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Abstract

Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to
metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or
high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several
studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial
species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis
as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome
binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the
most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and
subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for
validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently
available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge.
Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the
scientific community in decision making before they commence the analysis.

Key words: read preprocessing; de novo assembly; metagenome assembly validation; genome binning;
metagenome-assembled genomes; MAG refinement; MAG taxonomic classification; MAG annotation

Introduction
Shotgun metagenomics is one of the well-known applications
of high-throughput sequencing that has enabled culture-
independent genomic analysis of microbes directly from the
collected samples [1]. In its first 15 years, metagenomics
unveiled community composition and functional potential
(collectively termed as microbiome) of various environmental
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settings. Human microbiome project [2], global ocean micro-
biome [3], identification of antibiotic resistance genes from
the human gut [4] and association of gut microbiome with
health and disease [5–7] are some of the major discoveries
enabled by high-throughput sequencing. These studies mostly
performed de novo assembly of contigs using the sequencing
reads, followed by prediction of genes for taxonomic and
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functional annotations. Although metagenome assembly is
considered computationally intensive, it provides better and
precise taxonomic and metabolic inferences [8, 9].

In recent years, improved computational resources have
significantly aided in the development of highly optimized
and memory-efficient de novo assembly algorithms [10, 11].
These developments have been essential for the emergence of
methods used for in silico reconstruction of microbial genomes
from the assemblage of environmental samples. Since majority
of the microbes are uncultivable [12], these ‘genome-resolved
metagenome’ analyses allow bypassing this bottleneck and
greatly expand microbial representatives in the reference
genome database. In this avenue, the first-ever set of genomes
was reconstructed in 2004 from an acid mine drainage that
contained low microbial diversity [13]. Early success of genome-
resolved metagenomics remained limited due to low sequencing
depth of metagenomes [14, 15]. However, refined sequencing
quality and decreasing costs have facilitated the generation
of metagenomes with higher sequencing depths. With this,
genome-resolved metagenome analyses became applicable
to communities with relatively higher microbial complexities
[16–18].

The application of genome-resolved metagenome analysis
has now expanded massively and has been successfully utilized
for metagenomes with differential microbial complexities
(high, medium and low microbial diversities), low sequencing
coverage or metagenomes containing strain-level variations.
These efforts involve recovery of genomes from human gut
microbiome [19], cow rumen [20–22], global oceans [23, 24],
permafrost [25], biogas plants [26] and other environments [27].
In the last 2 years, several studies have performed genome-
resolved metagenome analyses at an unparalleled scale: by
recruiting thousands of publically-available metagenomes in
a single study. Most notable examples include the recovery
of thousands of genomes from human microbiome [28–30],
environmental metagenomes and non-human gastrointestinal
tracts [31], and the establishment of genomic catalogue of
Earth’s microbiome [32]. These studies have provided first
genome representatives of several uncultivable microbes and
insights into previously unexplored metabolic potential of the
microbes [31, 33]. Therefore, genome-resolved metagenome
analyses offer a better exploitation of the metagenomic data
to comprehensively understand microbial adaptation and
association with different environments and hosts.

In this review, we discuss genome-resolved metagenome
analysis as a series of four steps: (i) preprocessing of the
sequencing reads, (ii) de novo assembly of the metagenomic data,
(iii) genome binning and (iv) taxonomic and functional annota-
tion of the reconstructed genomes (Figure 1). Preprocessing of
the sequencing reads involves removal of poor-quality bases
from the reads and adapter contamination whereas de novo
metagenome assembly generally refers to joining these high-
quality short reads into longer fragments or contigs. Genome
binning can be defined as the process of identifying contigs
corresponding to same organism and clustering them into
groups or ‘genome bins’. Lastly, the taxonomic and functional
analysis involves determining the taxonomic affiliation of
the recovered genome, prediction of its genes and potential
functions. Genome binning is not only the most critical step
of genome-resolved metagenome analysis but also a difficult
task to achieve computationally. This is largely due to the
high sequence similarities between species and strain-level
variations in the metagenome. Numerous computational
resources have been developed to carry out genome binning and

each of the other three steps, making the choice of the right tool
slightly difficult. We discuss these currently available tools and
methods for the above mentioned four stages and recommend
best strategies for the genome-resolved metagenome analyses.

Preprocessing of the sequencing reads
The raw sequencing reads are typically accompanied by the
quality scores (generally referred as PHRED Score or Q) in the
FASTQ format [34]. Q is the representative of the probability
of an incorrect base call by the sequencer [34]. In Illumina
sequencing systems, Q10 represents base call accuracy of 90%
and probability of incorrect base call of 1 in 10 whereas Q30
indicates 99.9% accuracy and probability of incorrect base call
of 1 in 1000 [35]. The base call errors and insertion/deletions
can arise in the sequencing data due to the digital nature of
sequencing platforms [36, 37]. In addition, adapter sequences
can also be present in the reads, which is attributed to the liga-
tion of adapters to inserts during the preparation of sequencing
library. Read duplication may also occur due to the emulsion
polymerase chain reaction during library preparation or through
optical duplicates [38, 39]. These problems in the raw sequences
can easily become the source of suboptimal or erroneous results
[40]. Therefore, the removal and trimming (generally referred as
quality control or QC) of the problematic sequences may become
necessary.

Fabbro et al. [40] performed extensive evaluation of differ-
ent trimming algorithms and their effect on different types
of datasets and analysis. Their results indicated that removal
of low-quality portions of sequencing data not only improved
genome assembly and variant calling but also reduced the exe-
cution time and the required computational resources. Recently,
∼290–400% increase in computational time was observed when
using trimmed reads for genome assembly [41]. However, the
percentage of the assembled genome and the predicted number
of genes did not significantly differ between raw and trimmed
datasets [41]. Luo et al. [42] generated in silico metagenomes
by spiking a publically available metagenome with Escherichia
sp. strain TW10509 genomic reads [43]. Genes predicted from
the recovered E. coli genome from this metagenome indicated
presence of sequencing errors that led to the truncation of
protein products or frameshift mutations [43]. Such gene prod-
ucts can lead to incorrect metabolic inferences. In genome-
resolved metagenome analysis, trimming of the raw reads can
be extremely useful even if it only reduces the computational
time for metagenome assembly and not the overall quality of the
recovered genomes. Therefore, it is highly recommended to care-
fully evaluate quality of the raw reads and perform QC accord-
ingly before proceeding downstream to generate metagenome
assembly and genome bins.

Visualization of the raw read quality scores is an effective
way to overview the sequencing quality that enables inference
of suitable trimming thresholds for base Q score, number of
ambiguous bases per read (symbolized using N in the reads),
minimum length of read and identification of adapter contami-
nated reads. Reads failing to meet these thresholds can then be
discarded and adapters can be cut from reads using numerous
different tools. FastQC [44] and PRINSEQ [45] can provide visual
overview of the sequence quality and adapter contamination in
the reads. Fastx-Toolkit [46] can also be used as an alternate to
generate sequence quality and nucleotide distribution statistics.
Both PRINSEQ and Fastx-Toolkit can also serve as the tools for
QC. In addition to these, QC can be performed using Cutadapt
[47], Trimmomatic [48], AdapterRemoval [49, 50], SOAPnuke [51],
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Figure 1. Schematic representation of the workflow for genome-resolved metagenomics analysis. The typical genome-resolved analysis of metagenomes, obtained

through any source, typically involves four steps i.e. (1) read preprocessing, (2) metagenome assembly and QC, (3) genome binning and refinement and (4) taxonomic

and functional annotation of the recovered MAGs. In the figure, examples of several tools for each of the steps is also provided (names italicized).

