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Abstract: The effects of freeze-drying on antioxidant compounds and antioxidant activity 
of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), 
papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon  
Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the 
amounts of total phenolic compounds (TPC), were found between the fresh and freeze-
dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, 
however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. 
Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration 
of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels 
were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) 
radical scavenging and reducing power assays revealed that fresh samples of starfruit and 
mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation 
inhibition measurement, a significant (p < 0.05) but random variation was recorded 
between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic 
acid, a good correlation was established between the result of TPC and antioxidant assays, 
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indicating that phenolics might have been the dominant compounds contributing towards the 
antioxidant activity of the fruits tested. 

Keywords: drying process; fruits antioxidants; bioactive compounds; ascorbic acid; 
HPLC; antioxidant attributes 

 

1. Introduction  

Consumption of some fruits and vegetable is strongly linked with several health benefits due to 
their high nutritional value and medicinal properties [1]. Tropical fruits, being rich in functional 
biaoctives, are valued as one of the potential sources of antioxidants. Antioxidants are believed to 
control and reduce the oxidative damage in foods and bio-molecules by delaying or inhibiting the 
oxidation process caused by reactive oxygen species, thus enhancing the shelf-life and quality of the 
products as well as protecting the biological systems [2]. Antioxidant compounds such as β-carotene, 
ascorbic acid and phenolics play therapeutic and preventive roles against several diseases such as 
aging, inflammation and certain cancers [3,4]. Therefore, increased consumption of tropical fruits has 
been recommended by various health advocates for maintaining good health [5–7]. 

Post-harvest processes such as drying, cutting, storage, packaging, fermentation, and cooking, etc. 
might affect the phenolics composition and antioxidant activity of foods [8–13]. Freeze-drying is a 
process whereby water is removed by dehydration, through sublimation of ice in the materials. It is 
generally recommended for drying of materials containing heat-sensitive antioxidant components such 
as tocopherols, ascorbic acid, carotenoids and plant phenolics. Freeze-drying is known to extend the 
shelf-life of foods by preventing the microbial growth and retarding lipid oxidation [14]. It is also 
applied for long-term storage of foods for the purposes of preserving on industrial scale [8]. 
Freeze-dried products are believed to have the same characteristics as those of fresh ones. As such, 
preservation and retention of the attributes such as shape, appearance, taste, nutrients, porosity, color, 
flavor, texture and biological activity of the fresh samples makes this technique one of the most 
fascinating and applicable process for drying food materials. Nevertheless, longer drying time is 
required due to the freeze-dryer’s lower vapor pressure driving force as compared with that of 
conventional drying methods. Moreover, during freeze-drying treatment, there may be a chance of 
decline in the content of antioxidants due to degradation of certain compounds. Besides, the  
freeze-drying operational cost is also high [15].  

In some previous studies, losses of food vitamins and nutritional value due to freeze-drying have 
been reported [16,17]. It is also evident that the composition of some antioxidants and the antioxidant 
activity of the fruits are affected by freeze-drying [16]. Freeze-drying is used as an alternative to 
preserve the fruit, nevertheless it might influence the antioxidant properties of the samples processed. 
The main objective of the present study was to appraise the effect of freeze-drying on the selected 
antioxidant compounds (total phenolics, ascorbic acid and β-carotene) and antioxidant activity of five 
commonly consumed tropical fruits.  
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2. Results and Discussion  

2.1. Moisture Content 

The results in Table 1 depict the moisture content of the tested tropical fruits on afresh weight (FW) 
basis. Watermelon and muskmelon were found to have the highest moisture content (ca.92%) whilst 
papaya had the lowest (80%). 

Table 1. Common and scientific names and moisture content of tropical fruits. 

Common Name Scientific Name a Moisture (%) 
Starfruit-B10 Averrhoa carambola L. 91.25 ± 0.14 
Mango-Chokanan Mangifera indica L. 88.67 ± 0.44 
Papaya-Foot Long Carica papaya L. 79.75 ± 0.18 
Muskmelon-Sunmelon Cucumis melo L. 92.38 ± 0.17 
Watermelon-redmelon Citruluss lanatus (Thunb.) 92.47 ± 0.12 

a Data given are mean ± standard deviation for three different samples of each fruit, analyzed 
individually in triplicate (n = 3 × 3).  

