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  Abstract   Mass spectrometry-based proteomics has become the leading approach 
for analyzing complex biological samples at a large-scale level. Its importance for 
clinical applications is more and more increasing, thanks to the development of high-
performing instruments which allow the discovery of disease-speci fi c biomarkers 
and an automated and rapid protein pro fi ling of the analyzed samples. In this 
scenario, the large-scale production of proteomic data has driven the development 
of speci fi c bioinformatic tools to assist researchers during the discovery processes. 
Here, we discuss the main methods, algorithms, and procedures to identify and use 
biomarkers for clinical and research purposes. In particular, we have been focused 
on quantitative approaches, the identi fi cation of proteotypic peptides, and the 
classi fi cation of samples, using proteomic data. Finally, this chapter is concluded 
by reporting the integration of experimental data with network datasets, as valuable 
instrument for identifying alterations that underline the emergence of speci fi c 
phenotypes. Based on our experience, we show some examples taking into consid-
eration experimental data obtained by multidimensional protein identi fi cation 
technology (MudPIT) approach.  
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    9.1   Introduction 

 The increasing availability of fully sequenced genomes is making the high-throughput 
proteomics research more and more possible. Developments in fractionation 
approaches coupled to advances in liquid chromatography (LC), mass spectrometry 
(MS), and bioinformatic tools have made proteomic approaches mature to analyze 
complex proteomes, such as  Homo sapiens  (Nilsson et al.  2010  ) . In fact, although 
proteome complexity prevents the quantitative pro fi ling of all proteins expressed 
in a cell or tissue at a given time, higher sensitivity, accuracy, and resolution of new 
MS instruments allow routine analysis, reaching limit of detection of attomole and 
dynamic range of 1e 6  (Yates et al.  2009  ) . 

 High-throughput proteomics approaches allow to identify and quantify hundreds 
of proteins per sample, giving a snapshot of cells or tissues associated with different 
phenotypes. This wealth of data has driven strategies of investigation based on 
systems biology approaches, allowing insight into disease, taking into consideration 
functional relationship among proteins (Gstaiger and Aebersold  2009  ) . In addition, 
highly speci fi c biomarkers represent also key features for improving methods of 
diagnosis and prognosis or for monitoring disease progression under appropriate 
therapeutic approaches (Palmblad et al.  2009 ; Simpson et al.  2009  ) . In this context, 
MS has been introduced as a tool for enhancing the current clinical application 
practices and potentially for targeting the development of personalized medicine 
(Brambilla et al.  2012  ) . 

 The ultimate success of MS-based proteomics analysis, both for research and for 
clinical applications, may be affected by several aspects. Like sample preparation, 
pre-fractionation methodologies, or instrument setup, data processing procedures 
represent an important step for obtaining good results and their correct interpretation. 
Evaluation of thousands of data by hand/eye is time consuming and subjected to 
biases and missed results. Therefore, to assist researchers during the different 
stages of analysis and to improve understanding of biological systems, an increasing 
number of tools and procedures are continually developing, giving rise to a speci fi c 
bioinformatics area for proteomic applications (Di Silvestre et al.  2011  ) . 

 In this chapter, we make an overview of the computational trends for processing 
proteomic data obtained by MS-based proteomics approaches. Based on our experience, 
we focused primarily on strategies related to multidimensional protein identi fi cation 
technology (MudPIT) approach (Mauri and Scigelova  2009  ) , (Fig.  9.1 ). In particular, 
we have explored methods, algorithms, and procedures used for biomarker discovery, 
by means of label and label-free methods. In this context, we then introduce the 
main advances of the targeted proteomics (Lange et al.  2008  )  by investigating the 
bioinformatics aspects concerning the identi fi cation of proteotypic peptides (Craig 
et al.  2005 ; Kuster et al.  2005  ) . In the second part of the chapter, we discuss recent 
advances regarding clinical proteomics application for discriminating sample, such 
as diseased and healthy. Finally, since most known mechanisms leading to disease 
involve multiple molecules, we conclude with a discussion of the integration of 
proteomic data with network datasets, as a promising framework for identifying 
subnetwork that underlines the emergence of speci fi c phenotypes.   
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  Fig. 9.1    Multidimensional protein identi fi cation technology represents a fully automated tech-
nology that simultaneously allows separation of digested peptides, their sequencing, and 
identi fi cation of the corresponding proteins. Peptides are separated by means of strong ion 
exchange ( SCX ), using steps of increasing salt concentration, followed by C18 reverse phase ( RP ) 
chromatography, using an acetonitrile gradient. Finally, eluted peptides are directly analyzed by 
MS and raw spectra processed by speci fi c algorithms and bioinformatics tools (see Supplemental 
Information Table  1 ). In this way, MudPIT permits simultaneous identi fi cation of hundreds, or 
even thousands, of proteins without limits related to pI, MW, or hydrophobicity. This huge amount 
of data represents a rich source of information, and their content may be exploited for discovery 
and classi fi cation approaches       

    9.2   Biomarker Discovery 

 Quanti fi cation of proteomic differences between samples at different biological 
condition, such as healthy and diseased, is a helpful strategy for providing important 
biological and physiological information concerning disease state (Simpson et al. 
 2009 ; Abu-Asab et al.  2011  ) . For this purpose, MS-based approaches are applied 
for identifying proteins changing their abundance by comparing two or more 
samples. They consist of different strategies basically belonging to two categories 
which rely on stable isotope-labeling and label-free methodologies (Domon and 
Aebersold  2010  ) . 