AlienTrimmer [52], Fastp [53], BBDuk [54] and multiple other
tools [55–70] (Table 1). Most of these tools demonstrate high
specificity and sensitivity for trimming and adapter removal. For
instance, Cutadapt, Trimmomatic and AdapterRemoval exhibit
sensitivity and specificity of approximately 0.999 when trim-
ming paired-end data. Similarly, Trimmomatic shows better QC
of the datasets contaminated with multiple adapters in contrast
with several other tools [49].

Although, both Cutadapt and Trimmomatic have been widely
adapted for QC, they require manual tweaking of the parameters
e.g. the adapter sequences have to be provided manually. This

can become cumbersome under certain scenarios, for instance, if
no prior information about adapters is available. Another major
limitation of Cutadapt and Trimmomatic is their inability to han-
dle multiple datasets. TrimGalore [71], a wrapper script around
FastQC and Cutadapt, can be highly useful in such scenarios as it
can automate read QC of multiple datasets, estimate the possible
adapter sequence and adjust the trimming parameters accord-
ingly. Majority of these tools are restricted to utilize only the
maximum number of processors in one computer server. How-
ever, this could only become a huge limitation if the datasets are
too large and require extremely high-throughput performance
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Table 1. Most commonly used tools for the evaluating the quality and preprocessing of raw metagenomics reads

Tool Access link Function First release Last updated Total citations Reference

FastQC https://www.bioinformatics.
babraham.ac.uk/projects/fa
stqc/

Quality visualization 2010 2019 5090 [44]

PRINSEQ http://prinseq.sourceforge.ne
t/

Quality visualization
and QC

2011 2013 2930 [45]

Fastx-Toolkit http://hannonlab.cshl.edu/fa
stx_toolkit/

Quality visualization
and QC

2009 2014 ∼500 [46]

Cutadapt https://github.com/marcelm/
cutadapt

QC 2010 2020 9194 [47]

Trimmomatic http://www.usadellab.org/
cms/index.php?page=trimmo
matic

QC 2014 – 18 221 [48]

AdapterRemoval https://github.com/Mikke
lSchubert/adapterremoval

QC 2012 2016 ∼800 [49, 50]

SOAPnuke https://github.com/BGI-flexla
b/SOAPnuke

QC 2018 2020 200 [51]

AlienTrimmer ftp://ftp.pasteur.fr/pub/genso
ft/projects/AlienTrimmer/

QC 2013 2016 116 [52]

Fastp https://github.com/OpenGe
ne/fastp

QC 2018 – 852 [53]

BBDuk https://sourceforge.net/proje
cts/bbmap/

QC 2014 2020 – [54]

EA-Utils https://expressionanalysis.gi
thub.io/ea-utils/

QC 2011 2015 ∼500 [55]

Reaper http://www.ebi.ac.uk/&#
x007E;stijn/reaper

QC 2013 – 236 [56]

Sickle https://github.com/najoshi/si
ckle

QC 2011 2014 320 –

NGS QC
Toolkit

http://www.nipgr.ac.in/
ngsqctoolkit.html

QC 2012 – 1721 [57]

SeqPurge https://github.com/imgag/
ngs-bits

QC 2016 2020 51 [58]

Atropos https://github.com/jdidion/a
tropos

QC 2017 – 53 [59]

Btrim http://graphics.med.yale.edu/
trim/

QC 2011 2014 355 [60]

cutPrimers https://github.com/aakechin/
cutPrimers

QC 2017 2019 25 [61]

Flexbar https://github.com/seqan/fle
xbar

QC 2012 2017 421 [62]

leeHom https://bioinf.eva.mpg.de/lee
hom/

QC, read merging 2014 2020 125 [63]

ngsShoRT https://research.bioinformati
cs.udel.edu/genomics/
ngsShoRT/

QC 2013 – 5 [64]

NxTrim https://github.com/sequenci
ng/NxTrim

QC 2015 2018 106 [65]

PEAT http://jhhung.github.io/PEAT QC 2015 – 37 [66]
pTrimmer https://github.com/DMU-lila

b/pTrimmer
QC 2019 2020 – [67]

QcReads https://sourceforge.net/proje
cts/qcreads/

QC 2013 2019 5 [68]

Qtrim http://hiv.sanbi.ac.za/tools/
qtrim

QC 2014 – 24 [69]

Skewer https://sourceforge.net/proje
cts/skewer

QC 2014 2016 552 [70]

[51]. In such cases, SOAPnuke, one of the recently developed
tools, could be highly effective as it allows processing of the
data through multiple working nodes for parallel computing.
SOAPnuke has demonstrated ∼5.37 times faster operation than

tools including Trimmomatic and AlienTrimmer, without com-
promising the accuracy [51]. Fastp is another ultrafast all-in-one
FASTQ preprocessor that is 2–5 times faster than majority of the
above mentioned tools, including SOAPnuke, while maintaining
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high accuracy [53]. These benchmarking statistics are largely
available through the original articles of the respective tools.
Therefore, an unbiased and independent benchmarking will
better demonstrate the best among these tools for QC.

In addition, metagenomes obtained from a host such as
human or mice, may be contaminated with reads corresponding
to the host’s genome. For such samples, it is necessary to perform
removal of host reads, not only to avoid suboptimal results but
also to ensure subject privacy (especially for human host). To
this end, raw reads could be mapped to the host genome using
any read alignment tool, e.g. Bowtie2 [72], and the mapped reads
can be identified and removed. DeconSeq [73] and BMTagger
[74] have specially been developed to achieve removal of host
reads. However, DeconSeq suffers from high error rate whereas
BMTagger requires large and complex indexing of the reference
genome, thus making Bowtie2 a better choice [75].

De novo metagenomic assembly
For obtaining genomes or full-length coding sequences of the
microbes (especially uncultured microbes), the short reads
must be ‘assembled’ into contigs. Metagenome assembly is
computationally much more challenging due to the presence
of highly similar sequences (e.g. strains) in the investigated
community. These challenges also include presence of microbes
in heterogeneous abundance, conserved sequences of coexisting
microbes or repetitive DNA from the same genomes. The quality
of metagenome assembly can be greatly hampered by these
issues and result in the production of highly fragmented and
misassembled contigs [76–80]. Recently developed metagenome
assemblers tend to address these problems and offer larger
contig sizes (greater N50 values), improved gene prediction and
lower assembly errors [10, 11, 81–83].

Current metagenome assemblers are based on two differ-
ent types of approaches i.e. (i) overlap, layout, consensus (OLC)
assembly and (ii) de Bruijn graph (dBg) assembly. OLC assem-
bly involves identification of overlap between the reads and
construction of overlap graph, using the overlap information,
reads are then formatted as contigs, followed by construction of
consensus sequence of the contigs. In contrast, dBg assemblers
involve identification of subsequences of length k (termed k-
mers). The k-mers are overlapping sequences and represent the
vertices in the dBg while the overlapping k-mers are connected
through edges. Furthermore, the count of each k-mer is also
maintained. Lastly, the assembler walks through the edges of
dBg and constructs contig sequences. Both methods have sev-
eral advantages and disadvantages and have been described in
details elsewhere [84–86]. Here we will discuss several popular
OLC- and dBg-based assemblers.