2.2. Total Phenolic Compounds (TPC) 

The results from the study (Table 2) showed that TPC of fresh and freeze-dried fruits tested  
varied significantly (p < 0.05) ranging from 14 to 181 mg GAE/100 g sample FW. Fresh  
starfruit (181.71 mg GAE/100 g FW) was found to have the highest TPC, followed by fresh  
mango (99.69 mg GAE/100 g FW), papaya (67.76 mg GAE/100 g FW), watermelon  
(29.32 ± mg GAE/100 g FW) and muskmelon (16.71 mg GAE/100 g FW). TPC values reported by 
other researchers for selected tropical fruits varied from the values obtained in this study, Reporting 
the following findings:total phenolics content of acidic starfruit (142.9 mg GAE/100 g FW) and  
sweet starfruit (209.9 mg GAE/100 g FW), mango (56.0 mg GAE/100 g FW) and papaya  
(57.6 mg GAE/100 g FW) [18]. Meanwhile, a higher TPC was reported in mango  
(113 mg GAE/100 g FW) but lower in papaya (54 mg GAE/100 g FW) than the present analysis [10]. 
However, TPC of mango in another study was determined to be 266 mg GAE/100 g FW, significantly 
higher than our data [19]. There was no available data on TPC of fresh muskmelon  
(16.71 mg GAE/100 g FW) and watermelon (29.32 mg GAE/100 g FW). Fresh starfruit contained 
comparable TPC with that of other tropical fruits such as banana (52–231 mg GAE/100 g) and 
pineapple (47–174 mg GAE/100 g) [19,20], however, the amount was still lower than that reported in 
blackberry (417–555 mg GAE/100 g FW). 

Such differences in the results of TPC compared with other researchers may be linked to different 
varieties of fruits and the varying antioxidant extraction methods used. The choice of extracting 
solvents mainly depends on the polarity of the compounds of interest. In the present study, methanol 
was used, which resulted in higher extraction yields of phenolic compounds due to high polarity. The 
TPC of methanolic or ethanolic extracts of Gevuina avellana seed hulls were considerably higher than 
that of acetonic extracts [21]. Moreover, factors such as fruit maturity, agroclimate and post harvest 
storage conditions are known to affect the content of polyphenols in fruits [22–24]. As shown by  
Table 2, TPC content of fresh starfruit, mango, papaya and watermelon were found to be significantly  
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(p < 0.05) higher than that of the freeze-dried samples. The freeze-dried fruits were frozen at −20 °C 
for 24 h and dried under vacuum condition at −50 °C for 3 days before analysis. It is possible that, 
through this freezing process, fruit cells might be disrupted, which decompartmentalised certain 
enzymes, substrates and activators [16,25]. Hence, the increased activity of enzymes upon thawing 
might have caused degradation of some phenolic compounds [25]. According to another study, onions 
subjected to freezing showed reduced levels of flavonols, however, those subjected to freeze-drying 
offered increased amount of flavonols. The increase in flavonol content of freeze-dried onions might 
be attributed to the liberation of phenolic compounds from the matrix due to freeze-drying [8]. On the 
other hand, there were no considerable effects observed on the flavonols of freeze-dried onions stored 
at room temperature during 6 months of storage [8], however a slight increase in flavonols was 
recorded due to different packaging materials used for storage of fresh-cut sliced onions at 1–2 °C 
under darkness [11]. As such, the changes in flavonol content during storage of different foods are not 
clear; the actual amount may increase, decrease or remain unchanged [26]. Such changes are mainly 
linked to the type of post-harvest processing of foods [27]. 

Table 2. Total phenolic compounds of fresh and freeze-dried fruits. 

Fruits Fresh a Freeze-Dried a 
Starfruit 181.71 ± 8.83 bB 137.95 ± 4.31 cC 
Mango 99.69 ± 8.70 dB 76.57 ± 8.11 eC 
Papaya 67.76 ± 7.36 eB 40.84 ± 6.74 fC 
Muskmelon 16.71 ± 1.40 gB 14.97± 1.36 gB 
Watermelon 29.32 ± 1.06 f,gB 15.18 ± 2.95 gC 

a Data expressed in mg GAE/100 g are fresh weight basis. Values denoted with the same small 
letter within the same column are not significantly (p > 0.05) different among fruits tested. Values 
with the same capital letter within the same row are not significantly (p > 0.05) different between 
the fresh and freeze-dried fruits. Data stand as means of three replicates. 

