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ABSTRACT

Genome foundation models hold transformative potential for precision medicine, drug discovery, and understanding
complex biological systems. However, existing models are often inefficient, constrained by suboptimal tokenization and
architectural design, and biased toward reference genomes, limiting their representation of low-abundance, uncultured
microbes in the rare biosphere. To address these challenges, we developed GenomeOcean, a 4-billion-parameter gen-
erative genome foundation model trained on over 600 Gbp of high-quality contigs derived from 220 TB of metagenomic
datasets collected from diverse habitats across Earth’s ecosystems. A key innovation of GenomeOcean is training
directly on large-scale co-assemblies of metagenomic samples, enabling enhanced representation of rare microbial
species and improving generalizability beyond genome-centric approaches. We implemented a byte-pair encoding
(BPE) tokenization strategy for genome sequence generation, alongside architectural optimizations, achieving up to
150× faster sequence generation while maintaining high biological fidelity. GenomeOcean excels in representing micro-
bial species and generating protein-coding genes constrained by evolutionary principles. Additionally, its fine-tuned
model demonstrates the ability to discover novel biosynthetic gene clusters (BGCs) in natural genomes and perform
zero-shot synthesis of biochemically plausible, complete BGCs. GenomeOcean sets a new benchmark for metagenomic
research, natural product discovery, and synthetic biology, offering a robust foundation for advancing these fields.
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1 Introduction

The success of language models (Brown et al., 2020; Dubey et al., 2024; Kenton and Toutanova, 2019), where represen-
tations learned from massive text corpora have enabled breakthroughs in tasks ranging from translation (Sutskever,
2014) to conversation (Ouyang et al., 2022), has inspired a recent surge in the development of foundation models for
biology. These biological foundation models have demonstrated significant potential in capturing relevant patterns
across diverse modalities: they can predict genomic elements (Dalla-Torre et al., 2023; Ji et al., 2021; Liu et al., 2025;
Nguyen et al., 2023, 2024; Sanabria et al., 2024; Zhou et al., 2023; Zvyagin et al., 2022), infer RNA structures, and
optimize codons (Chen et al., 2022; Li et al., 2023), identify cell type-specific epigenetic signals (Gao et al., 2023),
annotate single-cell transcriptomic profiles (Cui et al., 2024a,b), and even model or design novel protein structures
(Hayes et al., 2024; Jumper et al., 2021; Lin et al., 2023a; Nijkamp et al., 2023; Watson et al., 2023). Given the inherent
interconnectedness of these modalities, efforts are underway to develop foundation models that integrate multiple data
types to enhance their capabilities. Examples include aligning protein sequences, 3D structures, and literature text to
reduce false positives (Zhang et al., 2024), and leveraging transfer learning across DNA, RNA, and protein to improve
predictions of transcript isoform expression (Garau-Luis et al., 2024).

Since DNA is the central repository of genetic information in most living organisms, and it encodes the instructions
to produce RNA and proteins, foundation models trained with only DNA sequences have been shown to be capable
of modeling other modalities. Embedding from genome foundation models (gFMs) can discriminate various types
of RNA genes they encode (Dalla-Torre et al., 2023; Ji et al., 2021; Nguyen et al., 2023), and perform protein-level
tasks such as predicting essential genes in bacteria (Nguyen et al., 2024). Compared with protein language models,
gFMs capture a wider range of biological functions: not only protein coding regions including the “dark proteome”
or non-canonical open reading frames (Deutsch et al., 2024) but also noncoding regulatory elements, repeats, mobile
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elements, and other genomic “dark matter” that influences gene expression and phenotypes (Avsec et al., 2021; Linder
et al., 2023). In addition, most protein foundation models are limited to one protein at a time, and have difficulty
modeling higher-order functions from coordinated gene networks or pathways. Moreover, standard protein models
implicitly assume canonical codon usage and ignore widespread outliers such as codon expansion (Shandell et al.,
2021), condensation (Bloomfield, 1996) , or stop-codon suppression (Ivanova et al., 2014).

Unlike large natural language models (Brown et al., 2020; Dubey et al., 2024; Kenton and Toutanova, 2019) that
use subwords as tokens, the optimal tokenization strategy for gFMs remains an open question. GenSLMs employ
genetic codons as tokens (Zvyagin et al., 2022), a strategy that may be particularly effective for understanding virus
and prokaryotic genomes, given that the majority of microbial genomes consist of protein-coding regions. Alternatively,
fixed-size k-mers have been used successfully to represent genomic sequences (Dalla-Torre et al., 2023; Ji et al., 2021),
despite their lack of direct biological meaning, as they can effectively represent noncoding DNA elements. Using single
nucleotides as tokens provides the most granular representation of DNA sequences (Nguyen et al., 2023, 2024; Schiff
et al., 2024), offering maximum flexibility in sequence modeling. However, using single nucleotide tokens leads to
increased computational costs, making the models less efficient and unsuitable for large inference projects. Another
frequently used tokenization is Byte-Pair Encoding (BPE), which leverages high-frequency DNA segments found in
genomes to reduce the number of tokens required to efficiently represent a DNA sequence (Sennrich et al., 2016). Despite
its efficiency, BPE has primarily been used in BERT-style architectures for sequence classification tasks (Sanabria
et al., 2024; Zhou et al., 2023, 2024). It is unknown whether it is suitable for GPT-style generation, as it may break
biologically meaningful units (e.g., codons or regulatory motifs) into suboptimal fragments, potentially disrupting the
model’s ability to learn or generate functionally coherent sequences.