 As for labeling approaches, isotopes are introduced in the peptides to create a 
speci fi c mass tag recognized by MS (Kline and Sussman  2010  ) . Accordingly, 
quanti fi cation is achieved by measuring the ratio of the signal intensities between 
the unlabeled peptide and its identical counterpart enriched with isotopes (further 
details on stable isotope-labeling methods are reported in  Supplemental Information ). 
Absolute measurements of protein concentration may be achieved with spiked 
synthetic peptides, as in QconCAT (Mirzaei et al.  2008  ) , AQUA (Gerber et al. 
 2003  ) , SISCAPA (Anderson et al.  2004  ) , VICAT (Lu et al.  2007  ) , and PC-IDMS 
(Barnidge et al.  2004  ) . Quanti fi cation is obtained by adding into the sample a known 
amount of an isotopically labeled peptide. In this way, the level of the endogenous 
form of peptide can be calculated. Of course, the identity of the peptide must be 
known prior to analysis by MS. Sometimes, if the m/z ratio of the spiked standard 
is the same of other peptides, it may lead to an inaccurate quanti fi cation. In this 
case, the ambiguity of the results may be minimized combining these approaches 
with the selected reaction monitoring (SRM) (Lange et al.  2008  ) . 
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    Although the approaches by labeling, with or without internal standard, allow a 
highly reproducible and accurate quanti fi cation of proteins, most of them have 
potential limitations, such as the complexity of sample preparation, the requirement 
of a large amount of time, the requirement of speci fi c bioinformatics tools, and 
the high cost. As    opposite, a simpler alternative concerns label-free approaches 
(Zhu et al.  2010  ) . They are basically based on counting of peptides identi fi ed by 
means of tandem mass spectrometry (MS/MS) or by evaluating the signal intensity 
of peptides. Spectral sampling is directly proportional to the relative abundance of 
the protein in the mixture and therefore represents an attractive methodology, thanks 
to their intrinsic simplicity, throughput, and low cost. 

 For these reasons, researchers are increasingly turning to label-free shotgun 
proteomics approaches (Zhu et al.  2010  ) . Even    if they are less accurate, due to the 
systematic and nonsystematic variations between the experiments, they represent an 
attractive alternative for their high-throughput setting that also allows the comparison 
of an unlimited number of experiments with less time consumed. However, efforts 
should be made to improve experimentally reproducibility and so consequently the 
reliability of differentially expressed proteins. 

 A variety of label-free methodologies for semiquantitative evaluation of pro-
teins have been described in literature by reporting a direct relationship between 
the protein abundance and the sampling parameters associated with identi fi ed 
proteins and peptides (Florens et al.  2002 ; Gao et al.  2003 ; Wang et al.  2003 ; 
Bridges et al.  2007  ) . One of the most diffused approaches uses the spectral count 
(SpC) value (Liu et al.  2004  )  and is based on the empirical observation that more 
is the quantity of a protein in a sample and more tandem MS spectra may be col-
lected for its peptides. In this context, the normalized spectral abundance factor 
(NSAF), or its natural log transformation, has been used for the quantitative eval-
uation with t-test analysis (Zybailov et al.  2006  ) . Other authors have used the 
protein abundance index (PAI or emPAI) that is calculated by dividing, for each 
protein, the number of observed peptides by the number of all possible detectable 
tryptic peptides (Ishihama et al.  2005  ) , while Zhang and colleagues processed 
SpC values by means of the statistical G-test as previously described (Zhang 
et al.  2006  ) . 

 The need to automate the procedure for identifying biomarkers has driven many 
research groups to develop algorithms and in-house software for identi fi cation, 
visualization, and quanti fi cation of mass spectrometry data. Census (Park et al. 
 2008  )  and MSQuant (Mortensen et al.  2010  )  software allows protein quanti fi cation 
by processing MS and MS/MS spectra and they are compatible with label and 
label-free analysis as well as with high- and low-resolution MS data. In addition, 
Protein-Quant Suite (Mann et al.  2008  )  and ProtQuant (Bridges et al.  2007  )  soft-
ware are attractive because they allow processing of data in different  fi le formats, 
therefore collected by different types of mass spectrometers. This aspect focuses 
attention on the standardization of mass spectrometric data for their sharing 
and dissemination. In fact, over the years, MS instrument manufacturers have 
developed proprietary data formats, making it dif fi cult. However, to address this 
limitation, several tools, such as Trans-Proteomic Pipeline  (  Deutsch et al. 2010  ) , 
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allow the conversion of MS data in standard format, like mzData, mzXML, or 
mzML (Orchard et al.  2010  ) . 

 The list of computational tools developed for label-free quantitative analysis, by 
using LC-MS data, is very long. In addition to Corra  ( Brusniak et al.  2008  )  and 
APEX (Braisted et al.  2008  )  tools, PatternLab (Carvalho et al.  2008  )  allows differ-
ent data normalization strategies, such as Total Signal, log preprocessing (by ln), Z 
normalization, Maximum Signal, and Row Sigma, for implementing ACFold and 
nSVM (natural support vector machine) methods to identify protein expression 
differences. 

 Based on our experience on proteomic analysis based on MudPIT approach, 
we developed a simple tool, called MAProMA (Multidimensional Algorithm 
Protein Map)  ( Mauri and Dehò  2008  ) . It is based on a label-free quantitative 
approach based on processing of score/SpC values, by means of Dave and DCI 
algorithms (see  Supplemental Information ). Its effectiveness has been demon-
strated in various studies  ( Mauri et al.  2005 ; Regonesi et al.  2006 ; Bergamini 
et al.  2012 ; Simioniuc et al.  2011  ) . In addition, MAProMa allows the comparison 
of up to 125 protein lists and data visualization in a format more comprehensible 
to biologists (Fig.  9.2 ).   

