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Abstract

Fluorescent cytometry refers to the quantification of cell physical properties and surface bio-

markers using fluorescently-tagged antibodies. The generally preferred techniques to per-

form such measurements are flow cytometry, which performs rapid single cell analysis by

flowing cells one-by-one through a channel, and microscopy, which eliminates the complex-

ity of the flow channel, offering multi-cell analysis at a lesser throughput. Low-magnification

image-based cytometers, also called “cell astronomy” systems, hold promise of simulta-

neously achieving both instrumental simplicity and high throughput. In this magnification

regime, a single cell is mapped to a handful of pixels in the image. While very attractive, this

idea has, so far, not been proven to yield quantitative results of cell-labeling, mainly due to

the poor signal-to-noise ratio present in those images and to partial volume effects. In this

work we present a cell astronomy system that, when coupled with custom-developed algo-

rithms, is able to quantify cell intensities and diameters reliably. We showcase the system

using calibrated MESF beads and fluorescently stained leukocytes, achieving good popula-

tion identification in both cases. The main contribution of the proposed system is in the

development of a novel algorithm, H-EM, that enables inter-cluster separation at a very low

magnification regime (2x). Such algorithm provides more accurate brightness estimates

than DAOSTORM when compared to manual analysis, while fitting cell location, brightness,

diameter, and background level concurrently. The algorithm first performs Fisher discrimi-

nant analysis to detect bright spots. From each spot an expectation-maximization algorithm

is initialized over a heterogeneous mixture model (H-EM), this algorithm recovers both the

cell fluorescence and diameter with sub-pixel accuracy while discriminating the background

noise. Finally, a recursive splitting procedure is applied to discern individual cells in cell

clusters.
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Introduction

The focus of cytometry is to classify cell types by analyzing physical and molecular biomarkers.

Flow cytometers, the preferred instrument for cytometry, utilize photometry techniques to

measure cell biomarkers, such as cell diameter and antigen expression, through scattering and

fluorescence interactions with laser beams [1]. Cell diameter is usually estimated by measuring

the amount of light scattered in the direction of the light beam [1], whereas the expression of

specific antigens is estimated by measuring the light emitted by fluorophores bound to such

antigens [1]. Even with the development of personal cytometers, cytometry faces challenges

including instrumental cost, complexity, and inability to distinguish cell clusters.

An alternative to flow cytometry is fluorescent microscopy and slide scanners to estimate

the same physical and biological parameters. Microscopy has made remarkable advances in

quantitative molecular detection at typical magnifications (>10x) and has even moved past the

diffraction limit for single molecule detection [2]. However, in these magnification regimes, a

limited number of cells can be simultaneously imaged per field of view, restricting the

throughput of the system.

For many clinically relevant cytometric assays, such as CD3/CD4 counts for monitoring

HIV progression, the required clinically actionable information is limited to cell diameter and

molecular biomarker expression. For these situations high magnification microscopy, which

provides a window into cell morphology, is not required. Shapiro et al. proposed replacing

flow cytometry with celular astronomy (imaging cytometry conducted at low magnification,

around 4x), due to the inherent lower instrumental complexity [3, 4]. Despite reducing hard-

ware complexity, image quantification at low magnifications poses image analysis problems

not typical for higher magnification microscopy such as a) the finite discretization of cells into

a small number of pixels, which leads to significant partial volume effects; b) the presence of

unbound fluorophores due to sample preparation protocols that do not include wash steps,

decreasing the contrast between the signal and the background; c) low fluorescence intensities,

which, in combination with the image noise and the background fluorescence, creates a low

SNR scenario; and d) cells may be clustered together, complicating the identification and

quantification of individual cells. Given the promise of cell astronomy for improving access to

clinical cytometry in low-resource settings, these image analysis challenges motivate the devel-

opment of an automated computer vision algorithm to reliably analyze such low-magnifica-

tion images. Powered by such algorithms, cell astronomy may therefore by expanded to more

advanced cytometric applications.

An automated algorithm for cell astronomy needs to solve the following tasks: a) locating

cells in the image, a task often referred to as “spot detection”; b) estimating the brightness of

the cells, a task referred to as photometry; c) estimating the diameter of the cell; and d) finding

spots that correspond to multiple cells in close physical proximity to each other, and if such is

the case, splitting them into individual events (often referred to as “split and merge”). To solve

these challenges, an image processing pipeline was developed which is illustrated in Fig 1. For

the initial task of spot detection, we employ standard algorithms from this widely studied topic

in automated fluorescence microscopy quantification [5–12]. This task involves the identifica-

tion of each spot in the image, usually by returning a coordinate related to the spot location or

a bounding box. A review by I. Smal et al [5] has shown that supervised machine learning

based spot detection methods usually outperform unsupervised ones. Motivated by these

results, we have incorporated a Fisher discriminant analysis-based spot detector to the pro-

posed pipeline. If only the presence of cells is needed for the cytometry assay, spot-detection

techniques might suffice, as is the case in the diagnosis of infectious diseases by means of

CD4+ T cell counting [13]. However, the diagnosis of other conditions such as leukemia

H-EM: Cell diameter and intensity quantification in low-resolution imaging cytometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0222265 September 12, 2019 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0222265


requires the analysis of multiple cell biomarkers to adequately distinguish leukocytes cell types

by means of a combination of their physical and molecular biomarkers [14], which cannot be

obtained using spot detection techniques alone.