Another open problem is the selection of training sets for gFMs, a decision that significantly impacts model
performance and generalizability. Predicted genes focus on coding regions, offering insights into functional aspects,
but they may introduce prediction errors and neglect non-coding elements. Reference genomes provide high-quality,
curated data, yet they are often biased toward well-studied species, limiting their ability to generalize across diverse
organisms, especially uncultured, low-abundance organisms known as the rare biosphere (Pascoal et al., 2021; Sogin
et al., 2006). Evo leveraged the Genome Taxonomy Database (GTDB) datasets, a taxonomically diverse and manually
curated collection of genomes (Parks et al., 2022), to enhance the diversity of its training data (Nguyen et al., 2024).
However, this approach may still overlook functional diversity and other novel genomic features, especially those can
only effectively reached by metagenome analysis (Pavlopoulos et al., 2023). Environmental metagenome sequencing, on
the other hand, provide a comprehensive and unbiased representation of genomic diversity of habitats, encompassing
both coding and non-coding regions from a wide range of species, making them a promising candidate for training gFMs.
However, half of the phylogenetic diversity is estimated to be missed from the metagenome-assembled genomes (MAGs),
especially those species from environmental samples (Wu et al., 2025). In addition, to assemble large metagenome
datasets face many challenges such as assembly quality, potential noise, and the substantial computational resources
required to produce them, limiting their adoption as training sets in gFMs.

Here, we introduce GenomeOcean, a BPE-based generative genome foundation model (gFM) trained directly on
metagenome assemblies. Together with several architectural and computational optimizations (Ainslie et al., 2023;
Dao, 2023; Kwon et al., 2023) on the Transformer Decoder (Vaswani et al., 2017), GenomeOcean generates sequences
two orders of magnitude faster than existing gFMs (Nguyen et al., 2024; Zvyagin et al., 2022) of comparable size.
To construct a high-quality pre-training dataset that represents extensive microbial diversity, we compiled a set of
published large-scale metagenomics assemblies (Har, 2018; Oliver et al., 2024; Riley et al., 2023), and conducted three
more terabase-scale coassemblies (Peterson et al., 2009; Sunagawa et al., 2020; Wang et al., 2019), yielding a training set
integrating data from multiple environmental metagenome studies spanning oceans, lakes, mammalian gut, forests, and
soils. This effort produced approximately 645.4 Gbp of high-quality contigs, derived from 219 TB of raw environmental
data, ensuring a broad and representative training set for GenomeOcean.

Surprisingly, we found that BPE-based, decoder-only models are capable of representing biological functions, as
GenomeOcean excels at both DNA- and protein-level tasks. It generates DNA embeddings that effectively cluster and
segregate different microbial species, achieving performance comparable to gold-standard tetra-nucleotide frequency
(TNF)-based approaches. GenomeOcean also demonstrates a profound understanding of protein functions, responding
appropriately to synonymous and non-synonymous mutations in prompts while generating sequences that encode
full-length proteins aligned with known protein structures, despite the prevalence of fragmented genes in the training
data. Furthermore, when fine-tuned on a set of multi-genic biosynthetic gene cluster (BGC) sequences, the model
can not only discover novel BGCs in natural genomes, but also generate the complete set of genes required for the
synthesis of specific natural products, showcasing its ability to comprehend higher-order genomic functional modules.

2 Results
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Figure 1: Compiling a diverse metagenomics dataset for training a microbial genome foundation model. (A)
Overview of the environmental sources used for metagenome assemblies. These include time-series freshwater samples
spanning decades, spatial-series marine samples across global oceans, thousands of human-associated microbiome
samples, tropical and forest soils, and Antarctic subglacial lake communities. (B) Shannon entropy derived from
tetra-nucleotide frequencies as a proxy for community diversity. The diversity for assembled environmental datasets
are compared against the GTDB bacterial and archaeal genome collections. Except for the tropical soil sample
(GRE), environmental datasets generally show similar or higher diversity than GTDB.

2.1 Assembly of a Diverse Earth Microbiome Representation

To construct a training dataset that represents a broad diversity of microbial life, we used the assemblies of six
large, environmental metagenome datasets spanning aquatic, terrestrial, and host-associated communities (Figure 1A,
Table 1). As demonstrated previously, combining a large number of samples from a single metagenome project into one
coassembly increases the representation of relatively rare microbial species while achieving lower error rates compared
to single-sample assemblies (Hofmeyr et al., 2020). Our selection included freshwater microbial communities from Lake
Mendota (Oliver et al., 2024), marine environments collected globally by the Tara Oceans expedition (Bork et al.,
2015; Sunagawa et al., 2020), human-associated microbial communities from the Human Microbiome Project (HMP)
(Peterson et al., 2009), a tropical soil enrichment from the Great Redox Experiment (GRE) (Riley et al., 2023), a
forest soil community from Harvard Forest (Alteio et al., 2020), and a polar microbial community from Antarctic
subglacial lakes (Wang et al., 2019). In total, these six assemblies comprise approximately 645 Gbp of high-quality
contigs derived from over 219 TB of raw metagenomic data.

The assembly statistics in Table 1 reveal the large scale of these datasets with input FASTQ sizes ranging from
3.4 TB to 98.0 TB, and resulting assembly sizes from 14.7 Gbp to 323.1 Gbp. Our training set totals 645.4 Gbp. L50
values ranging from 1.76 million to 104.1 million, and N50 values from 0.71 Kbp to 1.65 Kbp. Both metrics indicate
that a large number of assembled contigs are smaller than an average microbial gene ( ∼3kb), reflecting the fragmented
nature of metagenome assembly of large, complex communities (Meyer et al., 2022) . Even thought it is theoretically
possible, training a model to learn full-length gene information from non-overlapping gene fragments has not been
previously demonstrated.

Within each assembly experiment, 87%–95% of reads could be mapped back to their respective assemblies, consistent
with the observation that these large metagenome assemblies captured the majority of the underlying community
diversity in each ecosystem (Table 1).

Quantifying species-level diversity in such complex and largely uncharacterized communities is inherently chal-
lenging. To address this, we used Shannon entropy of tetra-nucleotide frequency (TNF) distributions as a proxy for
alpha diversity (Methods). When compared to GTDB, a reference compendium of over half a million phylogenetically
diverse bacterial and archaeal genomes, our environmental assemblies exhibited similar or greater TNF-based diversity.
The sole exception was the tropical soil data (GRE), which showed lower diversity (Figure 1B), likely reflecting the
source communities enriched by stable isotope probing (SIP) experiments (Riley et al., 2023).
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Table 1: Metagenome datasets for GenomeOcean training. L50 is defined as count of smallest number of contigs
whose length sum makes up half of the total assembly size. N50 is a median statistic such that 50% of the entire
assembly is contained in contigs or scaffolds equal to or larger than this value.