    9.3   Proteotypic Peptides 

 A limitation of shotgun proteomics is due to potential inference problem that may 
affect protein quanti fi cation (Nesvizhskii and Aebersold  2005  ) . In addition, limit of 
detection “may” exclude the identi fi cation of biologically relevant molecules. For 
identifying, validating, and transferring them to the routine clinical analysis, targeted 
proteomics or “selected reaction monitoring” (SRM) has been recently developed 
(Lange et al.  2008 ; Shipkova et al.  2008 ; Yang and Lazar  2009  ) . The robustness and 
the simplicity of its data analysis are ideally suited for detecting and quantifying 
with high con fi dence up to 100 proteins per sample. For this purpose, mass spec-
trometers and bioinformatics tools are set to explore a de fi ned number of proteins of 
interest, following, for each one, a set of representative peptides with a known  m/z  
value. They are fragmented, and the monitoring of a speci fi c daughter fragments 
allow a combination precursor-product, called “transition,” that is highly speci fi c 
for each amino acid sequence. 

 These peptides, called proteotypic    peptides, describe something typical of a protein. 
Initially, they were de fi ned as the most observed peptides by the current MS-based 
proteomics approaches (Craig et al.  2005  ) . Then   , other authors added the unique-
ness condition for a protein (Kuster et al.  2005  ) , while more recently an empirical 
de fi nition that de fi nes proteotypic peptide as a peptide observed in more than 50% 
of all identi fi cations of the corresponding parent protein was appended (Mallick 
et al.  2007  ) . In other words, these peptides have to be previously identi fi ed, with a 
known MS/MS fragmentation pattern and speci fi c for each targeted protein. 
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 The identi fi cation of proteotypic peptides useful for targeted proteomics is based 
on three different methods:

    1.    By experimental MS/MS data  
    2.    By searching in speci fi c databases  
    3.    By using predictive strategies     

 The  fi rst one is based on the selection of peptides by using the adopted de fi nitions. 
It allows also the investigation of organisms with proteotypic peptide data not stored 
inside speci fi c data repositories. In this context, several databases have been devel-
oped. In particular:

   Global Proteome Machine Database (Craig et al.  • 2004  )  allows users to quickly 
compare their experimental results with the results previously observed by other 
scientists. For each dataset, it is possible to view observed spectra for the design 
of SRM experiments. Query of data may be performed by protein name or 
Ensembl    identi fi er with the possibility to restrict search to a speci fi c data source, 
such as eukaryotes, prokaryotes, virus, or precise organism. In addition, further 
 fi lters may be set by keywords comprising organs, cell location, protein function, 
or PubMed id. 

  Fig. 9.2    Virtual 2D MAP tool of MAProMa software allows a rapid evaluation of proteins 
identi fi ed by MudPIT by presenting them in the usual form for biologists (maps). It automatically 
plots in a virtual 2D map the Mw vs. pI for each protein identi fi ed, assigning it a color/shape 
according to a range of a sampling statistics (score or SpC) derived by SEQUEST data handling. 
This representation permits to have a rapid visual of the proteins that change comparing two or 
more conditions. In addition, using DAve and DCI algorithms, MAProMa reports a histogram that 
shows the differentially expressed proteins, their identi fi er, and their DAve value       
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 GPM project is linked to X! Software series (Craig and Beavis  2004  )  and, of 
course, with X! P3, the algorithm that makes possible the use of their spectra for 
pro fi ling proteotypic peptide.  

  PeptideAtlas (Desiere  • 2006  )  is a publicly accessible source of peptides 
experimentally identi fi ed by tandem mass spectrometry. Raw data, search 
results, and full builds may be also downloaded. User may browse data, 
selecting different sources, and few of these need the permission to access. 
Protein may be searched by different protein identi fi ers, such as Ensembl and 
IPI. In addition to general information like GO terms, orthologs, or descrip-
tion, a graphical description indicates the unique peptides found and their 
occurrence. For each one, it is possible to reach information, like spectra, 
modi fi cation, or genome mapping. 

 PeptideAtlas is linked to Trans-Proteomic Pipeline  ( Deutsch et al.  2010  )  that is 
used for processing data passed to PeptideAtlas and SBEAMS (Marzolf et al.  2006  ) . 
In particular, data are processed for deriving the probability of a correct identi fi cation 
and therefore for insuring a high-quality database.    

 Other databases, designed for data warehousing, store MS/MS spectra collected 
from proteomics experiments. Even if they are not useful to  fi nd proteotypic 
peptides, they may be used in the comparison with own experimental data. 

 In particular:

   PRIDE (Martens et al.  • 2005  )  stores experiments, identi fi ed proteins and peptides, 
unique peptides, and spectra. In addition to protein (name or various identi fi ers) 
and PRIDE experiment identi fi er, it is possible to browse PRIDE by species, 
tissue, cell type, GO terms, and disease.  
  Proteome Commons (Hill et al.  • 2010  )  is a public proteomics database linked 
to the Tranche (Falkner and Andrews  2007  ) , a powerful open-source web appli-
cation designed to store and exchange data. A public access to free, open-source 
proteomics tools, articles, data, and annotations is provided.  
  Proteomexchange (Hermjakob and Apweiler  • 2006  )  is a work package for 
encouraging the data exchange and dissemination. Its consortium has been 
set up to provide a single point of submission of MS data concerning to the 
main existing proteomics repositories (at the moment PRIDE, PeptideAtlas, 
and Tranche).    