OLC-based assemblers

One of the first developed metagenome assemblers, Genovo [87,
88], utilized the OLC strategy. Genovo has been instrumental in
recovering several viral and bacterial genomes from human gut
metagenomic data [79, 89]. MAP [90] and Omega [91] are two
other OLC-based assemblers that use paired-end information
for metagenomic assembly. Viral quasispecies, which generally
represent the diverse pool of viral species, could be assembled
using a specifically designed tool i.e. SAVAGE [92], that shows
superior ability to recover viral quasispecies in contrast with
other related assemblers. Furthermore, it also provides an option
to carry out reference-guided assembly [92]. Similarly, the itera-
tive virus assembler (IVA) was designed for specially to assemble

RNA viruses [93] and has been used for the assembly of Zika
virus and H1N1 influenza virus assemblies [94, 95]. Both SAVAGE
and IVA are capable of handling the variations in sequencing
depth that is a major concern during the de novo metagenomic
assembly.

dBg-based assemblers

In contrast with the OLC-based assemblers, the dBg-based
assemblers are currently more popular. However, these assem-
blers require parameter declaring k-mer of specific length to
be used for assembly, which can have significant impact on
the assembly quality. For instance, smaller k can result in high
occurrence of repetitive k-mers, and poor and unreliable quality
of the assembled contigs [96]. Meta-IDBA [97], and its extension
IDBA-UD [83], utilize multiple k-mers during assembly to tackle
problems associated with using suboptimal k values. IBDA-UD is
highly efficient while dealing with the uneven sequencing depth
in the metagenomes.

The SPAdes assembler [98], initially designed for handling
data originating from the single-cell experiments, has widely
been adapted in assembling metagenomes due to its ability to
tackle uneven coverage. SPAdes has recently been updated as a
metagenome assembler i.e. metaSPAdes [10], which outperforms
its predecessor in terms of quality, time and memory required to
complete the assembly. metaSPAdes is also capable of handling
multiple k-mers, and it has the ability to add hypothetical k-
mers to keep the graph connected that ultimately improves the
quality of assembled contigs [10]. However, one of the main
pitfalls of metaSPAdes is its inability to handle single-end reads.
Recently, metaviralSPAdes [99] has also been developed for the
identification of viral genomes from metagenomic assemblies.
However, its ability to identify complete viruses remains to be
tested using real metagenomes.

Certain metagenomes may be highly complex with hundreds
of strains and sequenced at much higher depths. The time and
memory required to assemble such samples could be enormous.
In such cases, parallel assemblers, such as ABySS [100] and Ray
Meta [82], can be highly effective. In the development of Ray
Meta, much attention has been paid to computational efficiency,
scalability and distribution in the standard computational clus-
ters. Therefore, it can be used without the requirement of having
specialized computational resources with very high dedicated
memories [82].

Velvet [101], well known for its suitability for genome
assemblies, has received several updates to become suitable
for metagenomic data: (i) MetaVelvet [81] and (ii) MetaVelvet-SL
[102]. MetaVelvet uses paired-end information and differences
in coverage to identify chimeric and repetitive contigs. Further
modifications in MetaVelvet, using supervised learning (SL),
improved the decision making to identify chimeric contigs in
MetaVelvet-SL [102].

Although most of these tools have been used in numerous
metagenome studies (Table 2), but MEGAHIT [11] has gained
increasing attention in the recent years. MEGAHIT employs
increasing k-mer along with computationally more efficient
dBgs, which are the major reasons behind its success, extreme
speed and usage of significantly less amount of memory to
finish the metagenome assembly. Although several other tools
[103–108] have also been developed for metagenome assembly,
no single tool among the newly developed and the previously
known tools can be argued to be the ‘best’, especially using the
benchmarks provided in their original articles as they contain
certain degree of bias toward their reported tool.
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The critical assessment of metagenome interpretation
(CAMI) is a community-driven initiative that is aimed at com-
prehensive and objective benchmarking of the metagenomics
software [78]. The CAMI metagenome assembly challenge
was aimed at evaluation of the performance of several state-
of-the-art metagenome assemblers using high-complexity
datasets, simulated from ∼600 microbial genomes ∼500 circular
elements. Compared with the gold standard assembly of 2.80
Gbp contained in 39,140 contigs, MEGAHIT produced the highest
assembly of 1.97 Gbp, with 587 607 contigs and recovered
>69% fraction of the genomes [78]. Furthermore, MEGAHIT also
demonstrated relatively better performance in handling strain-
level diversity in contrast with other assemblers. However, in
the CAMI metagenome assembly challenge, benchmarking for
several assemblers (e.g. metaSPAdes and MetaVelvet) was not
performed.

Vollmers et al. [109] evaluated the performance of majority
of the assemblers mentioned here using two real metagenomes.
The efficiency of the assemblers was represented with two
parameters: assembly performance and assembly cost. Assem-
bly performance was estimated from the product of N50
length of contigs and the percentage of reads mapped to the
assembly. In contrast, the assembly cost was calculated through
the sum of RAM (in Gigabytes) and runtime (in hours) per
processing core (more details about these parameters available
in [109]). metaSPAdes produced contigs with higher N50, which
recruited a higher number of mapped reads from both of the
metagenomes, thus it provided the best assembly performance.
The next best performance was achieved by IDBA-UD and
followed by MEGAHIT. This indicates that metaSPAdes was
better at handling the variable microbial diversity in the two
metagenomes. In terms of assembly cost, MEGAHIT produced
the best results whereas the cost efficiency for metaSPAdes
showed reduction. MetaVelvet and Ray Meta showed the lowest
assembly performance and cost efficiency whereas IDBA-
UD also showed very poor cost efficiency. To mimic genome
binning from the assembly and evaluate genome recovery
performance, both metagenomes were spiked with artificial
reads for Metanosarcina mazei (4.1 Mbp) and Methanothermobacter
marburgensis (1.6 Mbp) genomes at variable coverages. metaS-
PAdes, IDBA-UD and MEGAHIT showed remarkable sensitivity
by successfully reconstructing 50% of the genomes with only
3X read coverage whereas nearly complete lengths were
reconstructed with 6X coverage. Ray Meta displayed the lowest
sensitivity and required at least 24X read coverage for 50%
genome reconstruction. To further elucidate it, Vollmers et al.
[109] used a genome ‘recovery performance’ parameter for
each of the assemblers that was defined as the product of
the fraction of the recovered genome (in percent) and the N50
length of the contigs (in kilobases). metaSPAdes successfully
reconstructed larger proportion of these two genomes from
both of the metagenomes, in fewer contigs (hence better N50),
and using lowest read coverage than other assemblers. Ray
Meta also showed higher recovery performance but required
relatively higher read coverages. MEGAHIT and IDBA-UD also
performed well under low coverages, however, the performance
of MEGAHIT was surprisingly reported to deteriorate at >24X
coverage [109].

In another independent evaluation of the metagenome
assemblers, van der Walt et al. [110] used nine publically
available metagenomes (from soil, aquatic environment and
human gut) and three simulated metagenomes. Their results
also indicated that metaSPAdes produced the largest contigs
and higher N50 lengths than other tools. In contrast, MEGAHIT

produced assembly of nearly the same quality by utilizing ∼6X
less memory than metaSPAdes.

Collectively, these benchmarking studies suggest that
metaSPAdes should clearly be the choice for genome-resolved
metagenome analysis. However, MEGAHIT would be ideal for
the computationally limited resources since it offers the best
balance between performance and computational cost (Table 2).

Assembly quality assessment

Metagenomes are extremely complex due to the presence
of unknown diversity of microbes in the analyzed sample.
Therefore, the de novo metagenomic assembly quality can be
highly compromised due to presence of inversions, relocations
and interspecies translocations. MetaQUAST [111] has the
ability to perform reference-based and de novo (uses the
closest reference genome) assembly evaluations. Both of these
approaches in MetaQUAST become less practical for quality
assessment of the metagenomic assemblies. Deep Metagenome
Assembly Error Detection (DeepMAsED) [112] is a recently
developed tool that uses a deep learning approach for the
reference-independent identification of misassembled contigs.
DeepMAsED offers in silico simulation of realistic metagenomic
assemblies for model training and testing. Although DeepMAsED
developers have shown its high accuracy and sensitivity, it
remains to be utilized elsewhere.