Dataset∗
# raw reads

(billions)
Input size

(TB)
Assembly

L50 (millions)
Assembly
N50 Kbp

% reads
mapped

# Contigs >500bp
(millions)

Assembly
size (Gbp)

Lake Mendota 72.1 24.3 20.87 1.17 94 96 105.5
Tara Oceans 352.1 71.6 104.1 0.85 93 363 323.1
HMP 453.1 98.0 22.42 0.71 87 69 54.0
GRE 22.7 8.0 9.1 1.65 88 56 75.1
Harvard Forest 8.9 3.4 16.8 1.05 95 71 73.0
Antarctica 29.2 9.7 1.76 1.59 94 11 14.7

∗Tara Oceans, HMP, and Antarctica datasets were assembled in this study. The other assemblies were previously published.

2.2 Pre-training

We combined the aforementioned metagenome assemblies for pre-training. Contigs shorter than 1024 tokens (approx-
imately 5 kb) were concatenated with a delimiter special token before being fed into the model. We employed a
Transformer Decoder architecture and a Byte-Pair Encoding (BPE) tokenizer to efficiently represent DNA sequences
(Figure 2A). Most existing gFMs show promising results with only a few hundred millions parameters, but the datasets
they were trained on have limited diversity (Dalla-Torre et al., 2023; Zhou et al., 2023). To understand the effects of
scaling in the generative genome foundation model on our dataset, we experimented with three model sizes of increasing
parameter counts (100M, 500M, and 4B) on the same dataset. All models were initially trained with a maximum
sequence length of 1024 tokens, a global batch size of 4×106 tokens, and a peak learning rate of 4×10−4. The learning
rate was linearly increased from 0 to 4× 10−4 over the first 2,000 steps and then gradually decayed to 4× 10−5 by the
end of training. The models were first trained for 50, 000 steps. We observe model performance improved consistently
with increasing parameter counts (Figure 2B). The 4B model achieved significantly lower training losses compared to
the 100M and 500M variants, reflecting its superior capacity to capture genomic complexity. Due to budget constraints
we did not experiment with larger models in this study. Consequently, we selected the 4B model for further analysis.

We continually trained the 4B model with the same settings for 5, 000 steps to further reduce the training loss. To
extend the model’s capacity for long-context modeling essential for capturing high-order genomic architectures such
as operons and biosynthetic gene clusters, we used the above dataset and continued training the 4B model with a
maximum sequence length of 10, 240 tokens (equivalent to ∼51 kb) for an additional 1,600 steps. This training phase
maintained a total batch size of 4 × 106 tokens and used a learning rate of 1 × 10−4.

2.3 Inference Efficiency Benchmarking

We implemented several optimization techniques to enhance the computational efficiency of GenomeOcean. Byte-Pair
Encoding (BPE) tokenization converts DNA sequences into variable-length tokens, reducing sequence length by an
average factor of five and significantly improving computational efficiency without compromising model performance.
Architecturally, GenomeOcean integrates FlashAttention-2 to minimize memory and computation bottlenecks, Group-
Query Attention to alleviate memory bandwidth constraints, and vLLM for dynamic batching and efficient memory
management (Methods). To evaluate its performance, we benchmarked GenomeOcean against Evo-7B (Nguyen et al.,
2024) and GenSLMs-2.5B (Zvyagin et al., 2022), two leading generative gFMs of similar sizes, focusing on two common
tasks: sequence embedding and sequence generation.

For sequence embedding, we assessed both memory usage and speed across a range of input lengths. We compare
the peak GPU memory required by each model to encode a single sequence (Figure 3A) and embedding throughput
by measuring the time needed to process 128 sequences of variable length (Figure 3B). To ensure fair comparisons,
we dynamically adjusted the batch size for each model with different sequence lengths to fully utilize GPU memory
without exceeding capacity. For sequence generation, we evaluated throughput as the number of base pairs produced
per second (Figure 3C). Each model generated 1 kb sequences from 1 kb prompts, and we recorded the sustained
generation speed. All the benchmarking was done on a single NVIDIA A100 80GB GPU.

Across all benchmarks, GenomeOcean consistently achieved higher efficiency than models with similar or even
smaller sizes. For embedding, GenomeOcean required less than half the memory Evo used to embed a 0.5 kb sequence
while processing 32 kb sequences. Evo encountered out-of-memory errors at 4 kb, whereas GenomeOcean handled 32 kb
sequences within just one-sixth of the same GPU’s memory. Likewise, GenomeOcean embedded a 32 kb sequence in less
time than Evo took to process a 2 kb sequence or GenSLMs needed for 4 kb. For sequence generation, GenomeOcean
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Figure 2: Overview of GenomeOcean pre-training. (A) GenomeOcean uses a Transformer-based decoder
architecture and a BPE tokenizer to efficiently represent DNA sequences, converting them into variable-length token
units. This approach balances representational flexibility with computational efficiency. The model is trained to
predict the next token given a sequence context. (B) Training loss curves for three GenomeOcean variants (100M,
500M, and 4B parameters). As model size increases, the training loss decreases, demonstrating improved capacity to
capture genomic complexity. The transient jump in the 4B model’s loss is due to reinitializing the optimizer when
adjusting the training configuration. (C) GenomeOcean provides multiple capabilities given an input DNA sequence:
it can generate new sequences, produce embeddings, and score individual bases. These base functionalities can be
used to support a wide range of downstream genomic analyses.

was 87-150× faster, producing over 12 kb per second. These efficiency gains allow GenomeOcean to scale to longer
sequences and higher throughput, making it more accessible for large-scale genomic analysis projects while lowering
computational costs.