 Experimental data stored in the described repositories represent a wealthy 
source of information, useful for bioinformaticians which attempt to design algo-
rithms for predicting peptides most observable using MS. For this purpose, the 
STEPP software contains an implementation of a trained support vector machine 
(SVM) (Cristianini and Shawe-Taylor  2000 ; Vapnik  1999  )  that uses a simple 
descriptor space, based on 35 properties of amino acid, to compute a score repre-
senting how proteotypic a peptide is by LC-MS (Webb-Robertson  2009  ) . Similarly 
to STEPP, a predictor was developed, called Peptide Sieve (Mallick et al.  2007  ) , 
by studying physicochemical properties of more than 600,000 peptides identi fi ed 
by four different proteomic platforms. This predictor has the ability to accurately 
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identify proteotypic peptides from any protein sequence and offer starting points 
for generating a physical model describing the factors that govern elements of 
proteomic work fl ows such as digestion, chromatography, ionization, and frag-
mentation. Other authors, like Tang et al., used neural networks (Riedmiller and 
Braun  1993  )  to develop the DetectabilityPredictor software that uses 175 amino 
acid properties (Tang et al.  2006  )  .  In the same way, arti fi cial neural networks were 
used to predict peptides potentially observable for a given set of experimental, 
instrumental, and analytical conditions concerning multidimensional protein 
identi fi cation technology datasets (Sanders et al.  2007  ) . Finally, random forest 
(Breiman  2001  )  was used to develop enhanced signature peptide (ESP) predictor. 
It was speci fi cally designed for facilitating the development of targeted MS-based 
assays for biomarker veri fi cation or any application where protein levels need to 
be measured (Fusaro et al.  2009  ) .  

    9.4   Classi fi cation and Clustering Algorithms 

 Clinical proteomics aims to use relevant data for improving disease diagnosis 
or for monitoring its progression (Palmblad et al.  2009 ; Brambilla et al.  2012  ) . 
In this context, biomarkers represent a key aspect to develop methods for 
classifying samples according to their phenotypes (e.g., healthy-diseased, 
early-late stage). 

 In addition, to address the biological questions, technologies for high-throughput 
proteomics allow long lists of spectra, sequenced peptides, and parent proteins that 
represent a wealthy source of data for identifying predictive biomarkers. For these 
purposes, most studies have used spectra, generated by MALDI and SELDI 
technology, in combination with a wide variety of prediction algorithms. On the 
contrary, fewer cases have taken into consideration data obtained by LC-MS 
analysis (see Supplemental Information Table  2 ). However, results of LC-MS analysis 
(or by MudPIT) are formatted in an  m × n  matrix, with a structure very reminiscent 
of the output of microarray genomics experiments (Fig.  9.3 ). Hence, the software 
packages and the tools useful for analyzing genomics data may easily be used for 
proteomics (Ressom et al.  2008 ; Dakna et al.  2009  ) .  

 Even if some properties of proteomic datasets are related to the analytical 
technology used to generate them, procedures for sample classi fi cation basically 
consist of four steps, such as data preprocessing, feature selection, classi fi cation, 
and cross-validation (Ressom et al.  2008 ; Dakna et al.  2009 ; Sampson et al. 
 2011 ; Barla et al.  2008  ) . The  fi rst one aims to achieve reproducible results by 
minimizing errors due to the experimental-designed methodology. Mass spectral 
pro fi les may be in fl uenced by several factors, such as baseline effects, shifts in 
mass-to-charge ratio, alignment problem, or differences in signal intensities that 
may be corrected by speci fi c computational procedures (Yu et al.  2006 ; Arneberg 
et al.  2007 ; Pluskal et al.  2010  ) . In the same way, variation of sampling parameters 
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associated with sequenced protein, such as spectral count or score, is adjusted 
using related strategies of data normalization (e.g., Total Signal, log prepro-
cessing (by ln), Z normalization, Maximum Signal, or Row Sigma) (Carvalho 
et al.  2008  ) . 

 Typically, MudPIT analysis generates a number of variables usually bigger 
than the number of analyzed samples (f >> s). This complexity represents a key 
problem of computational proteomics, and most classi fi cation methods require 
the reducing of the dimensionality prior to classi fi cation. It is obtained by 

  Fig. 9.3    Data matrix is obtained aligning features identi fi ed by analyzing sample by MudPIT 
approach. In this context, MAProMa software allows a rapid alignment of up to 125 protein lists. 
Rows in data matrix represent features (e.g., proteins, peptides, or  m / z  values) while columns 
indicate samples. Each cell of data matrix is represented by a value corresponding to parameter 
associated with features. In particular, spectral count, Xcorrelation (Xcorr), and signal intensity are 
used for protein, peptides, and  m / z  mass features, respectively       
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discarding the irrelevant variables for obtaining a combination of features 
(f << s), highly correlated and with a more informative lower dimensional space 
that maximizes the quality of the hypothesis learned from these features (Guyon 
et al.  2006  ) . 

