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Introduction. Over the last decade, the field of medical imaging experienced an exponential growth, leading to the development
of radiomics, with which innumerable quantitative features are obtained from digital medical images, providing a comprehensive
characterization of the tumor. This review aims to assess the role of this emerging diagnostic tool in breast cancer, focusing on the
ability of radiomics to predict malignancy, response to neoadjuvant chemotherapy, prognostic factors,molecular subtypes, and risk
of recurrence. Evidence Acquisition. A literature search on PubMed and on Cochrane database websites to retrieve English-written
systematic reviews, review articles, meta-analyses, and randomized clinical trials published from August 2013 up to July 2018 was
carried out. Results. Twenty papers (19 retrospective and 1 prospective studies) conducted with different conventional imaging
modalities were included. Discussion. The integration of quantitative information with clinical, histological, and genomic data
could enable clinicians to provide personalized treatments for breast cancer patients. Current limitations of a routinely application
of radiomics are represented by the limited knowledge of its basics concepts among radiologists and by the lack of efficient and
standardized systems of feature extraction and data sharing.

1. Introduction

Breast cancer is the most commonly diagnosed cancer and
the second leading cause of death for cancer among women
worldwide [1]. The prediction of response to treatment and
of prognosis is essential in clinical practice in the era of
precision medicine [2]. In the past decade, oncologists and
radiologists have been showing an increasing interest for the
clinical utility of quantitative imaging, encouraged by the
significant advancements within the field of medical images
analysis. This exponential growth led to the development of
radiomics, with which innumerable quantitative features are
extracted from digital medical images, usually tomographic,
through a high-throughput computing. These features, relat-
ing to tumor size, shape, intensity, and texture, provide
a comprehensive tumor characterization, defining what it
has been called the radiomics signature of the tumor [3].
Radiomics is based on the central hypothesis that extracted
quantitative data reflectmechanisms occurring at genetic and
molecular levels [4]. Radiomics is a complex process that

involves several steps. It begins with acquisition of high-
quality images, from which a region of interest (ROI) is
identified and segmented either manually or automatically.
The ROI can include the whole tumor or some parts of it.
Once the segmentation is completed, the selected regions are
rendered in three dimensions, becoming volumes. Dedicated
software [5–7] then extract quantitative features from the
obtained volumes to produce a report, which is inserted into a
database and integrated with other data (clinical information,
genomic profiles, serummarkers, and/or histology data) to be
shared across different centers or institutions [3, 8] (Figure 1).
A radiomics methodology was first applied to neck and lung
cancer imaging [9–11] and more recently to breast imaging
[12]. Radiomics seems able to offer imaging biomarkers
useful not just to diagnose breast cancer but also to predict
treatment response and risk of recurrence. With regard to
breast cancer, a radiomics approach has been investigated
mainly with Magnetic Resonance Imaging (MRI). However,
some studies appearing more recently have explored the
potential of radiomics with different imaging modalities:
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Figure 1

Figure 2

standardmammography, digital breast tomosynthesis (DBT),
and ultrasound (US). Aim of this review is to explore the
current and potential role of radiomics in breast cancer,
focusing on the ability of radiomics to predict malignancy,
response to neoadjuvant chemotherapy (NAC), prognostic
factors, molecular subtypes, and risk of recurrence.

2. Methods and Materials

We referred to PubMed and the Cochrane review database
websites to retrieve English-written relevant articles (abstract
and/or full-text). Systematic reviews, review articles, meta-
analyses, and randomized clinical trials (published from
August 2013 up to July 2018) were considered. Keywords
typed for our search were as the following: breast cancer and
radiomics, breast MRI and radiomics, breast mammography
and radiomics, breast tomosynthesis and radiomics, breast
ultrasound and radiomics, breast neoplasia and radiomics,
breast lesion and radiomics, breast eteroplasia and radiomics,
breast MRI and texture analysis, breast MRI and quantitative
analysis, breast mammography and texture analysis, breast

mammography and quantitative analysis, breast tomosynthe-
sis and texture analysis, breast tomosynthesis and quantitative
analysis, breast ultrasound and texture analysis, and breast
ultrasound and quantitative analysis. To increase the inclu-
siveness of our search strategy, we also referred to texts to find
other relevant cited manuscripts not retrieved in our initial
search. Given the narrative nature of this review, no formal
quality assessment was done.