Genome Binning
Metagenome assembly results in the production of hundreds-
to-thousands of fragmented contigs corresponding to different
microbes. These contigs can be taxonomically classified and
functionally annotated to understand the microbial diversity
and metabolic potential of the analyzed environment. However,
in certain studies, intended for instance on comparative
genomics or evolutionary analyses, metagenome assembly
becomes extremely complex and intricate. Therefore, it is
necessary to deconvolute the metagenome assembly into
individual genomes. To this end, contigs corresponding to the
same organism are identified using different properties of
their sequences (e.g. composition or abundance) and clustered
into genome bins. This process, termed as genome binning,
results in the recovery of bins of variable qualities (e.g. draft
or high-quality), which require certain post-processing (e.g.
refinement and dereplication) before downstream analyses.
Hugerth et al. [113] proposed the term metagenome-assembled
genomes (MAGs), which has now also been adapted by the
Genomic Standards Consortium (GSC) [114] for referring to the
bins recovered from metagenomes.

Recovery of MAGs allows us to gain substantial insights into
the previously unexplored avenues of microbial life. The uncul-
tivable nature of the overwhelming majority of microbes has
been a major bottleneck in expanding the available genomes in
the reference databases. Genome binning has allowed us to over-
come this limitation. The first large-scale initiative to recover
MAGs from the publically-available metagenomes proved highly
conducive and provided the first representative genomes of
various bacterial and archaeal phyla and also greatly expanded
the phylogenetic diversity of their respective genome trees [31].
However, the major focus of this study was the analysis of
environmental and non-human gastrointestinal metagenomes.

Recently, numerous genome-resolved studies have analyzed
human microbiome samples and highlighted the previously
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unexplored microbial diversity. Most noticeably, the reconstruc-
tion of >150 000 MAGs, from ∼10 000 human microbiome sam-
ples belonging to diverse geography, age and lifestyles, identified
thousands of novel species and genes associated with conditions
including infant development or lifestyle [28]. In addition,
Almeida et al. [29, 115] and Nayfach et al. [30] have also cataloged
thousands of MAGs from human gut microbiome, most of
which lack cultured representatives in the genomic repositories.
Furthermore, these studies also established association between
MAGs and human diseases e.g. Nayfach et al., identified >2200
associations between the recovered MAGs and different diseases
(including colorectal cancer, liver cirrhosis, type 2 diabetes).
Interestingly, most of the significant associations involved novel
MAGs. Furthermore, these MAGs were also characterized by
significant genome reduction and loss of certain metabolic
pathways [30]. Collectively, these and numerous other studies
[20–22, 25, 28–30, 116] indicate that genome binning can provide
novel insights into the microbial dark matter and allows better
exploitation of the metagenomic data.

The recovery of MAGs has been a major challenge in metage-
nomic research. The number of the recovered MAGs is highly
dependent on the sequencing depth of the assembled contigs
(corresponding to an organism) across different samples [117].
Low sequencing depth can result in failed binning unless the
genome size is too small. The quality of the recovered MAGs sig-
nificantly correlates with the quality of the metagenome assem-
bly. Highly fragmented assembly, obtained as a consequence of
low coverage, strain-level variations or sequencing errors, is least
suitable for genome-resolved analyses. Furthermore, these prob-
lems can also significantly increase the computational demands
for successful genome binning [117, 118]. Although the current
generation of genome binning tools excludes very small-sized or
extremely low coverage contigs [117, 119], it is highly important
to carefully consider the quality of metagenome assembly before
proceeding to genome binning.

Computational methods for recovering MAGs

Majority of the computational methods developed for the recov-
ery of MAGs are based on two different approaches: (i) Super-
vised binning or (ii) Unsupervised clustering. Supervised binning
methods require a database of previously sequenced genomes
to taxonomically classify the contigs. However, lack of reference
genomes for most of the microbes in the reference databases is
a major hindrance in application of supervised genome binning.
In contrast, unsupervised clustering methods do not require
reference genomes and rather perform self-comparison of the
assembled contigs for genome binning. Therefore, unsupervised
clustering methods have been widely adapted for the recovery
of MAGs from metagenomes.

The unsupervised binning methods are further divided into
three categories; (i) sequence composition (SC)-based, (ii) dif-
ferential abundance (DA)-based and (iii) sequence composition
and differential abundance (SCDA)-based methods [19, 117, 120–
122]. These three subcategories differ fundamentally at the com-
mencement of the process of genome binning. SC methods rely
on the variations in the nucleotide frequencies whereas the DA
methods are dependent on the differential abundance of contigs
across multiple samples. In contrast, the SCDA methods com-
bine both SC and DA analysis and create a hybrid or composite
distance matrix for the process of genome binning. Among these
three, SC-based methods were predominantly adapted in the ini-
tial genome-resolved metagenomic studies [123–129]. However,
with the production of multi-sample metagenomes, DA-based

methods emerged as a better alternate for recovering MAGs [17,
130]. Numerous MAGs, encompassing microbes, phages as well
as plasmids, have been recovered using the DA-based methods
[17, 19, 130]. The initial DA-based methods, such as the extended
self-organizing maps (ESOM) [17], also required certain manual
data curation for genome binning that becomes impractical for
larger number of MAGs. Furthermore, the human supervision
also made these methods not fully reproducible or scalable [117].
For overcoming the limitation of these two methods, SCDA-
based methods have been developed that are not only more
robust but also optimal for handling larger datasets.

CONCOCT [117] was one of the first automated SCDA-
based genome binning methods developed in 2014. CONCOCT
demonstrated high accuracy using synthetic metagenomes
as well as for the real human gut microbiome samples
when compared with different SC-based methods [131, 132]
available at that time. For instance, from the species mock
containing 101 genomes, CONCOCT predicted 101 clusters with
precision (purity of clusters) and recall (proportion of species
binned to the same cluster) of 0.988 and 0.998, respectively.
However, the accuracy decreased using datasets containing
strain-level variations or decreased coverage [117]. Recently,
CONCOCT has been demonstrated to be more advantageous
for the recovery of eukaryotic genome bins [117, 133, 134].
GroopM [135] is another automated binning tool that can
recover MAGs from related metagenomes. One key feature of
GroopM is the ability to interactively visualize and edit the
recovered bins in various different ways e.g. merge or split
bins using composition, coverage or contig lengths. However,
GroopM requires metagenomic data for at least three related
samples to perform its operation. Another limitation is its
inability to separate contigs of closely related genotypes,
which are placed in ‘chimeric’ bins and require manual
curation [135].

MaxBin [136] was also developed concurrently with CON-
COCT and GroopM around 2014. Using low-complexity (contain-
ing 10 species only) simulated metagenomes, MaxBin showed
precision of up to 97.01%. However, with coverage ∼20X only 3
of the 10 genomes were recovered that indicates its poor per-
formance under low coverage. Furthermore, MaxBin performed
even more poorly using complex metagenomes, with precision
as low as 65.07 [136]. Another drawback of this tool was its
inability to handle multiple samples. These limitations have
been addressed in the algorithm of MaxBin2.0 [137] that not only
produced significantly higher number of bins but also achieved
higher accuracy of classifying contigs into distinct genomes
than CONCOCT and GroopM, when benchmarked using simu-
lated and real metagenomic data. In addition, MaxBin2.0 also
performed better and generated higher number of bins using
co-assembled metagenomes than single sample binning [137].
The CAMI binning challenge [78] indicated that MaxBin2.0 out-
performed all other tools for the medium and low complexity
datasets [78].