 Feature selection procedures may be classi fi ed in three different approaches 
based on different processes to rank features:  fi lter, wrapper, and embedded (Levner 
 2005  ) . A number of techniques have been used for the analysis of proteomic data, 
and these include methods such as support vector machines (SVM) and arti fi cial 
neural networks (ANN) as well as approaches like partial least squares (PLS), principal 
component regression (PCR), and principal component analysis (PCA). A good 
overview of statistical and machine learning-based feature selection and pattern 
classi fi cation algorithms is reported by Ressom and colleagues (Ressom et al.  2008  ) . 
Of course, different combinations of them show different sensitivity to noisy data 
and outliers as well as different susceptibility to the over- fi tting problem (Sampson 
et al.  2011  ) . 

 A limitation of many machine learning-based classi fi cation algorithms is that 
they are not based on a probabilistic model; therefore, there is no con fi dence associated 
with the predictions of new datasets. Inadequate performance could be attributed 
to different reasons (e.g., insuf fi cient or redundant features, inappropriate model 
classi fi er, few or too many model parameters, under- or overtraining, and code error, 
as well as presence of highly nonlinear relationships, noise, and systematic bias). 
Thus, with the purpose of testing the adequacy/inadequacy of a classi fi er, after 
learning is completed, its performances are evaluated through validation set, 
previously unseen. For this purpose, various methods, such as  k -fold cross-valida-
tion, bootstrapping, and holdout methods, have been used (Ressom et al.  2008  ) . The 
most common performance measures to evaluate the performances of classi fi ers are 
a confusion matrix and a receiver operating characteristic (ROC) curve. The  fi rst 
one shows information about actual and predicted classi fi cations of a classi fi er and 
assesses its performances using standard indices, such as sensitivity, speci fi city, 
PPV, NPV, and accuracy values (see  Supplemental Information ). On the other 
hand, ROC is a plot of the sensitivity of a classi fi er against 1-speci fi city for multiple 
decision thresholds.  

    9.5   From Proteomics to Systems Biology 

 Proteomics is a holistic science that refers to the investigation of the entire systems. 
Before the advent of -omics technologies, reductionism has dominated the 
biological research for over a century by investigating individual cellular compo-
nents. Despite its enormous success, it is more and more evident that most 
molecular functions occur from a concerted action of multiple molecules, and their 
investigation implies the examination of an ensemble of elements (Barabási and 
Oltvai  2004  ) . In fact, biomolecular interactions play a role in the majority of cellular 
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processes that are regulated connecting numerous constituents, such as DNA, 
RNA, proteins, and small molecules. 

 Data abstraction in pathways or networks is the natural result of the desire to 
rationalize knowledge of complex systems. More recently, their use has changed 
from purely illustrative to an analytic purpose. In fact, even if it is purely virtual and 
not related to any intrinsic structure in the cell or organism, understanding how, 
where, and when single components interact is fundamental to facilitate the investi-
gation of experimental data by taking into consideration the functional relationship 
among molecules. 

 A major challenge for biologists and bioinformaticians is to gain tools, procedures, 
and skills for integrating data into accurate models that can be used to generate 
hypotheses for testing. This objective is partially the result of the con fl uence in 
systems biology of advances in computer science and -omics technologies. In this 
context, systems biology approaches have evolved in different strategies basically 
belonging to two categories, such as computational systems biology, which uses 
modeling and simulation tools (Barrett et al.  2006 ;  Kim et al. 2012  ) , and data-derived 
systems biology, which relies on “-omics” datasets (Rho et al.  2008 ; Li et al.  2009 ; 
Jianu et al.  2010 ; P fl ieger et al.  2011  ) . 

 For deciphering mechanisms of complex and multifactorial diseases, such as 
those concerning heart failure, recent studies have coupled proteomic and 
systems biology approaches (Wheelock et al.  2009 ; Isserlin et al.  2010 ; Arrell 
et al.  2011  ) . From a standpoint of the data visualization, the possibility to map 
protein expression onto pathway or network reveals how they are modulated 
under different conditions, such as healthy and disease states (Gstaiger and 
Aebersold  2009 ; Sodek et al.  2008  ) . About that, an unbiased procedure to iden-
tify subnetworks which change consistently between different states involves 
three key steps:

    1.    The execution of high-throughput proteomic experiments  
    2.    The identi fi cation of candidate biomarkers by label or label-free methods  
    3.    The integration of data into network model to identify clusters of proteins with 

under, over, and normal expression     

 In addition, subnetwork selected using experimental data may be analyzed by 
computing network centrality parameters (Scardoni et al.  2009  )  for identifying 
proteins with a relevant biological and topological signi fi cance (Fig.  9.4 ). However, 
some limitations concerning this kind of approaches could be represented by 
measurements that cover only a small fraction of the network or by organisms with 
a limited dataset of cataloged protein sequences and interactions.  

 To date, in order to visualize and analyze biological networks, a wide set of 
bioinformatic tools are available (Suderman and Hallett  2007  )  and include 
well-known examples, such as Cytoscape (Shannon et al.  2003  ) , VisANT (Hu et al. 
 2005  ) , Pathway Studio (Nikitin et al.  2003  ) , PATIKA (Demir et al.  2002  ) , Osprey 
(Breitkreutz et al.  2003  ) , and ProViz (Iragne et al.  2005  ) . Among these, Cytoscape 
is a Java application whose source code is released under the Lesser General Public 
License (LGPL). It is probably the most famous open-source software platform for 
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visualizing network datasets and biological pathways and for integrating them with 
annotations or gene and protein expression pro fi les. Its core distribution provides a 
basic set of features. However, additional features are available as plugins, thanks to 
a big community of developers which uses the Cytoscape open API based on Java 
technology. 

