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Abstract

Background: Continuous monitoring of surgical outcomes after joint replacement is needed to detect which brands’
components have a higher than expected failure rate and are therefore no longer recommended to be used in surgical
practice. We developed a monitoring method based on cumulative sum (CUSUM) chart specifically for this application.

Methods: Our method entails the use of the competing risks model with the Weibull and the Gompertz hazard
functions adjusted for observed covariates to approximate the baseline time-to-revision and time-to-death
distributions, respectively. The correlated shared frailty terms for competing risks, corresponding to the operating unit,
are also included in the model. A bootstrap-based boundary adjustment is then required for risk-adjusted CUSUM
charts to guarantee a given probability of the false alarm rates. We propose a method to evaluate the CUSUM scores
and the adjusted boundary for a survival model with the shared frailty terms. We also introduce a unit performance
quality score based on the posterior frailty distribution. This method is illustrated using the 2003-2012 hip
replacement data from the UK National Joint Registry (NJR).

Results: We found that the best model included the shared frailty for revision but not for death. This means that the
competing risks of revision and death are independent in NJR data. Our method was superior to the standard NJR
methodology. For one of the two monitored components, it produced alarms four years before the increased failure
rate came to the attention of the UK regulatory authorities. The hazard ratios of revision across the units varied from
0.38 to 2.28.

Conclusions: An earlier detection of failure signal by our method in comparison to the standard method used by the
NJR may be explained by proper risk-adjustment and the ability to accommodate time-dependent hazards. The
continuous monitoring of hip replacement outcomes should include risk adjustment at both the individual and unit
level.
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Background
Continuous monitoring of healthcare, and increasingly,
social care across various providers is an important task
of the healthcare regulator, such as the Care Quality
Commission (QCC) in the UK. Additionally, a number of
professional bodies and registers take on the same func-
tion for their clinical discipline. For instance, in regards
to joint replacement, surgeon and operating unit-level
outcomes are compiled by National Joint Registry for
England and Wales (NJR). Methods of continuous moni-
toring of production quality have been initially developed
and employed in quality control in the industry [1]. One
of the most popular methods is the cumulative sum
(CUSUM) chart, a graphical method based on sequential
monitoring of cumulative performance over time. This
method is based on sequential procedures and allows
timely identification of a deterioration in performance.
A number of CUSUM-based quality control systems are
being implemented in various clinical disciplines, with
the earliest application being in cardiothoracic surgery
[2]. Currently they are used in surveillance of the health-
care quality by QCC [3], and by Dr Foster unit at Imperial
College [4]. In this paper we expand the CUSUMmethod-
ology and adapt it for monitoring the performance of hip
prostheses using the NJR data.

A hip replacement is a surgical operation where the
damaged hip joint is replaced by a prosthesis. This opera-
tion is recommended to reduce pain and improve mobil-
ity of a patient after other therapies have failed. There
are currently hundreds of types and brands of prosthe-
sis components for use in the hip replacement surgery,
and new brands of implant continue to be introduced
through technological innovations. An important aspect
of an implant brand’s performance is its expected time-to-
revision. The current exception is that all prostheses used
as treatment for end stage arthritis should have a failure
rate of less than 5% at 10 years. Because of a relatively long
time-to-failure of the hip prosthesis, long-term premar-
keting clinical trials are unfeasible. Therefore, continuous
monitoring methods are needed for early detection of
poor performance and timely withdrawal of the inferior
components from clinical practice.
The first CUSUM-based methods for healthcare were

based on binomial or Poisson distributions, monitoring
failure rates within a fixed time interval, e.g. 30-days mor-
tality [5], or one year hip replacement failure rates [6].
CUSUM methods for survival data are a natural exten-
sion of the methods for binary data. Censoring, trunca-
tion, adjustment for observed covariates and unobserved
factors (frailties) can be easily included in survival mod-
els. By monitoring the individual-specific outcomes, the
CUSUM score can be evaluated sequentially, changing
at each individual failure. However, this method seems

not to be appropriate in the case of hip replacement,
where the expected time-to-revision is longer than 10
years. Hardoon et al. [7] proposed to compare the num-
ber of revisions within a certain time interval to that
expected given a target revision rate and the total num-
ber of hip years in the interval. That is, patients contribute
to a CUSUM score until revision or censoring (death or
end of follow-up). They analysed the data from Swedish
Arthroplasty register using Weibull distribution to model
time to revision of hip replacement.
However, time-to-revision of hip prostheses varies

