
which gives critical information when intending to apply
FUS for brain drug enhanced delivery. We hope to use such
pharmacodynamic predictions along with FUS-induced BBB
opening to develop a method for image-guided drug delivery
that can estimate the amount of drug that will be delivered to
tissues at each time point.
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