The second task is to perform photometry of the under resolved spots detected in the first

step of the algorithmic pipeline. We build upon known photometry techniques for the analysis

of astronomy images to perform fluorescence and diameter analysis of every bright spot in our

images. Typical photometry algorithms assume that every bright spot is the result of observing

an unresolved object through a point spread function (PSF) and use an estimate of the point

spread function to fit the intensity of every detected bright spot. These kind of photometry

algorithms help estimate the luminosity, distance, or chemical composition of astronomical

objects [15]. However, they do not typically estimate the diameter of the object since the

underlying assumption is that objects are completely unresolved. The most notable example of

this family of algorithms is DAOPHOT [16]. This algorithm performs photometry by first cal-

culating the PSF empirically and then fits the location and intensity of every star. For the esti-

mation of the PSF, DAOPHOT considers the width of the gaussian function as a parameter to

estimate. Once the PSF is estimated, DAOPHOT only fits the location and brightness of each

star, leaving out information that would be useful for cellular analysis such as the spot (cell)

diameter.

In microscopy, PSF fitting has been widely used in super-resolution microscopy to locate

molecules with super resolution accuracy [2, 17–20]. Following a similar approach to photom-

etry techniques for astronomy images, super-resolution location algorithms perform a spot

detection step and then fit an approximation of the PSF to each spot, based on the underlying

assumption that each observed spot is the result of applying the point spread function to an

unresolved molecule. The super-resolution location accuracy is achieved since the fitted PSF

has higher resolution than the image and the fitting is performed in the PSF space [21]. Con-

trary to PSF fitting in astronomy, the main goal in super-resolution microscopy is to have a

highly accurate estimate of the location of each molecule; because of such narrow goals, some

authors go as far as to state that fitting a gaussian approximation of the PSF can provide infor-

mation beyond the desired location of the particle center, such as the amplitude and width of

each spot [19].

In recent years, approaches related to the one described have been reported in the field

of super-resolution and single-molecule microscopy [22–24]. While photometry in both

Fig 1. Graphical overview of the proposed approach. The method first detects bright spots using an LDA classifier, then, a model comprised

of a gaussian and an uniform distribution is fitted to an image patch around each cell. Finally, the relative contribution of the gaussian and

uniform distribution is used to compute the fluorescence intensity, while the variance of the gaussian distribution is used as a diameter estimate.

These two features enable the creation of scatter plots similar to the ones resulting from flow cytometry analysis.

https://doi.org/10.1371/journal.pone.0222265.g001
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astronomy and super-resolution microscopy are well studied, their basic premise, that the

object being measured is unresolved (i.e., its diameter is mapped to less than a pixel), does not

hold for accurate quantification of cells in cellular astronomy—therefore, the above mentioned

algorithms are not readily applicable to the problem addressed in this paper. Under cellular

astronomy regimes, the cell is imaged to a few number of pixels, which enables the estimation

of cell diameter, an important cell biomarker.

In the field of imaging cytometry, several methods for detecting cell shape and fluorescence

have been recently described [25–27]; however, these approaches require higher magnification

(e.g. 10x). The diameter of cells on the imaging sensor in this technique are much larger than

in the cell astronomy regime, and thus the required fitting algorithms are relatively simple.

The goal of the proposed algorithmic pipeline is to mimic the cell biomarker analysis con-

ducted by a flow cytometer, with a higher throughput than that allowed by high magnification

cell cytometers. Our method consists of two distinct processes: first, events (bright spots) in

the image are detected using Linear Discriminant Analysis and classic sliding window tech-

niques [5], and second, detected events are analyzed using the H-EM algorithm to enable

quantification of fluorescence intensity and estimation of the physical diameter. The H-EM

algorithm performs expectation maximizations (EM) over a heterogeneous mixture model

and has two main novel contributions. First, it uses a uniform distribution to model image

noise locally while simultaneously fitting the bright spot with a gaussian distribution. Second,

the EM model splits each detection event recursively according to information in the image in

order to separate cell clusters into individual cells. This recursive process stops when the

Bayesian information criterion does not decrease below a given threshold that is estimated

using cross validation.

Finally, the simultaneous estimation of fluorescence intensity and physical diameter enables

the differentiation of monocytes, lymphocytes, and granulocytes in images of CD45 labeled

white blood cells. Such differentiation is not possible using only fluorescence information,

since the marker is non-specific for these cell types.