MetaBAT [119] was initially developed for handling complex
microbial communities and accurate reconstruction of MAGs.
The initial algorithm of MetaBAT outperformed all three of
CONCOCT, GroopM and MaxBin (first generation) in terms of
computational efficiency as well as accuracy [119]. However, it
was prone to inconsistent results between different datasets
and usually required binning with multiple parameter settings
and subsequent merging to obtain optimum sensitivity and
specificity. This is demonstrated by Parks et al. [31] in the
recovery of ∼8000 MAGs that required merging of results from
five different parameter settings of MetaBAT. These limitations
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Table 3. Genome binning, quality assessment and refinement tools

Tool Access link Function First release Last updated Current
citations

Reference

MetaBAT/
MetaBAT2

https://bitbucket.org/berkeleylab/
metabat

Binning 2015 2019 900 [119]

CONCOCT https://github.com/BinPro/CONCO
CT

Binning 2013 2019 34 [117]

MaxBin/MaxBin2 https://sourceforge.net/projects/
maxbin/

Binning 2014 2020 800 [137]

GroopM https://github.com/Ecogenomics/
GroopM

Binning 2014 2016 219 [135]

COCACOLA https://github.com/younglululu/
COCACOLA

Binning 2017 2017 81 [141]

ABAWACA https://github.com/CK7/abawaca Binning – – – –
Canopy http://git.dworzynski.eu/mgs-ca

nopy-algorithm
Binning 2014 – 574 [19]

BMC3C http://mlda.swu.edu.cn/codes.
php?name=BMC3C

Binning 2018 – 13 [227]

CheckM https://ecogenomics.github.io/Che
ckM/

Quality assessment 2015 2020 2244 [155]

BUSCO http://busco.ezlab.org/ Quality assessment 2015 2020 3654 [156]
Anvi’o http://merenlab.org/software/a

nvio/
Binning, Quality
assessment,
Refinement

2015 2020 509 [157]

VizBin http://claczny.github.io/VizBin/ Binning, Quality
assessment,
Refinement

2015 – 142 [156]

Binning_refiner https://github.com/songweizhi/Bi
nning_refiner

Binning, Quality
assessment,
Refinement

2017 2019 28 [158]

DAS Tool https://github.com/cmks/DAS_Too
l

Binning, Quality
assessment,
Refinement

2018 2020 173 [159]

IcoVeR https://git.list.lu/eScience/ICoVeR Refinement 2017 – 11 [160]
MetaWRAP https://github.com/bxlab/meta

WRAP
Binning, Quality
assessment,
Refinement

2018 2020 114 [161]

Pyani https://github.com/widdowquinn/
pyani

Dereplication 2017 2020 192 [162]

Assembly
dereplicator

https://github.com/rrwick/Asse
mbly-Dereplicator/tree/v0.1.0

Dereplication – 2019 – –

Mash https://github.com/marbl/Mash Dereplication 2016 2019 684 [163]
dRep https://github.com/MrOlm/drep Dereplication 2017 2020 173 [165]

were addressed in MetaBAT 2 [138] by incorporation of a new core
binning algorithm. MetaBAT 2 demonstrated massively improved
binning, especially when benchmarked using high complexity
datasets, in contrast with CONCOCT, MaxBin2.0 and the
more recently developed tools: BinSanity [139], MyCC [140]
and COCACOLA [141] (Table 3) that themselves showed only
marginally improved performance than MaxBin, MetaBAT (first
versions of both tools), GroopM and CONCOCT using multiple
types of datasets [139, 140]. Furthermore, MetaBAT 2 showed
exceptionally superior computational efficiency as it achieved
binning ≥90 times faster and by consuming the least amount
of memory in contrast with the other tools. Using the CAMI
high complexity datasets, MetaBAT 2 outperformed MaxBin2.0
by recovering 333 out of 753 genomes whereas MaxBin2.0 could
recover only 195 genomes. Hence, MetaBAT 2 becomes an ideal
choice for large datasets originating from unknown complex
microbial communities and in computationally limited settings
[138].

MAG quality assessment

Recent genome-resolved metagenomic surveys have produced
thousands of MAGs from different environments and with con-
tinuous improvements in sequencing technologies, MAGs are
expected to be recovered at even greater magnitude in the near
future. The rapid recovery rate of MAGs also necessitates the
availability of automated tools to assess and distinguish varia-
tions in the MAG quality and perform certain post-processing to
refine or remove the contaminating sequences [142, 143]. Quality
assessment and refinement will ensure that the quality of the
public genome repositories, like NCBI, is not compromised due
to submission of suboptimal MAGs [144].

The quality of isolate genomes is typically assessed using
assembly statistics such as the N50 length [145], which is not
applicable for genomes recovered from metagenomes. Recently,
the GSC developed two standards for reporting bacterial and
archaeal genome sequences. These include the minimum
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information about a single amplified genome (MISAG) and the
minimum information about a metagenome-assembled genome
(MIMAG) [114]. The MIMAG standards define three important
parameters to assess the MAG quality: (i) assembly quality, (ii)
completeness and (iii) contamination. Due to lack of reference
genomes for majority of MAGs, assembly quality becomes non-
trivial. However, statistics including but not limited to N50
length, largest contig, number of contigs, length of the assembled
MAG, can provide necessary overview of the MAGs. Additionally,
information regarding presence and completion of the encoded
ribosomal and transfer RNAs can be used to complete the MAG
quality metric.

For estimating the completeness and contamination of a
MAG, no standard criteria have been defined. However, using
‘marker’ genes has been widely adapted for this purpose [17,
146–148], which assumes that the given marker gene should
be present in genomes of nearly all taxa in single copy and is
not subject to horizontal transfer. Several sets of single-copy
marker genes, corresponding to bacterial and archaeal genomes,
have been identified and validated [148–154]. Using any of these
single-copy marker gene sets, completeness can be defined as
the ratio of observed single-copy marker genes to the total num-
ber of marker genes. Similarly, contamination can be defined as
the ratio of observed single-copy marker genes in ≥2 copies to
the total number of marker genes [114]. Post quality assessment,
MAGs can be classified as: (i) finished MAG (single continuous
sequence without gap or overall quality score equal to or above
Q50), (ii) high-quality draft (containing multiple contigs, 23S,
16S and 5S ribosomal RNA (rRNA) genes and at least 18 trans-
fer RNA (tRNAs), completeness ≥ 90% and contamination < 5)
(iii) medium-quality draft (containing multiple contigs, com-
pleteness ≥ 50% and contamination < 10%) and low-quality draft
(containing multiple contigs, completeness < 50% and contami-
nation < 10%) [114]. Majority of the downstream analyses tools
recommend discarding the low-quality drafts/MAGs to avoid
false conclusions. Therefore, it is highly essential to determine
the quality of the MAGs before performing advanced analyses.

CheckM [155] is an automated tool that uses lineage-specific
marker genes for bacteria and archaea to provide highly accurate
quality estimates for MAGs. CheckM requires all MAGs within
a single directory as the input and produces comprehensive
tabular and graphic outputs presenting the quality statistics that
can further be used to remove the contaminating sequences
and refine the quality of the MAGs. BUSCO [156] depends on
lineage-specific orthologs for estimating the quality of both
prokaryotic and eukaryotic MAGs. However, it offers lower accu-
racy for eukaryotic MAGs. In contrast, EukCC [134] has been
developed specifically to determine the quality of eukaryotic
MAGs recovered from metagenomes. EukCC offers improved
accuracy and increased sensitivity when compared with BUSCO.
However, it remains to be tested thoroughly on large and com-
plex metagenomic datasets. Similarly, Anvi’o [157] and VizBin
[156] offer integrative workflows for determining the quality
of the MAGs. However, both Anvi’o and VizBin require human
assistance during their workflows. Therefore, CheckM remains
most widely used tool in this category due to its ease-of-use,
automated workflow and high accuracy.