2.3. Ascorbic Acid Content 

Freeze-dried papaya was found to have a significantly (p < 0.05) higher ascorbic acid content 
(16.84 mg/100 g FW) compared to mango (8.34 mg/100 g FW), starfruit (4.67 mg/100 g FW), 
muskmelon (2.75 mg/100 g FW) and watermelon (2.38 mg/100 g FW). Ascorbic acid content for both 
fresh and freeze-dried muskmelon and watermelon were not significantly (p > 0.05) different from one 
another, as shown in Table 3. The results obtained from this study were quite different from those 
reported by other researchers. The ascorbic acid content of fresh starfruit (5.9 mg/100 g FW), mango 
(19.7 mg/100 g FW), papaya (45.2 mg/100 g FW) and watermelon (3.7 mg/100 g FW) are reported in 
the literature [28]. Other researchers also reported a higher ascorbic acid content of 74 mg/100 g and 
151 mg/100 g in papaya [29,30].  

The present experiment reveals that freeze-drying can be used to retain the amount of ascorbic acid 
as the low temperature processing exerts minimal effect on the deterioration of this water soluble 
vitamin. Our result is in agreement with that of a previous study which revealed that ascorbic acid 
content did not vary significantly between the fresh and freeze-dried Sheng-Neu and I-Tien-Hung 
tomatoes [16]. In another study, freeze-drying was found to retain the maximum amount of vitamin C 
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(ascorbic acid) in papaya [31]. However, it is generally accepted that retention of vitamins also 
depends on the nature of foods [32]. 

Table 3. Ascorbic acid content of fresh and freeze-dried fruits. 

Fruits Fresh a Freeze-Dried a 
Starfruit 4.99 ± 0.63 dB 4.67 ± 0.42 dB 
Mango 8.36 ± 2.33 cB 8.34 ± 1.74 cB 
Papaya 16.57 ± 0.36 bB 16.84 ± 2.31 bB 
Muskmelon 2.24 ± 0.35 eB 2.75 ± 0.16 eB 
Watermelon 1.75 ± 0.37 eB 2.38 ± 0.11 eB 

a Data expressed in mg/100 g are fresh weight basis. Values denoted with the same small letter 
within the same column are not significantly (p > 0.05) different among fruits tested. Values with 
the same capital letter within the same row are not significantly (p > 0.05) different between the 
fresh and freeze-dried fruits. Data stand as means of three replicates. 

2.4. β-Carotene Content 

β-Carotene is ubiquitously present in green leafy and yellow-orange fruits and vegetables. It is very 
interesting to note that, the highest β-carotene content was found in fresh mango (660.27 μg/100 g FW). 
This was, however, lower than that found in carrot (6769 μg/100 g) but higher than that of both 
pumpkin (578 μg/100 g) and tomato (365 μg/100 g) [33]. In a study of six cultivars of Indian  
mango and two cultivars of papaya, it was found that the content and bio-availability of β-carotene  
varied among the cultivars tested. Mangoes contained three times more β-carotene than 
papaya [34]. Similarly, the β-carotene content of Black-gold mango was three times higher than that of 
papaya [33]. In addition, the β-carotene content of fruits (peach, papaya, apricot and tangerine) may be 
influenced by the growing conditions, maturity index, post-harvest handling conditions, as well as 
variety or cultivar [35]. The result of the present study revealed that starfruit had the least β-carotene 
content compared to the other fruits tested. This is in agreement with the findings of previous  
studies [23,33] who reported the β-carotene content of starfruit to be 20.8 μg/100 g FW and  
28 μg/100 g FW, respectively. However, the present value was lower than that of starfruit  
(42 μg/100 g FW) [36]. β-carotene content of fresh mango and watermelon varied significantly  
(p < 0.05) from those of freeze-dried samples while no significant differences were observed for other 
fruits (Table 4). Carotenoids are present in lipid membranes or stored in plasma vacuoles [35], 
therefore, it is possible to say that, after degradation of phenolic compounds, second line antioxidants 
such as β-carotene might have been degraded. It was observed that the concentration of β-carotene in 
fresh mango and watermelon was reduced by 26% and 43%, respectively as result of freeze-drying.  