3. Results

The search on PubMed and on Cochrane databases produced
a total of 476 articles; non-English papers, duplicates, case
reports, comments, letters, articles that did not considered
breast cancer specifically, irrelevant studies, inappropriate
data, and comparisons were excluded. All articles presenting
quantitative studies but not purely radiomics were excluded
as well as those on nuclear medicine imaging. All retro- and
prospective original articles that investigated the application
of radiomics to breast cancer were included. Twenty papers,
19 retrospective and 1 prospective studies, were selected
(Figure 2; Table 1).
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4. Radiomics and Malignancy

Several studies have investigated the usefulness and reliability
of radiomics to discriminate benign breast lesions from
cancers, demonstrating that its applicationmight improve the
radiologist confidence in the challenging diagnostic task.

4.1. MRI. Parekh and Jacobs [13], aiming to find a correlation
between radiomics features and different breast tissues of
interest, generated radiomics feature maps (RFMs) for visual-
ization and evaluation of radiological images. The radiomics
features were then correlated to different breast tissues and
compared with quantitative values of radiological parame-
ters. Malignant lesions showed higher values of entropy and
the entropy RFM was the most reliable to distinguish malig-
nant from benign lesions, reflecting the tumor heterogeneity
and its vascular status. Whitney et al. proposed a radiomics
method to investigate whether a set of quantitative features
extracted fromMR images might help to distinguish luminal
A breast cancers from benign breast lesions, compared to
using maximum linear size alone [14]. They retrospectively
analyzed dynamic contrast-enhanced- (DCE-) MRI of 508
breast lesions and extracted 38 features, which were used
to design three different classification protocols. The area
under the curve (AUC) for maximum linear size alone
was 0.797 in comparison to 0.846 and 0.848 for feature
selection protocols including and excluding size features,
respectively. Thus, the protocol excluding features related to
size was statistically equivalent to that including all features
in the ability to distinguish the two pathological entities.
The radiomics feature of irregularity was found to play an
important role in the feature selection process. In 2017, a
retrospective study aimed to establish a potential ability of
radiomics to determine the malignant nature of suspicious
breast lesions detected on screening X-ray mammography
[15]. Supported by emerging evidences on the accuracy
of contrast-free breast MRI protocols in the detection of
malignant breast lesions [32–34], they employed a radiomics
methodology on two contrast-free MRI sequences: Diffusion
Weighted Imaging (DWI) and T2-weighted sequences. Two
radiomics classifiers allowed distinguishing benign from
malignant lesions more accurately (AUC of 0.842-0.851) than
the mean apparent diffusion coefficient (ADC) parameter
alone (AUC of 0.774), proposed by Bogner et al. with the
same scope [35]. However, the inclusion of the mean ADC
parameter increased the accuracy of the model, demon-
strating the advantages of taking into account previous
results and, implicitly, of data sharing. Nevertheless, the
performance of the proposed model was lower than that of
expert breast radiologists (AUC of 0.959), suggesting that
the potential of radiomics in prediction of malignant lesions
has to be better assessed. Unenhanced sequences were also
used by Bickelhaupt et al., who conducted a multicentric and
prospective study to evaluate a radiomics model of suspicious
breast lesions (BI-RADS 4 and 5) extracted from breast-
tissue-optimized kurtosis MRI by two different vendors to
differentiate benign from malignant lesions. The proposed
model, evaluated in an independent test set, showed reliable
results [16].

4.2. US and DBT. A radiomics approach on US imaging
and specifically on sonoelastograms was proposed by Zhang
in 2017, showing that some sonoelastomic features might
help to discriminate between benign and malignant breast
tumors [17]. A multicentric and prospective study applied
a radiomics approach to DBT for the first time in order
to differentiate normal breast tissue from malignant breast
tissue in patients with dense breasts [18]. Twenty patients
with negative standard mammography who had had a DBT-
detected and histology-proven breast cancer were enrolled.
Further 20 patients of similar age and breast density with
negative DBT and US served as a control group. From 104
radiomics features extracted, 3 (skewness, entropy, and 90
percentile) were found to differ significantly between the two
groups. Results also revealed that energy, entropy, and dissim-
ilarity correlated significantly with tumor size and entropy
with receptor status too. Despite the small patient sample and
the biased selection of features, almost inevitably based on
MRI, these preliminary results are encouraging, suggesting
that a radiomics analysis of DBT images can be used to
facilitate cancer detection and for a better characterization of
the detected lesion.