 Most of the plugins are freely available and concern tasks like the importing and 
the visualizing of networks from various data formats, the generating of networks 
from literature searches, and the analysis or the  fi ltering of them by selecting 
subsets of nodes and/or interactions in relation with topological parameters, GO 
annotation, or expression levels. In particular, for analyzing large set of proteomics 
data, we suggest some plugins, such as:

   CentiScape (Scardoni et al.   – 2009  )  that computes speci fi c centrality parameters 
describing the network topology  
  MCODE (Bader and Hogue   – 2003  )  that  fi nds clusters or highly interconnected 
regions  
  BiNGO (Maere et al.   – 2005  )  that determines the Gene Ontology (GO) categories 
statistically overrepresented in a set of genes or a subgraph of a biological 
network  
  BioNetBuilder (Avila-Campillo et al.   – 2007  )  that offers a user-friendly interface 
to create biological networks integrated from several databases such as BIND 
(Alfarano et al.  2005  ) , BioGRID (Stark et al.  2006  ) , DIP (Xenarios et al.  2000  ) , 
HPRD (Mishra et al.  2006  ) , KEGG  (  Kanehisa et al. 2004  ) , IntAct (Kerrien et al. 
 2007  ) , MINT (Zanzoni et al.  2002  ) , MPPI (Pagel et al.  2005  ) , and Prolinks 
(Bowers et al.  2004  )  as well as interolog networks derived from these sources for 
all species represented in NCBI HomoloGene    

  Fig. 9.4    By means of Cytoscape software and its plugins, proteins and biomarkers identi fi ed by 
MudPIT are integrated in protein network for identifying pathways or subnetworks that underline 
the emergence of speci fi c biological states. In addition, networks identi fi ed by experimental data 
may be analyzed by plugins, such as CentiScape, for calculating centrality parameters that indicate 
nodes with relevant biological and topological signi fi cance       
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 Other important repositories for protein-protein interaction are STRING (von 
Mering et al.  2007  ) , Reactome (Joshi-Tope et al.  2005  ) , Pathway Commons (Cerami 
et al.  2011  ) , and WikiPathways (Pico et al.  2008  ) . However, an exhaustive overview 
of existing databases is available through the Pathguide website (  http://www.
pathguide.org/    ), a useful web resource where about 300 biological pathways and 
interaction database are described.  

    9.6   Conclusion 

 In the last few years, developments in MS instrumentation have increased both the 
number of identi fi ed proteins, reaching hundreds to thousands in a single experiment, 
and the con fi dence of such identi fi cations. Thanks to this relevant amount of data, 
researchers are characterizing the discovery processes by integrating large set of 
experimental data into models used to generate hypothesis for testing. For this 
purpose, systems biology approaches provide a powerful strategy for linking bio-
marker expression with biological processes that can be segmented and linked to 
disease presentation. Mass spectrometry-based proteomics is emerging also as a 
powerful approach suitable to face clinical questions. Even if it is an area of still 
unrealized potential, clinical proteomics offers the promise of diagnosis, prognosis, 
and therapeutic follow-up of human diseases. However, given the current status 
of measurement reproducibility and lack of standardization, further comparative 
investigations are of great importance. 

 As widely emerged by this chapter, both for basic or clinical research, bioinformatics 
and statistical tools have a primary importance to support the discovery processes 
at various levels of sophistication, or for improving the performances of the tech-
nologies themselves. In particular, the relevant amount of data produced by the 
high-throughput proteomics technologies require powerful informatics supports for 
their organization and interpretation. In this context, several topics concerning data 
storage, their processing, their visualization, and their interpretation have been 
faced. However, the need of standards is considered fundamental, and some projects 
for sharing experimental data between research groups have been launched (e.g., 
MIAPE, CDISC, and HL7). These should increase meta-analysis, by using raw data 
from different centers, for helping the development that was grossly underestimated 
in the initial studies. In addition, as a proteomics community, we believe proteomics 
methodologies mature for tackling future challenges in clinical proteomics. 
However, the production of valuable data should rise in step with cooperation with 
medically focused groups.      
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      Supplemental Information 

      Introduction 

   Table 1    Bioinformatics platforms for processing proteomics data   

 Name  Description  References 

  Corra   Frameworks for LC-MS analysis   Brusniak et al. (2008  )  
  ATAQS   Pipeline implemented for SRM  Brusniak et al.  (  2011  )  
  Central Proteomics Facilities 

Pipeline  
 Pipeline for the analysis of MS/MS 

proteomic data 
 Trudgian et al.  (  2010  )  

  SASHIMI   Suite of tools for MS/MS proteomics   Deutsch et al. (2010  )  
  MS Data Miner   A web-based software that accepts 

data from Mascot or other 
software 

 Dyrlund et al.  (  2012  )  

  Katsura   Overlays -omics empirical data onto 
metabolic pathways 

  Kanehisa et al. (2004  )  

  ProteoWizard   Set of libraries and tools to perform 
proteomics data analysis 

 Kessner et al.  (  2008  )  

  ProteoConnections   Web-based set of tools using for 
analyzing proteomic data 

 Courcelles et al. 
 (  2011  )  

  Chipster   A Java Web Start framework that 
organizes work fl ows for -omics 
data 

 Kallio et al.  (  2011  )  

  Multiplierz   A scriptable framework that access 
to manufacturer data  fi les 

 Parikh et al.  (  2009  )  

  Proteomatic   A framework that permits to create 
concatenate scripts in pipeline 

 Specht et al.  (  2011  )  