Materials and methods

Microbeads

To demonstrate initial proof-of-concept of the pipeline, microbeads were used as cell surro-

gates, since they are widely used in flow cytometry to perform quality control, optimize flow

cytometer parameters, and measure sample concentration. Their popularity is attributed to

their uniformity in diameter and fluorescence intensity, which removes biological sources of

variability from the sample. In this study, MESF beads (molecular equivalence of soluble fluo-

rochrome, Bangs Laboratories, Indiana, USA) of fluorescent levels 2, 3, and 4, and diameter

between 7.1 and 7.9 μm, were used to characterize the accuracy of fluorescent intensity and

physical diameter estimation results of the proposed approach. A drop of beads at a concentra-

tion of 2.0e6 particles per mL was placed in a microscopy slide and sealed with a cover slip and

nail polish.

Cell controls and sample preparation

Immunophenotyping controls, stabilized blood cell samples that are also widely used in flow

cytometry due to their characterized levels of cell types, were used to evaluate the algorithm

pipeline in a clinically-relevant use case. CD-Chex Plus (Streck, Omaha, NE) samples were

lysed to remove red blood cells and FITC-labeled fluorescent anti-CD45 antibodies following

standard protocols. Specifically, two preparations of 500 microliters (2.72e4 white blood cells

per microliter) of Streck CD-Chex Plus normal lymphocyte suspension was added to 25
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microliters (0.3 micrograms) of FITC-labeled anti-CD45 antibody (AbCam Bio, Cambridge,

MA) and incubated at room temperature in the dark for 25 minutes. After incubation, the

samples were transferred to 5 mL of 1X red blood cell (RBC) lysis buffer (eBioscience Inc.,

San Diego, CA) and incubated for 12 minutes at room temperature. The lysis reaction was

quenched by diluting the sample with 9 mL of flow cytometry buffer (eBioscience Inc., San

Diego, CA), after which the cell samples were isolated by centrifugation at 500 x g at room

temperature for 5 minutes followed by decanting of the supernatent and resuspension in 9 mL

of flow buffer, twice, and finally resuspended in 500 microliters of flow buffer to obtain the

original cell concentration. Both samples were combined and filtered to yield 1 mL with an

approximate final cell concentration of 5-10e6 cells per mL. Prior to cell sorting, sample was

diluted with 0.5 mL of flow buffer. Granulocytes, monocytes, and lymphocytes were sorted to

obtain a cell-subtype reference standard at the Koch Institute Flow Cytometry Core at the

Massachusetts Institute of Technology on a FACS Aria III (BD Biosciences, San Jose, CA) run-

ning BD FACS Diva software. The cell sorts were split into 2 portions. The first was used for

imaging and the second was re-sorted to verify purity of the cell population. The cell control

had a population of 7.7% monocytes, 36.0% lymphocytes and 51.4% granulocytes. Sorted sam-

ples of lymphocytes, monocytes, and granulocytes were concentrated by centrifugation at 500

x g for 5 minutes at room temperature. To prepare samples for imaging, 10 microliters of sam-

ple was pipetted onto cleaned microscope slides and covered with a coverslip. Two images for

each of the 5 fields of view were imaged with 5 second integration time, observing an average

of either 897 granulocytes, 173 monocytes, or 942 lymphocytes per field of view (FOV). To

demonstrate the performance of the imaging and analysis pipeline, we used the proposed

H-EM algorithm to analyze the proposed dataset, which took an average of 10.12 seconds per

FOV, and compared the results to standard photometry algorithms, and flow cytometry.

Microscope

All samples were imaged using a custom-built epi-fluorescence microscope with a a 520 nm

high power LED illuminator (UHP-T-520-EP Prizmatix, Holon, Israel). The CCD sensor was

a 2048 by 2048 pixel 14 bit CCD camera (Flex 1500, Spot Imaging) with a pixel size of 7.4 μm.

Each image was acquired using an exposure time of 10 seconds, a gain factor of 1, and a 4x,

0.13 numerical aperture fluorite objective (MVX10, Olympus) coupled to a 0.63x CCD cou-

pler. The resulting total magnification of the system is approximately 2.52x, and the image res-

olution is approximately 3 μm per pixel. A diagram of the system is shown in Fig 2.

Spot detection

The spot detection algorithm uses a sliding window approach where each window is classified

for the presence or absence of a spot. Following the work of [5] the Linear Discriminant Analy-

sis (LDA) algorithm was chosen because it provides a good balance between classification per-

formance, evaluation speed, and conceptual complexity. The classification algorithm is trained

using a set of manually labeled spot locations. Image patches around each cell location are

extracted and normalized with respect to the intensity levels. The chosen patch size was of

15x15 pixels. The resulting pixel values are used as the patch descriptor. This normalization

strategy is selected because it generates similar descriptors regardless of the cell fluorescence

level. The resulting models can be found in Fig 3. After image acquisition, the classifier is

applied to every possible 9x9 image window. For each patch, the previously described descrip-

tor is extracted in order to find the class with the highest posterior probability given the

learned mean and covariance matrix of each class. Once the LDA algorithm is applied to every

extracted descriptor, a threshold is applied to the resulting probability map, resulting in a
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binary map in which each spot represents one or more objects. This threshold is set using

cross validation to minimize detection of false positives while having a true positive rate above

99%.