2.4 GenomeOcean Embeddings Represent Microbial Species Sequence Composi-
tion

Microbial taxonomy classification is still an outstanding challenge, with various approaches, from 16S rRNA gene
sequencing to whole-genome strategies, having been proposed for classifying different species (Achtman and Wagner,
2008). In metagenomics, tetra-nucleotide frequencies (TNF) are frequently used as coarse-grained genomic signatures
to differentiate species within complex communities (Pride et al., 2003). Together with species abundance variation,
TNF has been effectively used in metagenome binning (Kang et al., 2015, 2019; Meyer et al., 2022; Nissen et al., 2021),
a process to form metagenome assembled genomes (MAGs). In low-sample datasets where abundance information is
less useful, binning accuracy deteriorates. We hypothesize that embedding sequences into a high-dimensional feature
space using a foundation model like GenomeOcean may capture subtle compositional signals, offering a higher accuracy
on species discrimination.

We evaluated GenomeOcean’s ability to differentiate species on a synthetic metagenomic dataset designed for species
classification where 10 known species were strategically selected (ZymoBIOMICS Microbial Community Standards,
Methods). Figure 4 compares two-dimensional UMAP projections of sequence embeddings derived from GenomeOcean,
GenSLM, Evo, and TNF-based vectors. Clusters formed by GenomeOcean embeddings are more faithful to underlying
species identities, matching the well-established TNF approach. Species that are closely related, such as E. coli
and Salmonella, cluster together, and other related taxa (e.g., Enterococcus faecalis, Listeria monocytogenes, and
Staphylococcus aureus) form nearby but distinct groupings. To quantify this observation, we applied HDBSCAN
clustering to the UMAP embeddings and computed the Adjusted Rand Index (ARI). GenomeOcean achieved an ARI
of 0.92, slightly outperforming TNF (0.81) and substantially surpassing GenSLM (0.064) and Evo (0.521).

Notably, Evo and GenSLMs, despite being trained on large and diverse sets of microbial sequences, did not match
the species-level resolution obtained by GenomeOcean or even TNF in this dataset. The reasons for this difference are
not entirely clear and may reflect distinct model architectures, tokenization schemes, or likely, the greater diversity of
the training datasets.

2.5 GenomeOcean Learns Protein-coding Principles from DNA Alone

Unlike large eukaryote genomes, the majority of a microbe’s genome sequence encodes functional proteins. Training
a model solely on nucleotide sequences does not explicitly teach it about protein structure or function. Compared
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runs out of memory on an 80GB GPU at 4 kb input lengths, while GenomeOcean requires less than 13 GB for 32 kb
inputs. (B) Embedding speed. GenomeOcean processes 32 kb sequences faster than Evo and GenSLMs can handle
much shorter sequences, illustrating its high embedding throughput. (C) Sequence generation speed. GenomeOcean
generates new DNA at a rate 150× faster than Evo and 87× faster than GenSLMs, producing over 12 kb per second.
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Figure 4: GenomeOcean embeddings delineate microbial species. Left to right: UMAP projections of
embeddings from TNF, GenSLMs, Evo, and GenomeOcea on the Zymo Mock synthetic metagenome dataset. Data
points represent DNA fragments, colored by their source organism. GenomeOcean embeddings faithfully reflect the
phylogenetic relationship of known species: they place closely-related species together (E.coli and Salmonella), while
separating others. Related species are also close to each other (Enterococcus faecalis, Listeria monocytogenes, and
Staphylococcus aureus), and mixed ups only happen between the two Eukaryotic species (Saccharomyces cerevisiae to
Cryptococcus neoformans).

with using codons or single nucleotides that are “natural”, using BPE tokens may pose an additional challenge for the
model when generating genes that code functional proteins.

To assess GenomeOcean’s capability to generate genomic sequences that code for diverse and biologically meaningful
proteins, we first generated a synthetic dataset using GenomeOcean and functionally annotated the predicted proteins
using standard metagenome annotation pipelines (Methods). We found that these synthetic sequences encode proteins
spanning major functional categories (Figure 5A). These functional predictions reflect a broad repertoire, ranging
from metabolic enzymes to regulatory proteins, suggesting that the model learns generalizable rules for translating
nucleotide patterns into protein-coding genes.

GenomeOcean can also “autocomplete” full-length proteins when given partial prompts. For example, starting with
the first 600 bp of the Staphylococcus aureus GMP synthetase (guaA) gene, GenomeOcean extended the sequence to
produce a full-length coding sequence (guaA-gen). We predicted the three-dimensional structures of both the original
and generated proteins using Chai-1 (Discovery et al., 2024), a state-of-the-art structure prediction method. The
resulting structures share strikingly similar folds, indicating that GenomeOcean-generated sequences preserve critical
residues that dictate protein folding (Figure 5B).

To further demonstrate the biological plausibility of the above generated guaA variants, we compared multiple
generations from the same prompt to a diverse set of natural homologs belonging to the PRK00074 protein family.
The sequence logos of the generated set align closely with those from natural homologs, reproducing many conserved
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Figure 5: GenomeOcean recapitulates protein functionality from DNA. (A) Functional distribution of
predicted proteins from a synthetic metagenome generated by GenomeOcean, illustrating diverse protein categories
identified. (B) Predicted 3D structures of a Staphylococcus aureus guaA GMP synthetase and a
GenomeOcean-generated variant (guaA-gen) based on a 600 bp guaA prompt. Both were modeled with Chai-1,
showing similar overall folds. The prompt was included for modeling. (C) Sequence logos comparing 35 most diverse
natural members of the PRK00074 protein family (PRK00074 (35)) and 37 GenomeOcean-generated variants
(gauA-gen (37x)) prompted from the same first 600 bp of guaA. The height of each residue represents its conservation.
The prompts was excluded as they are identical. (D) Prompt mutation analysis using a sponge-derived TRAP
protein. Synonymous and non-synonymous codon changes were introduced into a 500 bp prompt, and resulting
structures from generated sequences were evaluated using lDDT (local Distance Difference Test, a method for
evaluating the similarity of protein structure models compared to a reference structure) scores.

residues and patterns (Figure 5C). This alignment suggests that GenomeOcean captures the fine-grained residue-level
constraints imposed by evolution or structure.