5. Radiomics and Neoadjuvant Chemotherapy

NAC, administered before surgery to reduce tumor size
and the risk of distant metastases, is often the first line
treatment for those patients diagnosed with locally advanced
breast cancer [36]. However, less than 50% of patients
achieve a pathological complete response (pCR) [37, 38]. A
retrospective study published by Braman et al. explored the
ability of radiomics to predict pCR to NAC [19], analyzing
99 textural features extracted from the intratumoral and
peritumoral regions of T1-weighted contrast-enhanced MRI
scans. Authors concluded that radiomics might successfully
be employed for the purpose, even more effectively if peritu-
moral regions are included into the analysis and the receptor
status considered.

6. Radiomics and Prognostic Factors

6.1. Lymph NodeMetastases. Determining the axillary lymph
node status remains a mandatory requirement of the diag-
nostic process. In 2017, Dong et al. proposed an optimal
multivariable radiomics model able to predict sentinel lymph
node (SLN) metastases [20], finding that radiomics features
extracted from DWI sequences showed higher correlation
with SLN metastases than those extracted from ADC map-
ping. These results, which certainly need further valida-
tion, might help in clinical decision-making with respect to
axillary surgery, potentially avoiding invasive procedures in
patients at a low risk of SLN metastases.

6.2. Peritumoral Fat. Over the decades, numerous studies
have demonstrated that obesity is associated with increased
incidence and mortality from different forms of cancer,
including breast cancer [39, 40]. A retrospective study con-
ducted by Obeid et al. investigated the prognostic impact of
peritumoral fat in early breast cancers (T1 and T2 stages)
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[21]. Authors found a significant linking between a specific
peritumoral fat feature, extracted from preoperative MRI
sequences and axillary node metastases in patients with
body mass index greater than 30. Despite the small sample
size of patients, results suggest that a radiomics evaluation
of the peritumoral fat might provide valuable noninvasive
prognostic data.

6.3. Ki67. Ki67 labeling index is routinely used as a
prognostic marker in breast cancer patients, to estimate
both cell proliferation and therapeutic response [41, 42].
A retrospective study including 377 women diagnosed
with invasive breast cancer investigated the possibility of
predicting the proliferation marker Ki67 expression through
a radiomics approach [22]. Three machine learning schemes
were employed to classify cancers in to low- and high-Ki67
expression lesions. Following a semiautomatic segmentation
on DCE-MRI, 56 radiomics features (morphological,
greyscale statistic, and texture ones) were extracted. Results
showed that some of the morphologic features such as
perimeter, values of area, and diameter tend to have low
values in low-Ki67 tumors, being the high expression of
Ki67 associated with a high proliferation rate. Overall, 3
texture features (contrast, entropy, and line likeness) were
significantly associated with the Ki67 expression. Liang
et al. proposed a new, noninvasive Ki-67 predictor status
based on breast MRI [23]. They retrospectively analyzed
318 MRI of breast cancer patients (200 for the training
dataset and 118 for the validation dataset), whose Ki67 status
was known. Authors selected 30 features and composed
a Rad-score for each patient following the analysis of
the unenhanced T2-weighted fat suppression sequences
and the enhanced T1-weighted. Rad-score calculated on
T2-weighted images was significantly associated with
Ki67 status, in both training and validation datasets,
whereas Rad-score on enhanced T1-weighted did not show
correlation with Ki67 expression in the validation cases.
These results suggest that a new radiomics marker, obtained
with routinely performed unenhanced MRI sequence,
might preoperatively predict Ki67 expression in breast
cancer.

7. Radiomics and Molecular Subtypes

Numerous studies have proposed a radiomics approach to
predict breast cancers molecular profile, whose definition is
essential to establish the best patient management [43]. Fur-
thermore, the integration between radiomics and genomic
features, known as radiogenomics, has revealed promising
results in oncology, providing opportunities to better under-
stand tumors behavior and thus to improve diagnosis and
prognosis [9, 44].