In addition, strain heterogeneity, the proportion of polymor-
phic positions in a MAG, can be inferred to gain additional
insights into MAG quality. CheckM [155] and CMSeq (https://
github.com/SegataLab/cmseq) are both capable of estimating
strain heterogeneity, with the latter being demonstrated to more
accurately estimate the expected levels of strain mixtures [28].
Strain heterogeneity can effectively complement completeness

and contamination metrics to identify contaminated MAGs and
used to support high quality of MAGs [28, 29].

MAG refinement

By determining the quality of the MAGs, improvement in the
overall quality of the MAGs becomes possible through manual
curation or by automated tools. Different refinement approaches
have been designed to increase the completeness and decrease
the contamination in the MAGs before downstream analysis.
One of these approaches relies on using different binning
tools and generation of optimized, non-redundant set of MAGs
from the same assembly. Binning_refiner [158] is a pipeline
that merges the output of multiple binning programs that can
significantly reduce the level of contamination and increase
the total size of contamination-free and good-quality MAGs.
However, the decrease in contamination is accomplished by
splitting the contaminating contig into a newer MAG, which
also decreases the completeness level. DAS Tool [159] uses
flexible number of binning tools for producing MAGs that are
aggregates using the predicted single-copy genes followed by
extraction of significantly more complete (containing more
single-copy genes) consensus MAG but also increases the
chances of contamination. ICoVeR [160] also allows curation
of MAGs obtained through multiple binning tools and allows
their user-guided refinement to obtain highest quality MAGs.
However, compared with the other two tools, ICoVeR is relatively
less utilized in the currently published genome-resolved
metagenomic studies. Alternatively, it is also possible to refine
the MAGs by extracting the mapped reads for each MAG followed
by independent reassembly but this approach remains to be
properly tested and benchmarked.

Recently, MetaWRAP [161] has been developed as a collec-
tion of independent modules to address different aspects of
metagenome analysis (details discussed in the last section of
review). The Bin_refinement module of MetaWRAP can handle
MAGs from three different binning tools and refine them to
produce the highest quality MAGs. The Bin_refinement module
uses Binning_refiner to produce hybrid MAG sets by ensuring
that the two contigs, initially binned in different MAGs by any
of the used binning tools, are not together in any hybrid MAG.
In the next setup, the hybrid and original MAGs are compared
and best version is chosen on the basis of completeness and
contamination (estimated by CheckM in Bin_refinement mod-
ule). Bin_refinement module has been proven to overcome the
limitations of Binning_refiner and DAS Tool and is known to
provide higher completeness and lower contamination in the
refined set of MAGs [161].

MAG dereplication

Metagenomic assembly of individual samples is often performed
rather than co-assembly for avoiding assembly fragmentation
due to the presence of highly similar sequences in different
samples. Subsequently, genome binning results in the recovery
of highly similar MAGs across all the samples. Therefore, MAG
dereplication is often recommended to make the downstream
analyses computationally less intensive.

Generally, dereplication can be defined as the reduction of
a given set of MAGs on the basis of sequence similarity among
them. The process of removal of redundant MAGs typically
requires calculation of average nucleotide identity (ANI) using
pairwise MAG alignments. However, high number of MAGs in

https://github.com/SegataLab/cmseq
https://github.com/SegataLab/cmseq
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the dataset can make the process of pairwise alignments com-
putationally too intensive. Pyani [162] computes ANIs using
BLAST-based alignment of MAG contigs and requires significant
amount of time for these calculations. However, BLAST-based
alignment makes the ANI calculations highly inaccurate. Other
tools, such as Mash [163] and its extension Mash Screen [164],
offer an ultrafast grouping of MAGs. Both Mash and Mash Screen
are based on computational concepts of creating ‘sketches’ using
the MAGs (or any other genome sequences) and subsequently
calculating the ‘distance’ between two sketches to provide an
estimate of similarity between the two MAGs. However, the accu-
racy of Mash decreases significantly for partial or low-quality
MAGs. Several tools have implemented Mash in their workflows
to overcome its limitations and provide effective dereplication
alternates. Assembly dereplicator (https://github.com/rrwick/A
ssembly-Dereplicator/tree/v0.1.0) is one such tool that has the
ability to handle very large (e.g. >10 000) number of MAGs in a
memory-efficient way. dRep [165] allows significantly faster and
accurate comparisons between MAGs and dereplication using
a bi-phasic approach that utilizes Mash and genome-wide ANI
(gANI) [166]. In the first phase, Mash is used to create primary
clusters of MAGs followed by their pairwise comparison using
gANI to form secondary clusters that are then dereplicated. It is
possible to perform MASH and gANI calculations without dRep.
In such cases, MAGs can be dereplicated with MASH distance of
1e4 (parameter ‘-s 1e4’) or ANI ≥ 95%. However, dRep offers the
convenience of automating these steps. The high accuracy and
speed of dRep has been demonstrated using MAGs of variable
completeness and contamination [165], which makes it an ideal
choice for using in MAG dereplication.

Although, MAG dereplication can be highly important, there
can be several reasons for not using it. For instance, MAGs with
≥99% ANI can be essential in obtaining information about single
nucleotide variations or the variability in auxiliary genes present
in same species and originating from different samples [167].
Therefore, the decision to dereplicate MAGs or not, should be
made according to the goals of the study.

Taxonomic and functional analysis
Taxonomic analysis of MAGs

Once the representative set of MAGs has been reconstructed,
the next step involves their taxonomic inference. Majority of the
taxonomic classification tools are designed to work with short
reads or contigs and consider each read or contig as an indepen-
dent observation [168]. These tools usually estimate taxonomy
through a best hit against a reference database [169, 170]. How-
ever, this approach cannot be applied to MAGs since they can be
distantly related to any of the sequences in reference database
and can encompass a high degree of novelty. Therefore, the clas-
sification of MAGs is typically performed using phylogenomics-
based approaches. Phylogenomic approaches have become the
de facto standard for inference of taxonomy of the complete
genomes [171–173], which involve using the complete genome
data to construct phylogeny. MAG classification has also benefit-
ted greatly from the advancements in phylogenomics. However,
the tools specifically designed for taxonomic classification of
MAGs remain limited.

PhyloSift [159] allows phylogenetic analysis of raw metage-
nomic reads as well as isolate genomes. The core database in
PhyloSift constitutes 37 universal and single copy ‘elite’ gene
families [158], whereas the extended database includes 800 gene
families in total that mostly correspond to viruses. PhyloSift

works by identifying homology between the database sequences
and the input sequence, generation and concatenation of RNA or
protein multiple sequence alignment (MSA) for producing phy-
logenetic reference tree. Lastly, taxonomic affiliation is reported.
PhyloSift has been successfully used in assigning taxonomy
to metagenomic raw reads in various studies, several recent
studies have also used it for classification of MAGs [33, 174,
175]. However, the output of PhyloSift may require subsequent
manual curation and visual screening to obtain the final taxo-
nomic affiliation of MAGs. lastTaxa (https://gitlab.com/jfroula/
lasttaxa) uses National Center for Biotechnology Information’s
(NCBI) non-redundant protein database and performs an align-
ment between the proteins predicted from MAGs and assigned
to the taxonomic group with which the majority of proteins are
annotated.

Genome taxonomy database tool kit (GTDB-Tk) [176] is a
computationally efficient toolkit that uses 120 bacterial and
122 archaeal marker genes for the taxonomic classification of
MAGs. First, genes are predicted from the MAGs and aligned with
the reference marker gene sets, MAGs are then assigned to the
domain with highest proportion of identified marker genes. The
domain-specific marker gene alignments are concatenated into
single MSA and MAGs are placed into domain-specific reference
trees. The taxonomic classification is then determined either
using placement of MAGs in the reference tree, by determining
ANI with the reference genomes or relative evolutionary diver-
gence (RED) value [177]. Both ANI and RED values are particularly
useful when the topology of the tree cannot fully resolve the
taxonomy. The current version GTDB-Tk implements a new
complete domain-to-species taxonomy classifier for bacteria
and archaea [178], which improves the classification of MAGs.
Recently, GTDB-Tk has been used for taxonomic classification
of 204 938 reference genomes from the human gut microbiome
[29] and in several other studies [179–181].