  DAnTE/Inferno   Software to perform statistical 
analysis on proteomics data 

 Polpitiya et al.  (  2008  )  

          Biomarker Discovery (Stable Isotope Labeling) 

 As for labeling approaches, the stable isotopes may be introduced in the peptide 
using different methods based on the metabolic, chemical, or enzymatic incorpo-
ration (Ong and Mann  2005  ) . Metabolic labeling was described for marking pro-
tein of yeast by means of  15 N-enriched cell culture medium (Oda et al.  1999  ) . 
Since the number of labeled nitrogen atoms may vary from peptide to peptide, 
stable isotope labeling by amino acids in cell culture (SILAC) approach (Ong 
et al.  2002  )  was then introduced. In this case, culture medium contains  13 C 

6
 -Lys 

and  13 C 
6
  and  15 N 

4
 -Arg, ensuring at least one labeled amino acid of tryptic cleavage 

products. In addition, samples treated with different isotopes may be combined 
prior to sample preparation minimizing the potential errors introduced by their 
handling. However, a low cellular growth in adapted media may represent a 
potential drawback. 
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 Methods which allow labeling by chemical or enzymatic incorporation overcome 
some limitations associated with metabolic labeling. They include isotope-coded 
af fi nity tags (ICAT), where free cysteine residues are tagged by a reagent contain-
ing eight or zero deuterium atoms (Gygi et al.  1999  ) . Tags are linked to the biotin 
which may be exploited for enriching the labeled peptides using af fi nity puri fi cation 
prior to MS analysis. Although this strategy reduces the complexity of the peptide 
mixture, proteins that do not contain cysteine are excluded from the analysis. 
For this reason, other approaches use reactive residues that occur more frequently 
in proteins. At this class belong the isobaric tags for relative and absolute quan-
titation (iTRAQ) (Ross et al.  2004  ) , the tandem mass tags (TMT) (Thompson 
et al.  1999  ) , and the isotope-coded protein label (ICPL) (Schmidt et al.  2005  ) . 
In particular, iTRAQ approach is widely used and it is based on the covalent 
labeling of the N-terminus and side chain amines of peptides. Multiplexing 
tagging allows the analysis of up to 8 samples per experiment (Choe et al.  2007  ) . 
In fact, samples differently tagged are pooled and usually fractionated by LC and 
analyzed by MS/MS. However, problem of co-elution of peptides with similar 
mass could interfere with the quanti fi cation. Finally, as for enzymatic tagging of 
peptides, recently trypsin-catalyzed  18 O labeling has grown in popularity due to its 
simplicity, its cost, and its ability to universally label peptides. Both C-terminal 
carboxyl group atoms of tryptic peptides can be enzymatically exchanged with 
 18 O providing a labeled peptide with a 4-Da mass shift from the  16 O-labeled 
sample (Qian et al.  2011  ) .  

      Biomarker Discovery (DAve and DCI Algorithms) 

 A direct correlation between the SEQUEST-based score value and the relative abun-
dance of the identi fi ed proteins has been previously demonstrated  (  Mauri et al. 
2005 ;  Regonesi et al. 2006  ) . Based on this  fi nding, protein pro fi les of healthy and 
diseased samples are semiquantitatively compared using a label-free proteomic 
approach based on DAve (differential average) and DCI (differential con fi dence 
index) algorithms of MAProMA software  (  Mauri and Dehò 2008  ) . 

 In particular, DAve, which evaluates changes in protein expression, is de fi ned as

     ( ) ( )/ * 0.5,X Y X Y- +
   

while DCI, which describes the con fi dence of differential expression, is de fi ned as

     ( ) ( )/ 2X Y X Y+ ´ -
   

where  X  and  Y  represent the SEQUEST-based score or SpC values of a given protein 
in two compared samples. 

 Conventionally, signs (+/−) of DAve and DCI indicate if proteins are up-regulated 
in the  fi rst or in the second sample, respectively. A value of DAve >0.4 (or  £  −0.4) 
corresponds to SCORE ratio  ³ 1.5. Coupled to a threshold value  ³ 400 (or  £  −400) 
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for DCI, it allows, with a good reliability, to identify differentially expressed  (  Mauri 
et al. 2005 ;  Simioniuc et al. 2011 ;  Bergamini et al. 2012  )  proteins. However, DAve 
and DCI threshold values may be decreased when calculated, considering mean 
SCORE values derived from replicate analyses (DAve  ³ 0.2 or < −0.2 and DCI  ³ 200 
and  £  −200). On the contrary, when a single analysis per sample/condition is available, 
a better reliability of the differentially expressed proteins may be assured increasing 
the threshold values (DAve  ³ 0.8 or < −0.8 and DCI  ³ 800 and  £  −800).  

      Classi fi cation and Clustering Algorithms     

   Table 2    Classi fi cation studies published in the last few years   

 Sample  References  Technology  Data  Algorithm 
 Biological 
condition 

  Urine   Dawson et al. 
 (  2012  )  

 MALDI   Proteins/
peptides  

  SVM   Ischemic stroke 

  Serum   Timms et al. 
 (  2011  )  

 MALDI   –    –   Ovarian cancer 

  Virus   Wong et al. 
 (  2010  )  

 MALDI   Spectra    Bayes 
classi fi ers  

 In fl uenza viruses 

  Tissues   Le Faouder 
et al.  (  2011  )  

 MALDI-IMS   Protein 
peaks  

  SVM   Carcinoma 

  Tissues   M’Koma et al. 
 (  2011  )  

 MALDI-IMS   Protein 
Peaks  

  k-nearest-
neighbor  

 Colitis 

  Tissues   Djidja et al. 
 (  2010  )  

 MALDI-IMS   Proteins/
peptides  

  PCA-DA   Tumor 

  Acinetobacter 
spp.  