7.1. MRI. In 2015, Guo et al. explored the relationship
between radiogenomics features and clinical variables such
tumor stage, lymph node metastases and molecular recep-
tor status (estrogen receptor, ER, status; progesterone
receptor, PR, status; and human epidermal growth factor
receptor-2, HER2, status) [24]. Ninety-one cases of invasive

breast carcinomas were included into the analysis. Thirty-
eight radiomics features (related to size, shape, morphol-
ogy, enhancement texture, kinetics, and variance kinetics),
extracted from DCE-MRI, were correlated to 144 genomic
features for 70 genes (70 gene expression features, 70 copy
number features and 4 methylation features). Results showed
a significant positive association between all tumor size fea-
tures and tumor stage, as well as between tumor irregularity
and tumor stage, meaning that high-stage tumors tend to
be larger and more irregular. Several genomic features were
found to be significantly associated with molecular receptor
status, whereas no single radiomics feature showed a signifi-
cant association with ER, PR and/or HER status. Conversely,
no isolated genomic features showed a positive correlation
with tumor stage and lymph node status. The radiomics
feature that correlated the most with the tumor stage was the
effective diameter, while the Aurora kinase B gene, AURKB
(GE), represented the most useful genomic feature to predict
the ER status. However, the model combining radiomics
and genomic features showed no higher accuracy in the
prediction of invasive breast carcinomas clinical phenotypes
in comparison to those considering radiomics and genomic
features independently, likely due to the small number of
patients enrolled. A retrospective study published in 2016
explored the correlation between quantitative features and
cancer receptors status (ER+, ER-, PR+, PR-, HER2+, HER2-
, and triple negative, TN) [4]. It was demonstrated that MR
image-based tumor phenotypes are significantly associated
with receptor status and that heterogeneity is an important
feature to discriminate different subtypes, of which, in the
near feature, it might be possible to define a radiomics
predictive signature that will serve as a virtual biopsy. A set of
radiomics features extracted from DCE-MRI was proposed
by Wang et al. to distinguish TN breast cancers from other
subtypes [25]. Both tumor and its surrounding parenchyma
were included in the segmentation for each of the 84 women
enrolled. Eighty-five features were extracted and combined
with machine learning tools. Five different classification
models were designed to differentiate TN cancers against
non-TN, ER+, ER-, luminal A, and luminal B cancers.
Both accuracy and sensitivity of the proposed models were
improved by the inclusion of the background parenchyma
quantitative features, whose heterogeneity was found to
strongly correlate with TN status. In 2017, Fan et al. investi-
gated the possibility of predicting breast cancers molecular
subtypes by using radiomics features extracted from DCE-
MRI and integrated with clinical information [26]. They
retrospectively analyzed pretreatment breast DCE-MRI of 60
breast cancer patients, where 34 were diagnosed with luminal
A breast cancers, 8 with luminal B, 7 with HER2, and 11 with
basal-like. Age and menopausal status accounted for the clin-
ical data considered. It was observed that features related to
tumor heterogeneity tend to have low values in cancers with
best prognosis such as luminal A cancers. Moreover, the clin-
ically aggressive HER2 subtype showed the highest enhance-
ment values, likely due to its raised angiogenesis growth
rate.
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7.2. US and Digital Mammography. In 2018, a radiomics
approach based on the extraction of quantitative feature from
US images was proposed by Guo et al. to better define the
biologic characteristics of invasive ductal carcinoma (IDC)
[27]. The analysis included patients with best prognosis
IDC (HR+, HER2-) and worst prognosis IDC (TN). Tumor
grade was also considered. Radiomics features were sorted
into six different categories: shape, margin, boundary, echo
pattern, posterior acoustic pattern, and calcification. Low
grade HR+, HER- tumors were found to be more irregular
in shape, with ill-defined margins, posterior shadowing and
hyper- or complex echo. Conversely, high grade TN showed
regular shape, a hypo- or complex posterior shadowing and
posterior enhancement, similarly to other studies [45, 46].
The echo pattern features were the most effective in the
prediction of molecular subtypes. A radiomics approach to
be applied on digital mammography with the same aim has
been recently proposed byMa et al. [28].Thirty-nine features,
including morphologic, gray scale statistic, and texture ones,
were extracted from the manually segmented area on digital
mammography images of 331 invasive breast cancers. A
machine learning scheme was employed for the molecular
subtypes classifications: triple negative versus nontriple-
negative; HER2-enriched versus non-HER2-enriched and
luminal versus nonluminal cancers. Four features were signif-
icantly associated with tumor subtype, revealing that digital
mammography, largely available examination, could provide
clinicians with quantitative as well as qualitative information.