2.5. DPPH (2,2-diphenyl-1-picrylhydrazyl) Radical Scavenging Activity 

Figure 1 shows the antioxidant activity of the methanolic extract of different tropical fruits as 
evaluated by free radical scavenging assay. Starfruit and mango extracts (concentration 5 mg/mL) 
exhibited excellent scavenging effects on DPPH radicals in the range of 87–95%. There were no  
significant (p > 0.05) differences observed for free radical scavenging activity between fresh and 
freeze-dried fruits, except for fresh starfruit, which showed significantly (p < 0.05) higher scavenging 
activity compared to the freeze-dried sample. Similarly, no significant differences in the scavenging 
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ability of fresh and freeze-dried tomatoes at 4 mg/mL were observed [16]. Starfruit is susceptible to 
browning during size reduction and processing. Moreover, the freeze-drying process probably 
enhances the browning reaction. The cut-edge browning is a consequence of enzyme-catalyst 
browning reactions which involve the oxidation of phenolic compounds by the enzyme activity. The 
specific enzymes which take part in browning reactions have been generally referred to as 
polyphenoloxidases (PPO) [37] that act as catalysts in the hydroxylation of monophenols to diphenols 
and oxidation of diphenols to quinones. The oxidation reaction is relatively rapid compared to 
hydroxylation and thus contributes more effectively towards the degradation of phenol content as well 
as antioxidant activity. Different types of fruit have different characteristics of polyphenoloxidase 
(PPO) [38,39]. There are also differences between PPO from different cultivars and PPO isolated at 
different stages of fruit maturity. This is based on the reports by various researchers on PPO from 
peache [40], banana [32], guava [41] and mango [42].  

Table 4. β-carotene content of fresh and freeze-dried fruits. 

Fruits Fresh a Freeze-Dried a 
Starfruit 30.79 ± 3.37 gB 25.94 ± 2.15 gB 
Mango 660.27 ± 61.06 bB 487.34 ± 29.72 cC 
Papaya 243.26 ± 28.55 eB 223.42 ± 24.08 eB 
Muskmelon 508.18 ± 13.72 cB 523.26 ± 2.43 cB 
Watermelon 290.37 ± 16.96 dB 165.21 ± 5.89 fC 

a Data expressed in µg/100 g are fresh weight basis. Values denoted with the same small letter 
within the same column are not significantly (p > 0.05) different among fruits tested. Values with 
the same capital letter within the same row are not significantly (p > 0.05) different between the 
fresh and freeze-dried fruits. Data stand as means of three replicates. 

Figure 1. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of fresh and 
freeze-dried fruits. Data expressed as % inhibition at 5 mg/mL. Values denoted with the 
same small letter are not significantly (p > 0.05) different among fruits tested. Values with 
the same capital letter are not significantly (p > 0.05) different between the fresh and 
freeze-dried fruits. Data stand as means of three replicates. 
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2.6. Ferric Reducing Antioxidant Activity 

Ferric reducing antioxidant power (FRAP) assay measures the total reducing capacity of a 
compound, based on its ability to reduce Fe3+/tripyridyltriazine complex to its blue-colored ferrous 
form. The results of the present study showed that fresh starfruit exhibited the highest FRAP value of 
33.04 μmol TE/g FW (Figure 2). On the other hand, it was noted that fresh and freeze-dried 
muskmelon as well as watermelon showed the lowest FRAP value revealing no significant (p > 0.05) 
difference between the fruits. Fresh starfruit and mango exhibited significantly (p < 0.05) higher FRAP 
values as compared with that of freeze-dried samples. However, there was no significant (p > 0.05) 
difference in FRAP values between the fresh and freeze-dried papaya, muskmelon and watermelon. A 
fairly similar trend was seen in the case of FRAP as was reported for that of the DPPH assay. FRAP 
assay is more suitable for determining the antioxidant activity of water and lipid-soluble  
components [38]. 

Figure 2. Ferric reducing power of fresh and freeze-dried fruits. Data expressed in µmol/g 
fresh weight. Values denoted with the same small letter are not significantly (p > 0.05) 
different among fruits tested. Values with the same capital letter are not significantly  
(p > 0.05) different between the fresh and freeze-dried fruits. Data stand as means of  
three replicates. 