Bin annotation tool (BAT) [168] is also based on a principle
similar to lastTaxa. It performs the taxonomic classification of
MAGs by predicting open reading frames (ORFs) from each MAG
and annotating them using the NCBI non-redundant protein
database. The annotated ORFs are individually classified using
the last common ancestor (LCA) algorithm followed by summing
the scores of all classified ORFs to assign a final taxonomic
classification to the MAG [168]. Although, BAT authors report
improved and rapid classification than lastTaxa and GTDB-Tk
[168], its feasibility and application for determining the tax-
onomy of large-scale MAG sets remains to be tested. Micro-
bial genome atlas (MiGA) [182] is a webserver-based classifi-
cation tool for taxonomic analysis of bacteria and archaea at
the whole genome levels, making it applicable to MAGs as well.
Although the webserver-based nature of MiGA can make its
application less practical for larger datasets, it can be used for
determining gene content diversities, evolutionary relationships
and pangenome analysis, which makes it a suitable choice for
analyzing groups of highly similar genomes/MAGs [182].

PhyloPhlAn [183] is an automated, high-throughput pipeline
that allows computationally efficient and rapid phylogenetic
analysis of genomes and MAGs. The rapid classification, ease-
of-use and multi-level phylogenetic resolution make it an
appropriate choice for studies involving large-scale phylogenetic
profiling. The generalized workflow of PhyloPhlAn is similar
to the other tools in this category i.e. from identification of
marker genes to generation and concatenation of MSAs, and
reconstruction of phylogeny. The current release of PhyloPhlAn
(PhyloPhlAn3) [184] allows different marker gene selection
options e.g. 400 universal protein database can be used for

https://github.com/rrwick/Assembly-Dereplicator/tree/v0.1.0
https://github.com/rrwick/Assembly-Dereplicator/tree/v0.1.0
https://gitlab.com/jfroula/lasttaxa
https://gitlab.com/jfroula/lasttaxa
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high-diversity genomes or species-specific core genes from
>18 000 sets of UniRef90 [185] gene families for vice versa.
PhyloPhlAn3 also allows MASH-based comparisons and assign-
ments of the new MAGs into species-level genome bins built
from >230 000 publically available sequences. This can be
extremely useful in identifying potentially novel MAGs. Recently,
PhyloPhlAn was applied in a genome-resolved metagenomic
analysis, which highlighted extensive unexplored diversity in
the human microbiome through a catalogue of more than
150 000 MAGs [28]. PhyloPhlAn not only allows integration of
publically available genomes and published sets of MAGs but
can also be configured to obtain the MSA and the estimated
mutation rates for advance phylogenetic and comparative
genomic analyses. None of the previously described tools offers
this functionality, therefore making PhyloPhlAn a unique choice
for taxonomic analysis of MAGs.

Functional annotation of MAGs

Functional annotation generally refers to predicting all genes for
a genome and determining their potential role [186]. However,
the process of annotation is multi-level and includes protein-
coding genes, structural RNAs, tRNAs, small RNAs, repeats,
insertion sequences, mobile genetic elements and pseudogenes.
Several tools have been developed for identifying and annotating
the above mentioned coding and non-coding features from
genomes [187–196]. However, manual annotation can be
cumbersome for large-scale genome and MAG sets, therefore,
automatic annotation tools are more efficient and reliable for
performing functional annotations.

The bacterial annotation system (BASys) [197] is one of the
first tools that enabled in-depth automatic annotation of bac-
terial genomic sequences. It integrated more than 30 differ-
ent programs and reported approximately 60 different anno-
tations, including gene names, functions, possible paralogues
and orthologues and reactions and pathways. However, BASys
became available through a web server where genomes sub-
mitted for annotation could remain queued from days to sev-
eral weeks. The rapid annotations using subsystems technology
(RAST) server [198] was developed for automated annotations of
bacterial and archaeal genomes. The accuracy and consistency
in RAST-based annotations is derived from the use of a manually
curated library of subsystems [199]. Annotation results from
the server provide information regarding gene functions and
metabolic reconstructions. Typically, annotation for the submit-
ted genomic sequences becomes available within 12–24 h. The
integrated microbial genome (IMG) expert review (ER) system
[200] can perform annotation of bacterial and archaeal com-
plete genomes and MAGs. IMG/ER processes the annotation
through microbial genome annotation pipeline (MGAP) [201] that
identifies both protein-coding genes, non-coding and regulatory
RNAs and CRISPR elements. The annotated genes can further
be assigned to clusters of orthologous groups (COG) [202], Pfam,
TIGRfam and KEGG ortholog (KO) terms. Using the KO term
assignments, metabolic pathways are also inferred according
to MetaCyc pathway classifications [203]. Additionally, ANI, dis-
tance matrices, gene cassette region predictions [200] and pre-
diction of biosynthetic clusters [204] as well as putatively hori-
zontally transferred genes are also identified from the genomes.
Furthermore, it is also possible to perform comparative genomic
analyses with publically available genomes and MAGs in IMG
database and visualize the results through the IMG interface.
Although, IMG/ER provides extensive annotations, the substan-
tial amount of time required to obtain the results makes it

impractical for larger sets of MAGs. Bacterial genome annotation
comparison (BEACON) [205], BG7 [206] and automatic annotation
of microbial genomes (AAMG) [207] (Table 4) are similar auto-
mated annotation tools, however, their application in genome
annotation is highly limited.

NCBI’s prokaryotic genome annotation pipeline (PGAP) [208]
was initially available as an online service; however, its cur-
rent issue has been updated to work as a standalone tool and
can annotate MAGs and draft genomes. PAGP uses the univer-
sally conserved, clade-specific ribosomal genes (called as core
genes) at species or higher levels to generate annotations of the
genomic sequences. This (pan-genome approach) is extremely
useful for comparative analysis of large groups of highly related
genomes. RefSeq Targeted Loci collection [209] is used as the
reference for identifying 16S and 23S rRNAs. Several other anno-
tations, including tRNA and CRISPR, are also performed [208].
PGAP has the ability to annotate more than 1200 MAGs (or
genomes) per day with high accuracy for both protein-coding
and non-coding elements.

Prokka [210], a command line tool, is one of the most widely
adopted annotation tools that performs rapid and highly accu-
rate annotations of complete genomes and MAGs. The annota-
tion involves integration of several databases, including ∼16 000
validated UniProt proteins [211], genus-specific RefSeq proteins
from finished bacterial genomes, and multiple Hidden Markov
Model profile databases from Pfam [212] and TIGRFAMs [213].
Annotation against these databases is performed in hierarchical
manner i.e. starting from UniProt proteins, followed by RefSeq
entries and Pfam or TIGRfam. Using Prokka is straightforward
and its output files are compatible with several downstream
analyses and visualization tools. However, their discussion is
beyond the scope of this review. With Prokka, it is possible to
classify a single genome/MAG within 10 min using a standard
desktop computer, which highlights its ultrafast speed [210].

In recent years, several other automated annotation tools
have been developed for improved performance and increased
accuracy. The de novo genome analysis pipeline (DeNoGAP) [214]
has specially been designed for annotation and comparative
analysis of large number of complete and draft genomes. It inte-
grates multiple tools and databases for annotation and adopts
an iterative clustering approach that reduces the computational
complexity during comparative analysis. Furthermore, DeNoGAP
has the ability to create local databases for storing the annotated
data and graphical interface to explore and compare data for
multiple genomes. However, currently no large scale study has
included DeNoGAP in their analysis. GAMOLA2 [215] is another,
less known, comprehensive annotation and curation tool for
complete and draft genomes.