It is possible that GenomeOcean simply emits tokens at a frequency mimicking those the training data, without any
true “understanding” of the coding potential of the genomic sequence. If this is true, we would expect GenomeOcean
to be sensitive to prompt perturbations. We chose a different protein, a sponge-derived TRAP protein as a reference to
test this hypothesis. We created mutated prompts (first 500 bp of the ORF) by introducing synonymous (codon changes
that do not alter the amino acid sequence) or nonsynonymous (codon changes that alter amino acids) substitutions,
and measured the generated proteins’ structural similarity to the wild-type reference using lDDT scores (Figure 5D,
see Methods for details). Even with 40% codons randomized synonymously in the prompts, GenomeOcean still can
produce coherent protein variants. In contrast, with only 10% nonsynonymous mutations the structural similarity
rapidly decreased. These results further support GenomeOcean’s understanding of coding constraints.

Together, these findings show that GenomeOcean, trained exclusively on raw DNA with an unnatural vocabulary,
internalizes an implicit grammar of protein coding. It captures fundamental relationships between nucleotide sequences
and protein structure/function, enabling zero-shot generation of diverse, biologically plausible protein-coding genes.

2.6 Model Safety

With the capability of generating realistic sequences, it is essential to ensure artificial sequences do not contaminate
public databases containing natural sequences. Therefore, we evaluated whether existing genome foundation models
could distinguish artificial sequences generated by GenomeOcean from natural sequences in public databases. We
formulated this as a binary classification problem, where models predict whether an input sequence is natural or
artificial. We construct a balanced dataset with 18,000/2,000/20,000 2kbp sequences for training/validation/test
(Methods). We evaluated three genome foundation models on this task: two discriminative models, DNABERT-2
(Zhou et al., 2023) and Nucleotide Transformer V2 (Dalla-Torre et al., 2023), and GenomeOcean itself. We performed
standard fine-tuning for DNABERT-2 and Nucleotide Transformer while adapting Low-Rank Adaptation (LoRA) for
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efficient fine-tuning on GenomeOcean.

Table 2: Distinguish Natural and Artificial Sequences.

Model Precision Recall F1

DNABERT-2 85.23 85.02 85.12
Nucleotide Transformers V2 83.31 82.97 83.14
GenomeOcean 99.03 99.03 99.03

Table 2 presents the models’ accuracy in distin-
guishing GenomeOcean-generated artificial sequences
from natural ones. DNABERT-2 achieved marginally
better performance than Nucleotide Transformer,
though both models misclassified approximately 15%
of sequences, indicating their limited ability to con-
sistently differentiate between natural and artificial
sequences. In contrast, GenomeOcean demonstrated
superior discrimination capability with an F1 score ex-
ceeding 99%. This performance may be attributed to
GenomeOcean’s ability to recognize subtle patterns in its generated sequences that other models cannot detect. The
high classification accuracy provides additional confidence in the model’s deployment and public release. Together
with the pre-trained checkpoint, we also release the GenomeOcean-based artificial sequence detector for safe usage of
GenomeOcean.

2.7 GenomeOcean’s Long-context Enables Modeling Higher-order Genomic Func-
tional Modules Such as Biosynthetic Gene Clusters

Prokaryotic genome sizes vary greatly, from ultra-small archaeal genomes of only a few tens of kilobases to enormous
bacterial genomes exceeding 10 megabases. Although these genomes generally lack global organizational patterns, one
prominent feature is the presence of operons and biosynthetic gene clusters (BGCs), where genes involved in a single
metabolic pathway are located in close proximity (Medema et al., 2015). Genome mining of BGCs has paved the way
for discovering useful bioactive molecules that work as antibiotics, anticancer drugs, and organic pesticides, among
other uses (Blin et al., 2017; Dinglasan et al., 2025). Significant efforts have been made on cultivating microbes (Steele
et al., 2019) for new drug discovery, and through mining the large number of publicly available genomes (Gavriilidou
et al., 2022), it has been estimated that only less than 3% of BGCs can be associated with known pathways.

BGCs can span tens of kilobases and contain numerous enzymatic genes as well as regulatory elements. We tested
GenomeOcean’s ability to learn high-order genomic functional modules by further training it using twelve million BGC
sequences from the SMC database (Udwary et al., 2024), resulting in a specialized model named bgcFM (Methods).

Without prompting, bgcFM can generate realistic, long BGC sequences (Supplementary Data X). For example,
when generating type I polyketide synthase (T1PKS) clusters, bgcFM arranges core genes with the appropriate series
of catalytic domains in a linear, modular assembly-line architecture (Figure 6A). This organization, essential for
biosynthetic functionality, is challenging to recreate without explicitly modeling extensive contextual dependencies.
None of the generated sequences have significant nucleotide matches to the sequences in the training set, suggesting
that bgcFM “invented” new BGC variants—distinct from those in the training data not by memorizing the training
data, but by learning the underlying principles of BGC organization and combinatorial domain arrangements.

State-of-art BGC prediction tools heavily rely on hand-crafted rules, which could be biased and incomplete Hannigan
et al. (2019). bgcFM offers an opportunity to include other patterns that are associated with known rules, thereby
enable the discovery of new BGCs missed by the current annotation pipelines. To test this possibility, we implemented
a contrastive approach by subtracting the likelihood score of the foundation model from bgcFM, to suppress noise and
irrelevant information the model learned from BGCs (Methods). By scanning a microbial genome using this approach,
one can identify candidate regions containing BGCs.

As shown in Figure 6B, many of the candidate regions overlap with existing BGC annotations with very few
false positives. Interestingly, some of the candidate regions overlap BGCs not included in the training data, as these
BGCs were recently predicted by the latest version of AntiSMASH (Blin et al., 2023), supporting the generalization
ability of bgcFM to unseen BGCs. Interestingly, some of the bgcFM candidate regions are not annotated at all, but
bear several features of BGCs. Figure 6B shows one example of these. This region contains a transcription factor
binding site related to antibiotic production, AfsR, followed by a short protein reminiscence of a ribosomal peptide
natural product (RiPP) precursor. It also contains several putative accessory genes including a P450, an acyl-AMP
ligase, and a trans-peptidase. As many BGCs, the region also comprise several transporters and regulators, including
a multidrug-efflux transporter gene, three different ABC transporter genes, and a TetR family regulatory gene, which
is strongly associated with small-molecule productions.