 

2.7. Antioxidant Activity in Terms of Lipid Peroxidation Inhibition by Conjugated Diene Assay 

The conjugated diene assay measures the ability of antioxidant to inhibit the peroxidation of linoleic 
acid. In the present study, fresh starfruit (28.2%) and mango (41.5%) exhibited significantly (p < 0.05) 
higher magnitudes of lipid peroxidation inhibition than those of freeze-dried samples (5.28% and 
30.92%, respectively) (Figure 3). However, interestingly, freeze-dried papaya (53.3%), muskmelon 
(36.7%) and watermelon (41.2%) showed significantly (p < 0.05) higher antioxidant activity compared 
to those of fresh samples (29.1%, 23.4% and 24.0%, respectively). As expected, all fruits exhibited a 
low level of inhibition activity when compared to that of α-tocopherol and BHA (at 0.1 mg/mL), with 
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the inhibition of peroxidation being 87.98% and 98.20%, respectively. The measurement of lipid 
peroxidation inhibition by employing a conjugated diene assay is useful to assess the antioxidant 
activity of plant materials. Soybean extracts showed lipid peroxidation inhibition of 55.0% at  
1 mg/mL [43] whereas at 5 mg/mL, Taiwan mushroom inhibited peroxidation by 65.2% [44] using 
conjugated diene assay. 

Figure 3. Antioxidant activity (in terms of lipid peroxidation inhibition) as measured by 
conjugated diene assay of fresh and freeze-dried fruits. Data expressed as % inhibition at 
0.1 mg/mL. Values denoted with the same small letter are not significantly (p > 0.05) 
different among fruits tested. Values with the same capital letter are not significantly  
(p > 0.05) different between the fresh and freeze-dried fruits. Data stand as means of  
three replicates. 

 

2.8. Correlation between Antioxidant Compounds Antioxidant Activity of Fruits 

Coefficient of correlation between the antioxidant compounds and antioxidant activity of the 
tropical fruits was also studied, as shown in Table 5. Antioxidant activity (free radical scavenging and 
ferric reducing antioxidant activity) was significantly correlated (p < 0.05) with TPC with r2 = 0.76 
and r2 = 0.76, respectively as shown in Figures 4 and 5. This is not surprising when one considers the 
similarity between the two assay systems. Significant positive correlation may indicate that the free 
radical scavenging and ferric reducing antioxidant activities are mainly attributed to the TPC involved. 
TPC are more likely to be responsible for scavenging most of the free radicals in the fruits studied. Our 
results are consistent with a previous study which revealed that the content of phenolics in the 
medicinal and aromatic plant extracts correlates (r2 = 0.84) significantly with their antiradical activity 
as measured by a 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) assay [45]. The 
phenolic compounds contribute greatly towards antioxidant activity than that of ascorbic acid or 
carotenoids [6]. Therefore, it could be expected that phenolic compounds might have been the major 
contributor of antioxidant activity in the presently tested tropical fruits as compared to ascorbic acid  
or β-carotene.  
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Table 5. Correlation (correlation coefficient, r2 data) between the antioxidant compounds 
and the antioxidant activity of selected fruits. 

 TPC AA BC 
DPPH 0.758 * 0.053 0.062 
FRAP 0.763 * 0.005 0.077 

CD 0.148 0.105 0.178 
TPC: total phenolic compounds; AA: ascorbic acid; BC: β-carotene; DPPH:  
(2,2-diphenyl-1-picrylhydrazyl); FRAP: ferric reducing antioxidant power; CD: conjugated diene.  
* Correlation is significant at 0.05 level (1-tailed). 

Figure 4. Correlation between free radical scavenging activity and total phenolic 
compounds of selected fruits.SFFD: starfruit freeze-dried; SFF: starfruit fresh;  
MFD: mango freeze-dried; MF: mango fresh; PPFD: papaya freeze-dried; PPF: papaya 
fresh; MMFD: muskmelon freeze-dried; MMF: muskmelon fresh; WMFD: watermelon 
freeze-dried; WMF: watermelon fresh. 