8. Radiomics and Cancer Recurrence

Li et al. investigated a potential linking between breast
cancer MRI phenotypes and multigene assays to pre-
dict the risk of recurrence [29]. This retrospective study
enrolled 84 patients diagnosed with invasive breast cancers:
ductal, lobular, and mixed forms. Thirty-eight computer-
extracted images phenotypes were automatic obtained from
MRI sequences, describing size, shape, margin morphologic
appearance, enhancement texture, kinetic curve assessment,
and enhancement-variance kinetics of the cancers. These
38 MRI imaging phenotypes were then correlated with the
risk of recurrence scores, calculated for each of the three
multigene assays considered: MammaPrint, Oncotype DX,
and PAM50, previously developed to predict breast cancer
recurrence the former two and the molecular subtypes
the latter one. The analysis showed promising results and,
accordingly to other studies presented in this review, a
combined evaluation of both phenotypic and genomic data
might be successfully used to assess the risk of cancer
recurrence. A more recent retrospective study proposed a
radiomics approach based on preoperative MRI to develop a
radiomics signature associated with breast cancer recurrence
[30]. They enrolled 294 patients affected by invasive breast
cancer appearing as a mass on contrast-enhanced MRI. One
hundred and fifty-six features were extracted and grouped
into three categories: morphological, histogram-based, and
higher-order texture features. A radiomics signature, named
Rad-score, was calculated for each patient, whowas classified
at a high-risk or low risk based on the Rad-score itself.

Then, a nomogram including the radiomics signature, MRI,
and clinicopathological findings was designed to predict
individual cancer recurrence, estimating the disease-free
survival (DFS). Results showed higher Rad-scores corre-
lation with worse DFS and that the DFS estimation was
more accurate when clinicopathological data were included
in the evaluation. Drukker et al. proposed a single new
radiomics feature, named most enhancing tumor volume
(METV), to be used instead of the functional tumor volume,
FTV (a semiautomatically biomarker previously employed
for the same purpose) for the prediction of recurrence-
free survival [31]. They retrospectively included the same
141 women, affected by invasive breast cancer and treated
with NAC, enrolled in the FTV validation dataset. METV,
obtained on unenhanced and enhanced MR sequences,
performed before and after the first cycle of NAC, was
found reliable in the prediction of earlier cancer recurrence,
with the advantage of being real-time and automatically
calculated.

9. Discussion

Radiomics is a relatively new discipline with potentially
limitless applications in clinical practice and research [2, 3].
The strengths of this postprocessing tool, however, have been
mainly demonstrated in oncology imaging, where radiomics
provides a comprehensive noninvasive characterization of
the whole tumor, defining what it has been named the
radiomics signature of the tumor [3]. Biopsy, which certainly
remains central in breast cancer management, cannot be
representative of the tumor entirety, whose characterization
is mandatory for a thorough understanding of the tumor
behavior with respect to treatment response particularly.
The studies presented in our narrative review have shown
that radiomics is promising in the prediction of malignancy,
response to NAC, prognostic factors, molecular subtypes,
and risk of recurrence. Results have also suggested that
the integration of quantitative information with clinical,
histological, and genomic data is key in the era of per-
sonalized treatments [3]. However, the application of the
proposed radiomics approaches in clinical practice is ham-
pered by the lack of knowledge of its basic concepts among
radiologists and by the limited availability of efficient and
standardized systems of feature extraction and data sharing.
Furthermore, given that the majority of radiomics studies is
retrospective and with a relatively small simple size, larger
prospective studies are needed to validate these preliminary
results.

In conclusion, we believe that the definition of a breast
cancer radiomics signature could support clinicians to choose
the best treatment option, assigning radiologist a central role
in breast cancer management.
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