Heterogeneous EM

Fluorescence intensity and diameter quantification is carried out for each detected spot using

a novel variant of the EM algorithm. This new variant fits one gaussian distribution to each

detected spot and a uniform distribution to the background within a small patch. Each

Fig 2. Microscope system. To achieve low magnification and large field of view we used a 2x MVX10 Olympus

Objective, a high-power Prizmatix LED and a Flex 1500 Spot Camera. The total maginification of the system is 2.52x,

with a resolution of 3μm per pixel.

https://doi.org/10.1371/journal.pone.0222265.g002

Fig 3. LDA prototypes for cell and background and mesh showing the topology of a cell. The images show the result of averaging patches

containing a cell in the center (left), and containing background information (middle). Cells show a gaussian-like distribution while noise

follows a uniform distribution (right).

https://doi.org/10.1371/journal.pone.0222265.g003

H-EM: Cell diameter and intensity quantification in low-resolution imaging cytometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0222265 September 12, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0222265.g002
https://doi.org/10.1371/journal.pone.0222265.g003
https://doi.org/10.1371/journal.pone.0222265


gaussian distribution enables signal quantification while the uniform distribution models the

local background level which, if the patch is small enough, should tend towards uniformity.

Each patch is assumed to be generated by a probability density function representing the

likelihood of a pixel being hit by a photon. In this approach we model the probability density

function as a mixture model where each cell and the background are represented by a compo-

nent of the mixture. Under the assumption that micron sized cells in low magnification images

have a gaussian appearance, recovering cell fluorescence and diameter is equivalent to fitting a

gaussian PDF to the cell and analyzing the fitted parameters. The integral of the likelihood

function applied to the image was used as the surrogate for fluorescence intensity and the full

width at half maximum of the gaussian function as the surrogate for cell diameter; this fitting

was carried out using a modification to the well described EM algorithm [28].

Traditionally, the EM algorithm is performed using a mixture of gaussians. However, such

model does not fit the reality of the images which exhibit a uniform random background

noise, as shown in Fig 3. We have therefore modified the traditional EM algorithm to include a

uniform distribution in addition to the mixture of gaussians, in order to account for image

noise. The EM algorithm is performed by calculating the contribution of each distribution to

each pixel. Traditionally, this contribution is calculated for each photon reaching a pixel,

which would require calculating the contribution for a pixel as many times as the intensity

level of the pixel. Instead of following this redundant approach, the contribution is calculated

once per pixel and, when the maximization step is performed, the contribution of each pixel is

multiplied by its intensity level I(x).

To model a bright spot and background, the contributing functions are a gaussian PDF (Eq

1) and a uniform PDF (Eq 2), respectively. This way, if the algorithm is fitting N gaussians, fc
will be a normal distribution for c from 1 to N, and fc will be a uniform distribution for N + 1.

fcðxÞ ¼
e� 1

2
ðx� mÞTS� 1ðx� mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
2
jSj

q ; c ¼ 1‥N ð1Þ

fcðxÞ ¼
1

widthim � heightim
if c ¼ N þ 1; ð2Þ

in the equations, μ represents the mean of the distribution, S denotes the covariance matrix,

and widthim and heightim represent the image dimensions. In practice, when processing a field

of view, the algorithm fits a single uniform distribution to the whole image and a gaussian dis-

tribution to each cell; although the fitting algorithm is not limited to this global optimization

approach, this simplifies the recursive split operations. When applying this algorithm, the user

should decide whether to apply it globally, assuming a uniform background, or locally so it can

handle heterogeneity in the background (e.g., unbound aggregates of fluorescent labels or

debris). The expectation step measures the contribution of each component of the mixture to

the generation of population elements. In our case, there is only one population element per

pixel and the mixture of probability density functions is heterogeneous, having a gaussian dis-

tribution for each cell, and one uniform distribution to model image noise. Eq 3 summarizes

this process, where πc represents the mixing factor and θi represents the parameters of the

probability density function i.

zcðxÞ ¼
pcfcðxjycÞP
npnfnðxjynÞ

ð3Þ
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The maximization step fits each distribution to maximize its contribution over the data it is

modeling. When maximizing the uniform distribution only Eq 4 has to be computed, whereas

when maximizing the gaussian distributions Eqs 4, 5, and 6 have to be computed in order to

update the gaussian mixture parameters.

piþ1

c ¼

P
nzcðxnÞIðxnÞP

nIðxnÞ
ð4Þ

mc ¼

P
nzcðxnÞIðxnÞxnP
nzcðxnÞIðxnÞ

ð5Þ

Sc ¼

P
nzcðxnÞIðxnÞðxn � mcÞðxn � mcÞ

0

P
nzcðxnÞIðxnÞ

ð6Þ

After the iterative process has converged, the likelihood over each of the gaussian compo-

nents is computed, which represents the pixel-wise cell probability. This process creates a

probability map that, when multiplied by the image, outputs a new image in which only cells

are present. The last remaining step involves summing pixel intensities over each cell domain

which gives the final fluorescence estimation. This process is summarized in Eq 7. In order to

estimate the diameter a cell, the pixel size was multiplied by the full width at half maximum of

the fitted gaussian distribution.