 

Figure 5. Correlation between ferric reducing antioxidant activity and total phenolic 
compounds of selected fruits.SFFD: starfruit freeze-dried; SFF: starfruit fresh;  
MFD: mango freeze-dried; MF: mango fresh; PPFD: papaya freeze-dried; PPF: papaya 
fresh; MMFD: muskmelon freeze-dried; MMF: muskmelon fresh; WMFD: watermelon 
freeze-dried; WMF: watermelon fresh. 
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3. Experimental Section  

3.1. Chemicals 

Sodium carbonate, sodium acetate, potassium hydroxide, citric acid, glacial acetic acid, hydrochloric 
acid, linoleic acid, gallic acid, α-tocopherol, trolox, butylated hydroxyanisole, Folin-Ciocalteau 
reagent (2N), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,4,6-tripyridyl-s-triazine (TPTZ) and  
ferric (III) chloride hexahydrate were purchased from Sigma (St. Louis, USA). All solvents used, such 
as methanol, ethanol, hexane, acetonitrile and ethyl acetate were of analytical reagent grade obtained 
from Fisher Scientific (Leicestershire, UK). 

3.2. Preparation of Fruit Extracts 

Five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), 
papaya (Carica papaya L.), muskmelon (Cucumis melo), and watermelon (Citruluss lanatus Thunb.) 
were purchased from a local wholesale market in Seri Kembangan, Selangor, Malaysia. All the fruits 
except for starfruit were washed under tap water and peeled. Starfruit and mango were cut into  
(2 × 2) cm2 whereas papaya, muskmelon and watermelon were cut into (2 × 2 × 2 cm3) cubes. Fresh 
fruits were analyzed immediately. For the freeze-drying experiment, the cubes were packaged in 
polypropylene plastic containers, and frozen at −20 ± 1 °C for 24 h. The frozen samples were put in 
the freeze-drier (Labconco, USA) for three days until they were completely dried. Extraction was 
carried out based on a modified method in the literature [46]. The freeze-dried ground samples were 
extracted using pure methanol for 1 h at 40 °C using a water bath shaker (Daihan, China). The 
residues, separated by filtering through Whatman filter paper, were re-extracted twice with the fresh 
solvent. The three extracts were pooled and then methanol was distilled off at 40 °C using a rotary 
vacuum evaporator (Büchi, Switzerland). The resulting crude concentrated extracts were used for analysis 
of total phenolic compounds and antioxidant activity. All analyses were carried out in triplicates. 

3.3. Determination of Moisture Content 

Determination of moisture content was carried out based on the Association of Official Analytical 
Chemists method [47]. A known amount of fresh fruits were dried in the oven at 105 ± 1 °C. Readings 
were taken hourly until constant weight was achieved. 

3.4. Determination of Total Phenolic Compounds (TPC) 

Total phenolic compounds were determined using a modified Folin-Ciocalteau colorimetric method 
as in the literature [48]. Briefly, 0.5 mL of diluted extract was mixed with 0.5 mL of Folin Ciocalteu’s 
reagent. After 3 min, 10 mL of saturated 7.0% Na2CO3 was added to the mixture and it was incubated 
in the dark for 1 h. The absorbance of blue-colored complex solution was then read at  
725 nm using UV-1650 PC spectrophotometer (Shimadzu, Japan). Different concentrations of gallic 
acid (0.02–0.10 mg/mL) were used to construct a calibration curve. The results were expressed as 
miligram of gallic acid equivalent per hundred gram of fresh weight (mg GAE/100 g FW). 
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3.5. Determination of Ascorbic Acid 

Ascorbic acid content was determined using High Performance Liquid Chromatography (HPLC) 
following a modified method in the literature [49]. Five grams of fruit sample was extracted with  
200 mL of 3% w/v citric acid. The mixture was then centrifuged at 10000 rpm (14784 g) for 5 min at 
25 °C using Avanti centrifuge J-25 (Beckman Coulter, USA) machine. The supernatant was then 
filtered using C18 Sep-pak cartridge and 0.45 µm membrane filter, prior to HPLC injection. The HPLC 
system consisted of a Waters 460 pump, UV-VIS detector (Waters, USA) and run by Empower Pro 
software. The mobile phase used in isocratic elution was acetonitrile-methanol (88:20 v/v) at a flow 
rate of 1 mL/min. A reversed phase column was used, μBondapak C18 column (300 nm, × 3.9 mm,  
125 Ǻ, 10 μm). Detection was performed at 234 nm. Results obtained were expressed as miligram per 
hundred gram fresh weight (mg/100 g FW). 