DDBJ fast annotation and submission Tool (DFAST) [216]
supports annotation as well as submission of the genome to
public database repositories. Although the database of DFAST
is 20 times bigger than Prokka (417 922 sequences in DFAST
versus 18,276 in Prokka), it is still able to complete single genome
annotation within 10 min, which indicates its superiority in
speed over Prokka. The annotations produced by DFAST are
very comparable to Prokka and MiGAP in terms of the total
annotated genes, noncoding RNAs and pseudogene counts
[216]. MicrobeAnnotator [217] is the most recently developed
tool in this category that also uses iterative approach similar to
Prokka for annotating genomes and MAGs belonging to bacteria,
archaea and viruses. The authors of the tool have reported
better performance than Prokka and RAST but the capability
of MicrobeAnnotator remains to be tested on real datasets
(especially MAGs).
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Table 4. MAG taxonomic classification and annotation tools

Tool Access link Function First release Last updated Current
citations

Reference

PhyloSift https://github.com/gjospin/
PhyloSift

Taxonomic
classification

2014 – 438 [159]

GTDB-Tk https://github.com/ecogeno
mics/gtdbtk

Taxonomic
classification

2019 2020 129 [176]

lastTaxa https://gitlab.com/jfroula/la
sttaxa

Taxonomic
classification

– – – –

BAT – Taxonomic
classification

2019 – 15 [168]

MiGA http://microbial-genomes.o
rg/

Taxonomic
classification

2018 2020 120 [182]

PhyloPhlAn http://segatalab.cibio.unitn.i
t/tools/phylophlan/

Taxonomic
classification

2013 2020 448 [183]

BASys http://wishart.biology.ualbe
rta.ca/basys

Genome annotation 2005 – 333 [197]

RAST https://rast.nmpdr.org/ Genome annotation 2008 2015 7630 [198]
IMG/ER http://img.jgi.doe.gov/er Genome annotation 2007 2019 833 [200]
BG7 https://github.com/bg7/BG7 Genome annotation 2012 2013 52 [206]
AAMG http://www.cbrc.kaust.edu.

sa/indigo
Genome annotation 2013 – 70 [207]

BEACON http://www.cbrc.kaust.edu.
sa/BEACON/

Genome annotation 2015 – 14 [205]

PGAP https://github.com/ncbi/pgap Genome annotation 2013 2020 1723 [208]
Prokka https://github.com/tseema

nn/prokka
Genome annotation 2014 2020 4794 [210]

DeNoGAP https://sourceforge.net/proje
cts/denogap/

Genome annotation 2016 2017 8 [214]

GAMOLA2 https://drive.google.com/file/
d/0B_fIEHIR2oaabVlzcF9NU
TlnbjQ/view

Genome annotation 2017 – 13 [215]

DFAST https://github.com/nigyta/dfa
st_core/

Genome annotation 2016 2020 184 [216]

MicrobeAnnotator https://github.com/cruizpere
z/MicrobeAnnotator

Genome annotation 2020 – 0 [217]

MetaWRAP https://github.com/bxlab/me
taWRAP

Automated Pipeline 2018 2020 114 [161]

SqueezeMeta https://github.com/jtamame
s/SqueezeMeta

Automated Pipeline 2019 2020 17 [224]

Automated Genome-resolved metagenomic
analysis
The conventional analysis of metagenomes has been integrated
into several pipelines that allow improved and automated
execution of all or certain steps of the analysis. For instance,
InteMAP [105], combines two dBg assemblers (ABySS, IDBA-UD)
and one OLC assembler (Celera [218]) and generates optimal
assembly by merging the outputs of the pairs of assemblers
[86]. MetaCRAM [219] is an integrated pipeline that utilizes
assembly via IDBA-UD, followed by compression of assemblies
for storage. MOCAT [220] is a toolkit that allows read QC, removal
of human or any other hosts’ reads via read mapping to the
hosts’ reference genome, assembly, gene prediction and gene
annotation. MetaAMOS [221] also has an integration of modules
similar to MOCAT for metagenome analysis. Furthermore,
MetaAMOS integrates ∼20 different metagenomic assemblers
and enables users to create customized workflows according to
requirements and suitability to their data. In contrast, limited
efforts have been carried out to integrate the whole workflow of
genome-resolved metagenome analysis (i.e. read QC, assembly,

binning, bin refinement and annotation) into an automated and
customizable pipeline.

MetaWRAP [161] is a collection of independent modules that
work from processing of raw reads and end with high- quality
MAG sets and their annotations. The read QC module allows read
quality visualization, trimming and removal of host reads. The
metagenomic assembly can be performed using either metaS-
PAdes or MEGAHIT in the assembly module. Additionally, assem-
bly quality assessment and taxonomic profiling and visualiza-
tion of reads and contigs can also be performed. The binning
module allows initial binning and extraction of MAGs using
MetaBAT, MaxBin and CONCOCT, independently or in any combi-
nation. Bin refinement and reassembly modules can be applied
to increase the MAG completeness, increase N50 and lower
the contamination levels. Other modules allow quantification
and visualization of MAGs across multiple samples, as well as
taxonomic and functional visualization. MetaWRAP has shown
improved performance, especially for bin refinement, and has
already been used in various genome-resolved metagenomic
studies [115, 222, 223].
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SqueezeMeta [224] is another pipeline that allows automa-
tion of all necessary steps of genome-resolved metagenome
analyses in a computationally efficient way. SqueezeMeta can
be run in a fully automatic way, without the requirement of
technical or bioinformatics knowledge. In contrast with
MetaWRAP, several advanced features are available in Squeeze-
Meta. For instance, it supports co-assembly of metagenome
samples, with or without merging individual metagenomes.
Other features include binning and MAG refinement, taxonomic
annotation of contigs and MAGs with internal checks, and
support for nanopore long reads and metatranscriptomic data.
This pipeline also supports multiple different options to explore
and visualize results. For example, the results can be stored in
a local database for effective manipulation and visualization
through a web-based interface. Furthermore, it also allows
whole SqueezeMeta project to be exported to R (open-source
programing language) through the SQMtools R package provided
with the pipeline. SQMtools allows visualization of the results
as well as generation of tables for multivariate analysis and
differential abundance testing using third-party packages in
R. These flexibilities make SqueezeMeta a better solution over
MetaWRAP. However, in our opinion, the fully capability of the
SqueezeMeta pipeline still needs to be thoroughly tested using
large-scale metagenomic datasets.

Conclusions
Advances in high-throughput sequencing technologies and data
analysis methods have increased the recovery of MAGs in last
few years. The taxonomic identification and characterization
of the metabolic potential of MAGs can provide essential
insights for understanding microbial adaptations in different
environmental settings. We believe this review will assist the
researchers in developing a basic understanding of the genome-
resolved metagenome analysis and assist them in performing
the data analysis by providing a guide for correctly selecting the
required tools for each step of the analysis.

Key Points
• Genome-resolved metagenomics enables the recov-

ery of draft and high-quality microbial genomes of
uncultivable and novel microorganisms.

• Introduced the main steps and currently available
tools for performing genome-resolved analysis from
any metagenome sample, and post-processing, taxo-
nomic classification and functional annotation of the
recovered genomes.

• Information on the most widely adapted and well-
maintained tools to help the scientific community in
choosing a suitable tool for their analysis.

• Overview of the analysis pipelines to assist peo-
ple lacking advanced bioinformatics and compu-
tational skills in performing automated genome-
resolved analysis.
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