Fluorescencec ¼
X

x

zcðxÞIðxÞ ð7Þ

Outlier analysis

Since white blood cells and small cell clusters follow certain shape and size constraints, any

event that does not conform to these constraints can reasonably be discarded. The size and

shape of the event is measured through the covariance matrix of each fitted gaussian. There

are three cases that indicate that a particular event is invalid. First, when the variance along

some axis is very small, an extreme case would be when 3σ< 1, meaning that the gaussian

does not even cover a single pixel. Second, opposite to the first case, when a gaussian PDF cov-

ers a section of the image larger than any expected cell or any cell cluster with more than three

cells, which occurs when the algorithm is attempting to fit the background instead of a single

bright spot. Third, when the EM algorithm fits a correlated set of pixels wherein the resulting

covariance is degenerate, which may arise from fitting a small background region using a

gaussian distribution. All these cases are rejected from further processing.

Siding window classifiers often detect clusters of few cells as a single event. To ensure all

clustered spots are properly analyzed, a post processing step is introduced that takes advantage

of our fitting procedure. This step recursively splits the gaussian distributions of clusters in

order to fit each individual spot. Contrary to many split and merge implementations, our algo-

rithm is completely deterministic since it only uses image information to calculate split magni-

tude and orientation. To calculate the direction and magnitude of the splitting, we assume that

bright spots have similar shape and brightness. When one gaussian distribution is fitting two

bright spots in close proximity, the mean of the distribution lies between both bright spots, the

direction of maximum variance is the axis that goes through both spot centers and the variance

of the gaussian is a function of the distance between the bright spots. Eigenvector decomposi-

tion of the covariance matrix allows for the computation of the split direction and magnitude.

The split direction is the one in which the fluorescence has the largest variance, that is the

eigenvector with the largest eigenvalue. The split magnitude is calculated such that two
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separate equal gaussian spots have been fitted by a single gaussian. The split magnitude is the

distance between the fitted gaussian mean, and each of the real gaussian spots means; this can

be expressed as the standard deviation along the axis of largest variance or, in other words, the

square root of the largest eigenvalue. After splitting, the H-EM algorithm is re-initialized, but

with two gaussian functions, each with their different covariance matrix, thus enabling the

analysis of different sized cells. The splitting method is applied recursively until convergence,

measured using the Bayesian Information Criterion (BIC) [29]. For each iteration, the gauss-

ian with the largest eigenvalue is split and the BIC calculated before and after the split are com-

pared. When the difference between the BIC of the current and previous iteration is below a

certain threshold, the splitting of the gaussian PDF is halted and the results prior to the latest

split operation are kept for further processing.

Results

Algorithm performance

To validate the algorithm performance with respect to other microscopy analysis algorithms,

and showcase the feasibility of cell astronomy, experiments with both synthetic beads and sta-

bilized leukocytes were conducted.

Detection performance. The detection performance on unsorted cell images was quanti-

fied by comparing the output of the classifier to the manual annotations of cell locations pro-

vided by an expert. To carry out the comparison, cell and background patches were extracted

and the algorithm was evaluated using cross validation. The resulting TPR (true positive rate)

and FPR (false positive rate) were 0.9780 and 5.1629e-04, respectively.

Photometry performance comparison. We compared our fluorescence intensity estima-

tion to that of DAOSTORM in sorted cell samples. DAOSTORM was used as reference since it

is based in DAOPHOT [16], which is one of the most cited photometry algorithms applied in

astronomy, and is one of the best performing algorithms in a recent evaluation of software

packages for single-molecule localization microscopy [2]. We used the correlation coefficient

among both methods as the figure of merit, since fluorescence does not need to be estimated

in an absolute scale for cytometry analyses. To this end, we prepared three kinds of samples,

each containing a pure population of either granulocytes, monocytes, or lymphocytes. Four

fields of view were acquired for each sample. When analyzing the samples with DAOSTORM,

a background sigma of 17 and a threshold of 4 was used for the spot detection routine.

The scatter plots in Fig 4 show the correlation between our approach and DAOSTORM

when estimating the fluorescence intensity of granulocytes, monocytes, and lymphocytes. The

correlation coefficients are 0.86, 0.75, and 0.71 respectively. The average correlation across

cells is 0.77. Such moderate correlation coefficients can be due to the fact that DAOSTORM is

designed to account for unresolved objects, while the cells imaged by our system span several

pixels. This explanation is coherent with the fact that the diameter of granulocytes range from

10-15 μm, while the diameter of monocytes ranges from 15-30μm and lymphocytes range

from 7-15 μm. The correlation between our method and DAOSTORM is larger when the vari-

ability in cell diameter is smaller. Since DAOSTORM uses a single PSF to fit all bright spots,

variations in spot size will increase the fitting error, and subsequently increase the error in esti-

mated fluorescence.