3.6. Determination of β-Carotene 

β-carotene quantification was made based on the method in literature [33] with some modifications. 
Five grams of fruit sample was saponified with 20 mL of 95% ethanol and 5 mL of 100% Kalium 
hydroxide (KOH) and refluxed for 30 min at 85 °C. The mixture was extracted with hexane until the 
samples became colorless. The extracted sample was then filtered through a 0.45 μm nylon membrane 
filter and analyzed using reversed-phase high performance liquid chromatography (RP-HPLC) system 
consisting of a Waters 460 pump, UV-VIS detector (Waters, USA) and run by Empower Pro software. 
The test solution was injected under isocratic conditions into the μBondapak C18 column  
(300 nm, × 3.9 mm, 125 Ǻ, 10 μm) with a ternary mixture of acetonitrile-methanol-ethyl acetate 
(88:10:2 v/v) as mobile phase with the flow rate of 1.0 mL/minute. Detection was performed at 436 nm. 
Results obtained were expressed as microgram per hundred gram fresh weight (µg/100 g FW). 

3.7. Determination of DPPH Free Radical Scavenging Activity 

Free radical scavenging activity of the fruit extracts was carried out according to the modified 
method in the literature [50]. Briefly, 3.5 mL of methanolic solution (25μg/mL DPPH) was added to  
0.5 mL extract at different concentrations. The reaction mixture was then vortexed and kept at room 
temperature for 30 min. The absorbance was then measured at 515 nm using UV-1650 PC 
spectrophotometer (Shimadzu, Japan). The results were expressed in percent inhibition at 5 mg/mL. 
The antioxidant activity was calculated as:  

AOA (%) = [(ΔA515nm of control−ΔA515nm of sample)/ΔA515nm of control] × 100% 

3.8. Determination of Ferric-Reducing Antioxidant Activity 

Ferric-reducing antioxidant power (FRAP) assay was carried out according to the method in the 
literature [51] with slight modifications. An aliquot of 3.0 mL of FRAP reagent (25 mL of 300 mM 
acetate buffer (3.1 g C2H3NaO2·3H2O and 16 mL C2H4O2, pH 3.6), 2.5 mL of 20 mM FeCl3·6H2O 
solution and 2.5 mL 10 mM TPTZ (2,4,6-tripyridyl-s-triazine solution in 40 mM HCl) was added to a 
test tube containing 200 μL of extract. The mixture was allowed to stand at 37 °C in the darkness; the 
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absorbance was measured at 593 nm after 30 min. The final results were expressed as micromole 
Trolox Equivalent per gram fresh weight (μmol TE/g FW). 

3.9. Determination of Antioxidant Activity by Inhibition of Linoleic Acid Peroxidation 

The antioxidant activity of fresh and freeze-dried fruit’s extracts was also determined using 
conjugated diene method [52]. Briefly, 2 mL of 10 mM linoleic acid emulsion at pH 6.5 was mixed 
with each fruit extract (1–20 mg/mL) and dissolved in 100 µL methanol in a test tube. The mixture 
was kept in the dark for 15 h at 37 °C. The incubated mixture was then added to 6 mL of 60% 
methanol. The absorbance was measured at 234 nm. A value of 100% inhibition indicates the strongest 
antioxidant activity in the sample. The results were expressed in percent inhibition at 0.1 mg/mL.  
α-Tocopherol and butylated hydroxyanisole (BHA) were used as positive controls. The antioxidant 
activity was calculated as:  

% Inhibition of peroxidation = [(ΔA234nm of control−ΔA234nm of sample)/ΔA234nm of control] × 100 

3.10. Statistical Analysis 

Three different samples of each of the five tropical fruits were assayed. Measurements were carried 
out in triplicates and data obtained from experiments were gathered and analyzed using the Statistical 
Package for the Social Sciences (Version 16.0). Analysis of Variance was used to determine 
significant difference between fresh and freeze-dried fruits for antioxidant compounds and activity. 
Significant difference was determined at p < 0.05. 

4. Conclusions 

The results of the present study reveal that freeze-drying can be explored as a viable method for 
processing tropical fruits retaining the maximum amount of their naturally occurring ascorbic acid. 
However, this technique can noticeably affect the composition of some other antioxidant components 
and antioxidant activity of the fruits. Besides this, the results of the study showed that both fresh 
starfruit and mango are good sources of antioxidants, compared to the other fruits that were tested. 
Further research on the structural elucidation of the tropical fruits’ individual phenolic compounds and 
evaluation of their mechanisms of action and biological principles using some in-vivo models  
is recommended.  
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