 Alvarez-Buylla 
et al.  (  2012  )  

 MALDI   –    –   Acinetobacter 
spp. 

  Serum   Fan et al. 
 (  2012  )  

 MALDI   Raw data    SVM   Breast cancer 

  Plasma   Fassbender 
et al.  (  2012  )  

 MALDI   –    SVM   Endometriosis 

  Cerebrospinal 
 fl uid  

 Ishigami et al. 
 (  2012  )  

 MALDI   Spectra    SVM-PCA   Parkinson 

  Cerebrospinal 
 fl uid  

 Komori et al. 
 (  2012  )  

 MALDI   Spectra    SVM-PCA   Multiple sclerosis 
disorder 

  Pollen   Krause et al. 
 (  2012  )  

 MALDI   Spectra    –   Pollen 

  Tissue   Meding et al. 
 (  2012  )  

 MALDI   Spectra    SVM     –RF   Tumor 

  Serum   Pecks et al. 
 (  2012  )  

 MALDI   –   Preeclampsia 

  Bronchoal-
veolar  fl uid  

 Frenzel et al. 
 (  2011  )  

 MALDI   Protein 
peaks  

  SVM   ALI/ARDS 

  Urine   Gao et al. 
 (  2011  )  

 MALDI   Protein 
peaks  

  SVM   – 

(continued)
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 Sample  References  Technology  Data  Algorithm 
 Biological 
condition 

  Serum   Han  (  2010  )   MALDI   Spectra 
pro fi le  

  SVM   Hepatitis B 

  Tissue   Waloszczyk 
et al.
 (  2011  )  

 MALDI   Protein 
peaks  

  –   Lung cancer 

  Urine   Balog et al. 
 (  2010  )  

 MALDI   Peptide    SVM   Schistosoma 
mansoni 
infection 

  Tissue    Kim et al. 
(2012  )  

 MALDI   Spectra    SVM-PCA   Gastric cancer 

  Bacterial 
suspensions  

 Lasch et al. 
 (  2010  )  

 MALDI   Spectra    ANN   Yersinia 

  Tissue   Liao et al. 
 (  2010  )  

 MALDI   Spectra    k  NN   Colorectal cancer 

  Serum   Camaggi et al. 
 (  2010  )  

 MALDI   –    RF   Hepato carcinoma 

  Plasma   Lin et al.
 (  2012  )  

 SELDI   Protein 
peaks  

  PCA   Lung 
adenocarci-
noma 

  Serum   Van Gorp et al. 
 (  2012  )  

 SELDI   Protein 
peaks  

  LS-SVM   Lymph node status 
in cerebral 
cancer 

  Serum   Zhu et al. 
 (  2012  )  

 SELDI   –    SVM   Pancreatic cancer 

  Endometrial 
samples  

 Kyama et al. 
 (  2011  )  

 SELDI   Protein 
peaks  

  SVM   Endometriosis 

  Serum   Fan et al. 
 (  2010  )  

 SELDI   Protein 
peaks  

  SVM   Breast cancer 

  Serum   Liu et al.
  (  2010  )  

 SELDI   Spectra    Decision 
tree  

 Tuberculosis 

  Serum   Tang et al. 
 (  2010  )  

 SELDI   Spectra    Kernel PLS 
models  

 Ovarian cancer 

  Tissues   Wang et al. 
 (  2010  )  

 SELDI   Spectra    ANN   Endometriosis 

  Serum   Song et al. 
 (  2012  )  

 SELDI and 
ELISA 

  Protein 
peaks  

  SVM   Biliary atresia 

  Serum   Ahn et al. 
 (  2012  )  

 Multiplex 
array 

 –   –   Gastric 
adenocarci-
noma 

  Plasma   Izbicka et al. 
 (  2012  )  

 Multiplex 
immunoas-
says 

  SVM   Lung cancer 

  Tissue   Lazova et al. 
 (  2012  )  

 IMS   Spectra    –   Spitzoid 
malignant 
melanoma 

  Serum   Sui et al.
 (  2010  )  

 –   –    Genetic 
algorithm  

 Urinemia 

   SVM  support virtual machine,  ANN  arti fi cial neural network,  PCA  principal component analysis, 
 DA  discriminant analysis,  RF  random forest,  PLS  partial least square  

Table 2 (continued)
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      Classi fi cation and Clustering Algorithms (Sensitivity, Speci fi city, 
PPV, NPV, and Accuracy) 

 A confusion matrix presents information about actual and predicted classi fi cations 
made by a classi fi er. It assesses the classi fi cation performance of the classi fi er. 
TP, TN, FP, and FN indicate the number of true-positive, true-negative, false-
positive, and false-negative samples, respectively. A false positive is when the 
outcome is incorrectly classi fi ed as positive. A false negative is when the outcome 
is incorrectly classi fi ed as negative. True positives and true negatives represent correct 
classi fi cations. In particular:

    Sensitivity  = TP/(TP + FN)  
   Speci fi city  = TN/(TN + FP)  
   Positive predictive value  = TP/(TP + FP)  
   Negative predictive value  = TN/(TN + FN)  
   Overall classi fi cation accuracy  = (TP + TN)/(TP + TN + FP + FN)       
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