To assert which method is generating more reliable results, we manually analyzed two lym-

phocyte subsets using aperture photometry. The first subset is comprised of the 30 cells for

which both methods disagreed the most, and the second subset is comprised of 30 random

cells. The first subset is aimed at deciding whether DAOPHOT tends to underestimate the

fluorescence of lymphocytes, or our approach tends to overestimate it, while the second subset
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will provide an overall accuracy estimate when compared to manual analysis. The analysis of

the 30 cells with the most disagreement shows that our approach has an error rate of 10.47%

while DAOPHOT has 67.27%, which indicates that DAOPHOT is underestimating the fluo-

rescence of a significant number of cells. On the second subset, the analysis of 30 random cells

shows that our approach has an overall error rate of 8.8% while DAOPHOT has an error rate

of 19.74%.

Splitting performance. The splitting performance on unsorted cell images was quantified

by comparing manual annotations of clusters of two or three cells to the output of the algo-

rithm. The algorithm was initialized with a single gaussian in the center of the bounding

box enclosing the cluster. After this initial setup the recursive splitting algorithm was run until

convergence. The results indicated that 80.18% of the clusters were correctly analyzed. Fig 5

illustrates some challenging samples that present nonuniform cell diameters and fluorescence

levels.

Application to cell astronomy

After showing that the proposed image analysis pipeline can detect events, estimate their fluo-

rescence better than standard algorithms, and recursively split clusters, we proceeded to char-

acterize its performance with calibration beads and a well-characterized biological sample.

Bead analysis performance. We imaged and analyzed samples containing beads of MESF

levels 2, 3, and 4, with the goal of characterizing inter-cluster separation and the influence of

Fig 4. Photometry comparisons. Scatter plots showing the correlation between our approach and DAOSTORM for granulocyte, monocyte, and

lymphocyte populations. The blue lines in the plots represent the linear fit of the two measurements.

https://doi.org/10.1371/journal.pone.0222265.g004
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signal intensity on diameter estimation. Three samples, one for each bead intensity level, were

prepared and imaged individually. The mean diameters of the beads was of 7.52μm, with a

coefficient of variation of 4.8%, as specified by the manufacturer via Coulter Principle.

Table 1 shows the mean fluorescences, diameters, and image SNRs of the analyzed bead

groups. The estimated physical diameter for all the three bead types falls in the expected range

specified by the manufacturer, 7.1–7.9μm. The average recovered bead diameter is 7.6μm with

a coefficient of variation of 17.44%. The data shows that there is 5.33% increase in the esti-

mated diameter of MESF level 2 beads with respect to MESF level 4 beads, probably due to the

small SNR of those images.

Finally, the correlation coefficient between the estimated fluorescence and the reference

bead MESF fluorescence is R2 = 0.9998 (p = 0.008), showing good linearity against the refer-

ence standard. The coefficients of variation of each bead type are larger than those of the refer-

ence standard, being of 49%, 52%, and 42% for MESF beads of levels 2, 3, and 4, respectively.

Despite having large CVs, the three bead populations can be distinguished, as shown intui-

tively in Fig 6 and numerically through the hypothesis testing performed in Table 2.

Cell population analysis performance. We sorted the biological sample into granulo-

cytes, monocytes, and lymphocytes using flow cytometry. These pure population samples were

used to compare the measurements from the cell astronomy system (microscope and analysis

pipeline) to the reference standard flow cytometer.

Fig 7 shows the resulting scatter plots obtained from the cell astronomy system and the flow

cytometer. This test underlines the importance of the diameter estimation when analyzing cell

samples; because the CD45 fluorescence intensity of the monocyte population falls between

the intensity of the granulocytes and lymphocytes, it is unfeasible to identify the three groups

using fluorescence alone. The scatter plots are not identical due to the different origin of the

measurements, which is particularly evident for the diameter measurements. Indeed, flow

cytometry measures forward cell scatter, and uses such measurement as a surrogate for

Fig 5. Clusters may be composed of cells having different diameters and fluorescences. In the first two examples

the cells were identified correctly, but in the third example the algorithm overfitted 4 cells instead of 2. The mean of the

fitted gaussians are represented by red dots.

https://doi.org/10.1371/journal.pone.0222265.g005

Table 1. Mean fluorescence and diameter of different groups of beads. Reference MESF refers to bead intensity as measured by the manufacturer. The coefficients of

variation for each measurement are shown in parenthesis.

MESF Reference MESF SNR Mean Fluorescence Diameter (μm)

4 624,803 (0.42%) 102.0 4851.3 (42.5%) 7.5 (16.7%)

3 138,201 (1.24%) 23.5 1197.4 (52.1%) 7.7 (16.0%)

2 18,882 (2.07%) 7.8 372.3 (42.5%) 7.9 (18.6%)

https://doi.org/10.1371/journal.pone.0222265.t001
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Fig 6. Bead performance. Beads of MESF levels 2, 3, and 4 were analyzed, and the estimated fluorescences were

combined into a single histogram. This histogram shows the algorithm is capable of separating the three bead types

with little overlap between the histogram of different MESF levels.

https://doi.org/10.1371/journal.pone.0222265.g006

Table 2. Results of t-test and Cohen’s d for the fluorescence intensity of MESF level 2 against MESF level 3, and

MESF level 3 against MESF level 4.