3 Discussion

This study presents GenomeOcean, a genome foundation model capable of zero-shot generation of biologically mean-
ingful sequences at multiple scales. From producing protein-coding genes that respect evolutionary constraints to
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Figure 6: bgcFM captures higher-order biosynthetic gene architectures.

(A) 40-kb BGC generated de novo by bgcFM showcasing the correct domain arrangements and a full-length
assembly-line architecture characteristic of the Type-I Polyketide Synthase pathways (KS: Ketosynthase, AT:

Acetyltransferase, DH: Dehydratase, ER: Enoylreductase, KR: Ketoreductase, CP: carrier protein, TE:
Thioesterase termination domain). The domain organization and functional completeness support the

model’s capacity to infer long-range genomic relationships. (B) Calculating bgcFM’s loss scores over the
entire genome to identify candidate BGC regions. The 3.5Mb segment shows that the dip in loss scores

correlates with antiSMASH-predicted BGCs and, in some cases, also covers new classes not originally present
in the training data, and even potential new BGCs. Shown in this example is a 29-kb region lies between two
antiSMASH-predicted ’saccharide’ clusters. Some interesting features of this region include a transcription
factor binding site related to antibiotic production, AfsR, followed directly downstream by a 324-bp short
protein reminiscence of a ribosomal peptide natural product (RiPP) precursor. A wide array of putative

accessory genes also populate the region, including a P450, an acyl-AMP ligase, and a trans-peptidase. The
region also comprise a multidrug-efflux transporter gene, three different ABC transporter genes, and a TetR

family regulatory gene, which was widely associated with small-molecule productions.
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synthesizing large genomic modules such as biosynthetic gene clusters, GenomeOcean demonstrates the capacity to
learn and represent complex genomic elements. Compared to previous genome language models, GenomeOcean achieves
superior computing efficiency both in memory usage and inference speed. The reduction in input length afforded by
byte-pair encoding and the incorporation of computationally efficient architectural components enabled the model to
handle input sequences of at least 50 kb. Although we have not fully explored its extrapolation capabilities, methods
such as position interpolation can potentially extend the context length by an order of magnitude. With the current
design, GenomeOcean already meets the requirements for a broad range of genomic analysis tasks.

By coassembling terabases of metagenome data, our metagenomics assemblies dataset demonstrates better species
diversity than well-curated reference compendium such as Genome Taxonomy Database (GTDB). Learning from
an un-biased and diverse dataset, GenomeOcean produces embeddings that are faithfully to the underlying species
distribution while produces sequences with a diverse set of functions. The training strategy developed in this work can
be further expanded to include larger datasets, for insurance, all assembled metagenomes that are publicly available.
As of the time of this work, there are 25 Tb assembled metagenomes in the IMG database, and there are another 25
Tb in NCBI. Many of these datasets, however, may have poor qualities, especially those generated in the early days
of metagenomics. Significant effort will be required to filter out poor data and reduce redundancy. Additionally, a
substantial compute budget is needed for a training set of this size.

It is possible to greatly improve the generation quality of GenomeOcean by test time fine-tuning considering the
model’s efficiency. For example, one can filter model outputs by integrating known constraints to improve generation
quality with “Best-of-N” sampling. Generating multiple sequences from the same prompt and selecting the best one
with a proxy objective (e.g., tetra-nucleotide frequency consistency) can lead to better outputs. However, for general
genomic analysis, the lack of standardized, efficient evaluation and filtering strategies complicates this fine-tuning
process. Generating new variants of a known protein family, for example, involves intensive computing to predict
protein structures. We only scratched the surface of the massive information contained in the GenomeOcean models.
The training set does contain numerous Eukaryotic and viral species, we are hoping the research community can take
advantage of the models and tools we developed to enable a deep dive in those areas.

We also demonstrated that GenomeOcean’s long context capacity can be used to reconstruct and predict complex
metabolic genome architectures. The fine-tuned model with biosynthetic gene clusters paves the way for more efficient
discovery and engineering of natural product pathways, potentially accelerating the identification of novel bioactive
compounds. It should be possible to similarly fine-tune GenomeOcean to model other high-order genome functional
modules such as operons. The length of its context, however, does not support modeling microbial genomes as a whole,
as most of them are in the range of megabases. A different model architecture may be needed for whole genome
modeling, as the linear sequence of the genes on the genomes is often not essential.

Despite the progress demonstrated here, several limitations remain. The completeness and uniformity of the training
data present challenges. For example, GenomeOcean assigns high loss to certain training sets such as Tara Oceans,
despite its large representation in the data. This discrepancy suggests that not all patterns or functional elements
have been equally learned. Similarly, some abundant protein families, such as those involved in carbon fixation, are
not successfully autocompleted by the model. It is unclear whether this limitation is due to insufficient model capacity,
training incompleteness, or inherent biological diversity. Our model, with only four billion parameters, may not be
large enough to fully capture the extraordinary complexity of environmental metagenomes, raising the question of how
much larger models need to be in order to achieve more comprehensive functional modeling.

Another limitation lies in the prompting strategy. Currently, prompts must be provided as DNA sequences, limiting
the user’s ability to guide generation toward specific biological goals. Future work will be needed to integrate additional
modalities or control signals that can direct the model toward desired functions or niches.

4 Methods

4.1 Model and Training

4.1.1 Tokenization

Tokenization is the first step of modeling DNA sequences with foundation models. It transforms a DNA sequence
into a series of predefined tokens (e.g., CG and AATGC), which are then converted to numerical vectors as input for
the foundation model. GenomeOcean adapts a SentencePiece (Kudo and Richardson, 2018) tokenizer with Byte-Pair
Encoding (BPE) to tokenize each input DNA sequence into a set of non-overlapping tokens, as proposed in Zhou et al.
(2023). The vocabulary of the tokens is determined by iteratively selecting on those frequently occurring sequence
k-mers (k ranges from 1 to 12 in our case) in the pre-training corpus until the desired size (in this case 4096) is reached.
The same tokenizer was used for all the models in this work.
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4.1.2 Architecture and Pre-training

Table 3: Hyperparameters of GenomeOcean.