Populations p-value t-value Cohen’s d

2-3 MESF < 0.0001 -61.71 -1.75

3-4 MESF < 0.0001 -114.80 -2.30

https://doi.org/10.1371/journal.pone.0222265.t002

Fig 7. Cell performance. Sorted samples were analyzed using a flow cytometer and our approach. The results of the two methods demonstrates

similar relative positions of the 3 cell groups. Monocytes show the largest average diameter while lymphocytes show the largest diameter

variation. Granulocytes present the lowest CD45 fluorescence intensity, while lymphocytes present the highest fluorescence intensity and the

monocyte fluorescence intensity is intermediate to the other two.

https://doi.org/10.1371/journal.pone.0222265.g007
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diameter, whereas the cell astronomy system measures actual diameter. Despite such differ-

ences, three different clusters are observed in both scatter plots, showing the ability to distin-

guish leukocyte subtypes using both systems.

Measured CD45 fluorescence intensity was compared to previous reports [30], which used a

similar flow cytometer (FACSCanto II, Becton Dickinson Bioscience, San Jose, CA, USA). Both

studies show that lymphocytes have the highest CD45 fluorescence intensity while granulocytes

have the lowest. There is also agreement on the relative position of the three groups; lympho-

cytes and granulocytes show little overlap, while monocytes fall between these two groups. The

diameters estimated by our algorithm were compared to the expected relative cell diameters

reported by [31]. Our results agree that monocytes have the highest average diameter, with

mean and standard deviation of 16.1 ± 0.67μm, lymphocytes have the highest diameter varia-

tion 14.0 ± 1.31μm, and neutrophils (the most abundant kind of granulocytes) have a diameter

smaller than monocytes and similar to the largest half of the lymphocytes, 15.5 ± 0.56μm.

Discussion

Cellular astronomy was proposed to achieve high-throughput imaging cytometry; however,

the interpretation of such low-resolution images of fluorescent cells with the goal of estimating

their diameter and fluorescent labeling is a challenging task. In this work we have proposed an

algorithmic pipeline for image analysis and interpretation, enabling simultaneous accurate

photometry and estimation of the cell diameter.

To detect and identify cells in the image we have used a model-based approach that shows a

high true positive rate (TPR) of 0.9780 while rejecting irrelevant events, with a false positive

rate (FPR) of 5.1629e-04. Such model-based cell detection method is on par with state of the

art methods [5]. The high true positive rate ensures that the majority of the cells are located,

while having a low false positive rate ensures that only cells or small cell clusters are detected.

We have shown that the proposed pipeline can estimate fluorescence with lower error, with

respect to manual photometry, than DAOSTORM. Indeed, the results suggests that DAO-

STORM has the tendency to underestimate the fluorescence of cells. Additional tests using

microbeads show that the proposed approach can estimate the fluorescence intensity of MESF

beads of levels 2, 3, and 4 with high linearity and achieve inter-cluster separation.

Further, the system is able to recover the diameter of the objects under inspection. The

average recovered bead size is of 7.6μm while the reference standard is of 7.5μm. The coeffi-

cient of variation of bead diameters estimated with our system is larger than that of the specifi-

cations of the beads used regularly for flow calibration. Large coefficients of variation can be

explained by the low-resolution images we acquire. The diameter of a 7.5μm object is mapped

to a low number of pixels (3-4). An error of one pixel in diameter estimation incurs in an error

between 25% and 33%. Due to partial volume effects, such error is to be expected. It is also pos-

sible to recover the diameter of cells, which, in our system are 14.0 ± 1.3μm for lymphocytes,

15.5 ± 0.56μm for granulocytes and 16.12 ± 0.67μm for monocytes. Standard diameters for

such cells are 7–12μm for lymphocytes, 10–20μm for granulocytes and 10–18μm for mono-

cytes [32]. Granulocytes and monocytes are within the expected range. Lymphocytes appear

larger in our system than the size that is cited in the literature. Such effect could be due to the

particularities of the sample, the sample preparation method, or the H-EM algorithm. Discern-

ing between such explanations require reference standard size measurements that are not cur-

rently available.

We have described a method to refine detections for clustered cells in contrast to the com-

mon approach in flow cytometry which excludes doublets from the final analysis [1]. The like-

lihood of encountering doublets or triplets using cellular astronomy may also be tuned by
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carefully selecting a sample preparation methodology. However, there is a tradeoff between

the probability of doublets appearing and the density to which the sample can be prepared,

which has implications on instrument throughput.

Using size and fluorescence estimates, we compared the results of using our approach to

those of using a flow cytometer. Fig 7 shows the 3 differentiated cell groups for both our system

and the flow cytometer. As flow cytometry does not measure the same physical properties as

our algorithm, there is an understandable difference between the two approaches. However,

the three groups are clearly differentiated in both approaches.

Conclusion

The estimation of cell fluorescence and size from cellular astronomy images is challenging due

to the inherent low-resolution properties of the images, different cell sizes, and the appearance

of small cell clusters. We have developed H-EM, an algorithm that estimates cell size and fluo-

rescence, and is robust to such image properties. We have performed extensive evaluation of

the proposed method using MESF beads and fluorescent stained leukocytes, showing that

H-EM’s intensity estimation is more accurate to manual measurements than that of estab-

lished algorithms, such as DAOSTORM. Further, H-EM recovers cell diameter estimations,

enabling cell cluster separation.

Our future work will focus on the development of fitting methods powerful enough to han-

dle more challenging scenarios such as dark field images, where the background is noisier

because of the light scattered by the debris. An algorithm that presents a better way of handling

the background would not only increase the brightness and diameter estimation performance

for fluorescence imaging, but also enable its application to a wider set of problems. Another

important improvement would be to use a more configurable shape prior, which would

improve the performance of the algorithm when analyzing non-gaussian shapes which may

appear both in cells and in standard astronomy.
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18. Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle MC, Van De Linde S, et al. rapidSTORM:

accurate, fast open-source software for localization microscopy. Nature methods. 2012; 9(11):1040–

1041. https://doi.org/10.1038/nmeth.2224

19. Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature

Methods. 2012; 9(7):724–726. https://doi.org/10.1038/nmeth.2071

20. Daostorm S. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat methods.

2011; 8:279. https://doi.org/10.1038/nmeth0411-279

21. Bobroff N. Position measurement with a resolution and noise-limited instrument. Review of Scientific

Instruments. 1986; 57(6):1152–1157. https://doi.org/10.1063/1.1138619

22. Stone MB, Shelby SA, Veatch SL. Super-resolution microscopy: shedding light on the cellular plasma

membrane. Chemical reviews. 2017; 117(11):7457–7477. https://doi.org/10.1021/acs.chemrev.

6b00716

23. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, et al. Single particle tracking: from theory

to biophysical applications. Chemical Reviews. 2017; 117(11):7331–7376. https://doi.org/10.1021/acs.

chemrev.6b00815

H-EM: Cell diameter and intensity quantification in low-resolution imaging cytometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0222265 September 12, 2019 15 / 16

https://doi.org/10.1038/nmeth.3442
https://doi.org/10.1038/nmeth.3442
https://doi.org/10.1109/TMI.2009.2025127
https://doi.org/10.1109/TMI.2009.2025127
https://doi.org/10.1109/TIP.2005.852787
https://doi.org/10.1109/TIP.2006.872323
https://doi.org/10.1109/TIP.2006.872323
https://doi.org/10.1086/131977
https://doi.org/10.1038/nmeth.2844
https://doi.org/10.1038/nmeth.2224
https://doi.org/10.1038/nmeth.2071
https://doi.org/10.1038/nmeth0411-279
https://doi.org/10.1063/1.1138619
https://doi.org/10.1021/acs.chemrev.6b00716
https://doi.org/10.1021/acs.chemrev.6b00716
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1371/journal.pone.0222265


24. Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. The

Journal of cell biology. 2010; 190(2):165–175. https://doi.org/10.1083/jcb.201002018

25. Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, et al. An open-source solution for advanced

imaging flow cytometry data analysis using machine learning. Methods. 2017; 112:201–210. https://doi.

org/10.1016/j.ymeth.2016.08.018

26. Kuksin D, Kuksin CA, Qiu J, Chan LLY. Cellometer image cytometry as a complementary tool to flow

cytometry for verifying gated cell populations. Analytical biochemistry. 2016; 503:1–7. https://doi.org/

10.1016/j.ab.2016.03.010

27. Arifulin E, Bragina E, Kurilo L, Sheval E. High-throughput analysis of TUNEL-stained sperm using

image cytometry. Cytometry Part A. 2017; 91(9):854–858.

28. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the royal statistical society Series B (methodological). 1977; p. 1–38.

29. Schwarz G, et al. Estimating the dimension of a model. The annals of statistics. 1978; 6(2):461–464.

https://doi.org/10.1214/aos/1176344136

30. Im M, Chae H, Kim T, Park HH, Lim J, Oh EJ, et al. Comparative quantitative analysis of cluster of differ-

entiation 45 antigen expression on lymphocyte subsets. The Korean journal of laboratory medicine.

2011; 31(3):148–153. https://doi.org/10.3343/kjlm.2011.31.3.148

31. Young B, Woodford P, O’Dowd G. Wheater’s functional histology: a text and colour atlas. Elsevier

Health Sciences; 2013.

32. Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM. Clinical Immunology E-

Book: Principles and Practice. Elsevier Health Sciences; 2018. Available from: https://books.google.

es/books?id=vXVKDwAAQBAJ.

H-EM: Cell diameter and intensity quantification in low-resolution imaging cytometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0222265 September 12, 2019 16 / 16

https://doi.org/10.1083/jcb.201002018
https://doi.org/10.1016/j.ymeth.2016.08.018
https://doi.org/10.1016/j.ymeth.2016.08.018
https://doi.org/10.1016/j.ab.2016.03.010
https://doi.org/10.1016/j.ab.2016.03.010
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.3343/kjlm.2011.31.3.148
https://books.google.es/books?id=vXVKDwAAQBAJ
https://books.google.es/books?id=vXVKDwAAQBAJ
https://doi.org/10.1371/journal.pone.0222265