Model Size 100M 500M 4B

feed forward dropout 0.1 0.1 0.1
hidden size 768 1536 3072
intermediate size 3072 6144 16384
num. attention heads 8 8 12
num. query and key heads 8 8 4
num. layers 12 14 24
rms eps 1e-5 1e-5 1e-5
rope theta 1e6 1e6 1e6
learning rate 4e-4 4e-4 4e-4

We optimize the Transformer Decoder (Vaswani et al., 2017)
architecture with an emphasis on model efficiency. We in-
corporate FlashAttention-2 (Dao, 2023), which refines the
computation process and GPU work partitioning to accel-
erate attention—the core module of Transformer models.
To further improve computational and memory efficiency,
we adopt Group Query Attention (GQA) (Ainslie et al.,
2023). Unlike standard multi-head attention, GQA parti-
tions query heads into groups, where each group shares a sin-
gle key head and value head. In addition, we use Root Mean
Square (RMS) layer normalization (Zhang and Sennrich,
2019), the Sigmoid Linear Unit (SiLU) activation function
(Elfwing et al., 2018) for enhanced representational capacity,
and Rotary Positional Embedding (RoPE) (Su et al., 2024)
for more flexible positional encoding. During inference, we
integrate GenomeOcean with vLLM (Kwon et al., 2023),
an efficiency-focused LLM inference library that employs optimizations such as efficient memory management and
dynamic sequence batching to increase generation throughput. The model hyperparameters are presented in Table 3.
GenomeOcean is pre-trained on the Perlmutter supercomputer at the National Energy Research Scientific Computing
Center (NERSC)1. We scaled the model training on 64 NVIDIA A100 GPUs across 16 compute nodes. The first
stage cost 14 days, and the second stage cost 1 day. We implemented efficient multi-node training with DeepSpeed
(Rajbhandari et al., 2020).

4.1.3 Fine-tune GenomeOcean as Biosynthetic Gene Clusters Foundation Model (bgcFM)

We started the fine-tuning with the pre-trained GenomeOcean-4B model. We split the fine-tuning into 2 phases with
different sequence lengths. The first phase maintained a total batch size of 2 × 106 tokens and a maximum sequence
length of 1024, while the second phase maintained a batch size of 1.3 × 106 tokens and a maximum sequence length of
10240. We trained the model for 16,000 steps in the first phase and 1,600 steps in the second phase.

4.2 Training/Evaluation Datasets

4.2.1 Assembled Metagenome Datasets

All of the six coassemblies used for training GenomeOcean were performed using MetaHipMer (Hofmeyr et al., 2020), a
distributed metagenome assembler that scales efficiently on supercomputers, enabling it to use hundreds or thousands
of compute nodes to coassemble datasets larger and more complex than is possible on shared memory computers. The
assemblies were performed on three national laboratory supercomputers. Table 4 provides further details about the
assemblies, including resources and time used.

Table 4: Assembly details for metagenome datasets used for GenomeOcean training.

Dataset Date Assembled Assembly Time (mins) Nodes Used System Used

Lake Mendota 8/4/2022 35 1500 Frontier
Tara Oceans 5/10/2023 95 9000 Frontier
HMP 8/23/2023 47 9000 Frontier
GRE 11/2/2020 84 512 Summit
Harvard Forest 11/18/2021 11 1600 Cori
Antarctica 6/16/2023 22 1024 Frontier

4.2.2 Evaluation of Dataset Complexity

We used a simple metric to measure the Shannon Entropy of a dataset. For each dataset, we took a random set of
10,000 contigs, and only took the first 3,000 bases of each contig to ensure their lengths are comparable. We then

1https://www.nersc.gov
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calculated TNF vectors from these contigs to obtain a TNF matrix. Finally, we computed the Shannon’s entropy of
each of the 136 columns of the TNF matrix by binning the 10,000 values in a row into 100 bins. These datasets were
also sampled proportionally according to their size to form 10,000 contigs to represent a sample from the pre-training
dataset (meta). For comparison with GTDB reference genomes, all the genomes from Archaea and Bacteria were
combined first, and 10,000 contigs were sampled the same way as the other datasets.

4.2.3 Biosynthetic Gene Cluster (BGC) Collection

11,063,856 predicted BGCs totaling 242,122,742,143 bases were derived from JGI’s Secondary Metabolite Collection
Database (Udwary et al., 2024). BBMap (Bushnell, 2022) Version 39.06 was used to cluster these sequences at a
minimum sequence identity of 97%, and only the longest sequence from each cluster was retained in the training set.
After deduplication, 1,716,441 BGCs (15.51%) or 43,541,503,146 bases (17.98%) of the original 11 million BGCs were
used for further training of the GenomeOcean model.

4.2.4 ZymoBiomics Microbial Community Standard Datasets

The ZymoBiomics Microbial Community Standard (Zymo Research Corp., Irvine, CA, United States), referred to
as Zymo dataset, contains the following 10 species: Pseudomonas aeruginosa, Escherichia coli, Salmonella eterica,
Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Sac-
charomyces cerevisiae, and Cryptococcus neoformans. The original WGS reads can be found with the NCBI Accession
number: SRX15657751.

4.2.5 Generated Sequence Discrimination

We constructed the dataset from two public databases: the Genome Taxonomy Database (GTDB) (Parks et al., 2022)
and sequences from the Critical Assessment of Metagenome Interpretation (CAMI2) challenge (Meyer et al., 2022).
To construct the dataset, we randomly sampled 10,000 2kbp sequences from each database as prompts and generated
one corresponding 2kbp sequence from each prompt. This resulted in four sets of sequences: 10,000 natural sequences
from CAMI2, 10,000 artificial sequences generated from CAMI2 prompts, 10,000 natural sequences from GTDB, and
10,000 artificial sequences generated from GTDB prompts. To prevent data leakage, we used CAMI2 sequences for
training and validation, while reserving GTDB sequences for testing. The CAMI2 sequences were split into training and
validation sets with a ratio of 90:10, resulting in a final split of 18,000/2,000/20,000 sequences for train/validation/test
sets.

4.3 Model Evaluation

4.3.1 Sequence Composition

The 10 genomes in the ZymoMock dataset were divided into 3,000 non-overlapping segments, resulting in a total of
24,499 segments. Embeddings for each segment were generated using TNF, GenomeOcean, Evo, and GenSLM, creating
four distinct sets of embeddings. To evaluate the effectiveness of these embeddings in capturing sequence composition
information, UMAP was applied to reduce their dimensionality to two dimensions for visualization. This was followed
by HDBSCAN clustering to quantitatively analyze patterns using the Adjusted Rand Index (ARI). Both UMAP and
HDBSCAN were applied with default settings.

4.3.2 Generating and Evaluating Synthetic Metagenomes

We randomly generated 3,400 sequences using the following parameters (min length=1024, max length=10240, temper-
ature=1.0, top k=-1, top p=0.95, presence penalty=0.5, frequency penalty=0.5, repetition penalty=1.0). Sequences
with more than 20% simple repeats (low-complexity) were filtered out, leaving 1,414 sequences for annotation.

The sequences were then annotated with Rapid Annotations using Subsystems Technology toolkit (RASTtk) v1.073
using default parameters, and the results were analyzed at the subsystem class level (Aziz et al., 2008).

4.3.3 Generating Artificial Genomic Sequences for Structural Modeling

The GMP synthetase Staphylococcus aureus strain MRSN967703 gau gene (gauA) was selected as a reference. Its first
600bp of genomic sequence was used as the prompt to generate 100 sequences. The 3D structures of the generated
sequences were predicted using ESM Atlas v2023 02 (Lin et al., 2023b), and then aligned with Foldmason (Gilchrist
et al., 2024) to estimate its local distance difference test (lDDT, Mariani et al. (2013)), a similarity score to the
reference. One of the generated sequences that showed the highest lDDT similarity score to the reference was selected
for structural modeling using Chai-1. All of the generated sequences that encoded a long ORF, totaling 37, were used
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for multiple sequence alignment and protein sequence logo generation. For comparison, 35 most diverse natural gauA
proteins were obtained from NCBI 2.

TRAP is a transporter solute binding protein encoded by an uncultured marine bacterium A marine protein with
known structure (https://www.rcsb.org/structure/5I5P). A blast search using the protein identified a homologous
gene from a sponge metagenome (NCBIid: OY729418). This gene was used as a reference and its first 500bp was used
as the prompt for prompt mutation analysis.

For each experiment, 100 sequences were generated, and those encode an long ORF that is close to the reference
were selected to calculate the LDDT score to the reference. For synonymous mutations, a percentage of codons were
randomly swapped without changing the protein sequence. For nonsynonymous mutations, a percentage of codons
were randomly mutated and the encoded protein sequences were changed.

4.3.4 Zero-shot BGC generation experiment

A total of 258,260 sequences were generated using bgcFM using a custom script (https://github.com/jgi-genomeocean/gmeval/tree/main),
using parameters repetition-penalty=[1.0-1.5] and temperature=[0.7-1.1]. Each ten sequences took an average of
100 seconds to generate on a single 4 x Nvidia A40 machine. Each sequence generation step is immediately fol-
lowed by gene prediction in the same python script using pyrodigal Larralde (2022). The gene sequences were
then annotated for biosynthetic functionalities using Apache Spark and the Axolotl library (https://github.com/JGI-
Bioinformatics/axolotl/tree/main/axolotl), and antiSMASH version 7.0 Blin et al. (2023) was run in parallel to assign
BGC membership, upon which 11,123 returned a positive hit. 1,459 PKS-type BGCs are filtered down to 1,044 T1PKS
to give a closer inspection of its modules. All mentioned data is made available in the Supplementary Data.

4.3.5 Loss score BGC scanning

We wrote a custom script (https://github.com/jgi-genomeocean/gmeval/tree/main) to generate a per-token loss score
for any input genome. The script works by splitting the full-length genome into overlapping fragments of 50kb, then
calculate the per-token perplexity scores. To get the final loss scores for BGC scanning purposes, loss scores from the
pre-trained model and the BGC fine-tuned are subtracted. We applied a 1,000-bp sliding window to reduce noise and
smoothened out the loss scores within the window by taking the mean of the scores. A significant dip in loss score is
defined as a score lower than the 5th percentile of the entire genome.

5 Data & Code

5.1 Public Metagenome Assemblies

Three public metagenome assemblies were downloaded from JGI’s IMG/M databases:

1. Lake Mendota: Freshwater microbial communities from Lake Mendota, Crystal Bog Lake, and Trout Bog Lake in
Wisconsin, United States (multi-decadal time-series). IMG Submission ID: 288555, doi:10.46936/10.25585/60001198.

2. Great Redox Experiment (GRE): Lab enrichment of tropical soil microbial communities from Luquillo Experi-
mental Forest, Puerto Rico (95 samples). IMG Submission ID: 255440, doi: 10.46936/10.25585/60000880.

3. Harvard Forest Soil: Forest soil microbial communities from Barre Woods Harvard Forest LTER site, Petersham,
Massachusetts, United States (28 samples). IMG Submission ID: 264502, doi: 10.46936/fics.proj.2016.49483/60006003.

5.2 Metagenome Raw Reads Datasets Used in Assembly

The raw read datasets are listed below:

1. HMP: A subset of Human Microbiome Project metagenomes (13,836 samples), the data was described in a
previous study (Peterson et al., 2009).

2. Tara Oceans: Multi-depth, world-wide sampling of Ocean environments, constituting the largest modern-day
worldwide collection of plankton sampled ’end to end’ around the world (1211 samples) (Bork et al., 2015;
Sunagawa et al., 2020).

3. Antarctic: Water samples and derived enriched culture from Lake Fryxell and Lake Bonny in Antarctica (21
samples), described in a previous study (Wang et al., 2019).

2https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=234614)
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5.3 Code

GenomeOcean is open source and publicly available at https://github.com/jgi-genomeocean/genomeocean.
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