depending on the patient characteristics, and on the
type of fixation used [8]. This necessitates the use of
case mix adjusted monitoring methods. The first risk
adjusted CUSUM methods for time-to-failure (survival)
data were introduced by Biswas and Kalbfleisch [9].
This method was picked up by the Scottish Arthroplasty
Project, where CUSUMs are used to monitor complica-
tion rates of joint replacements by surgeon and unit from
2010. This is achieved by likelihood-based scoringmethod
with risk adjustment for age, sex, osteoarthritis (OA)
and rheumatoid arthritis (RA) [10]. A Bayesian-based
CUSUMmethod for Weibull survival time is described in
Assareh et al. [11].
Although the event of interest in our study is a revision,

a priori death should not be treated as noninformative
censoring. We develop a general competing risk version
of the survival model for NJR data, where death is a com-
peting risk. To safeguard the properties of the CUSUM
charts, the control limits for risk-adjusted CUSUMs need
to be revised to accommodate the estimation error.
We propose and implement a parametric version of the

approach by Gandy and Kvaløy [12], of using bootstrap
to provide the control limits conditional on the estimated
in-control distribution, resulting in less conservative, i.e.
more powerful, procedures.
We are using the Weibull distribution for fitting the

baseline revision-specific hazard function, because this
distribution has a good fit to the empirical distribution
of time-to-revision [7]. The Gompertz distribution is
used for fitting the baseline mortality-specific hazard
function. The observed covariates and the correlated
frailty components at the unit level are included in the
model, assuming that all patients from a unit share the
same unobservable gamma distributed risks of prosthesis
revision and of death after hip replacement surgery.

We develop a bootstrap-based boundary adjustment
for the risk-adjusted CUSUM chart to guarantee a given
conditional probability of the false alarm rates. We also
propose a score characterizing the quality of the hip
replacement surgery in a unit. This score is based on
the estimate of the posterior conditional frailties for
units given the observed data. Mathematical development
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of the CUSUM scores for a Weibull/Gompertz survival
model with shared frailty is provided in the Appendix.
The developed methods are applied to the 2003-2012

hip replacement data from the NJR. We illustrate the
use of risk-adjusted CUSUMmethodology to monitor the
performance of two specific hip prostheses brands: the
DePuy ASR Resurfacing Cup and the BiometM2A-38 cup,
which were flagged as outliers by NJR [13].

Methods
Motivating example
An artificial hip includes three major components: a stem
that is inserted into the femur, a head (a ball) attached
to the top of the femur and a cup, also called the acetab-
ular component, that is implanted into the pelvis. A hip
resurfacing procedure is typically used in younger patients
where it can delay the need for a total hip replacement,
it replaces the socket with an artificial cup and resurfaces
the head of the femur instead of removing it. In 2010,
NJR recorded 123 brands of acetabular cups, 13 brands of
resurfacing cups and 146 brands of femoral stems used in
primary and revision procedures [14].
Given a vast variety of available types and brands of

prosthesis components for use in the hip replacement
surgery, monitoring implant quality is the main objective
of the NJR implant scrutiny group that was established
in 2009. According to the current NJR methodology [15],
an implant is considered to be a Level 1 outlier when
its Patient Time Incident Rate (PTIR) is twice the PTIR
of the implant group, where the group rate is weighted
by the relevant implant types. From 2009 to 2014, three
hip stems, three hip acetabular components and 17
hip stem/cup combinations were reported as Level 1
outliers [13].
To test our analytical approach on real world data, our

analysis will focus on two of these outlier compoents: (i)
the DePuy ASR Resurfacing Cup (first identified as a part
of an outlier head/cup combination in April 2010 and
last implanted in July 2010) and (ii) the Biomet M2A-38
acetabular cup (first identified by the NJR as an outlier in
2014, and last implanted in June 2011).
A standard CUSUM chart usually has a learning period

where the parameters of the relevant null distribution are
estimated, and the deviation from the null of clinical con-
cern is decided upon to calibrate the control limits. The
chart is then run with these control limits. An example
of this approach is by Hardoon et al. [7], 2007 who mon-
itored a constant target revision rate in a time interval.
However, the failure rates differ by implant types, the age
of the patients, and other case mix characteristics. They
also may vary by the site at which operations take place
(the operating unit). Therefore we consider a risk-adjusted
CUSUM where the target rates are estimated for the
popular implants (top 80%), and experienced units (more

than 1 surgery per week, on average), which requires
an introduction of shared frailty terms, describing sim-
ilarities within and heterogeneity between units, to our
survival models, and an appropriate adjustment of the
control limits.

Description of the NJR data
The NJR data were made available after a formal request
to the NJR Research Committee. The dataset is related
to the data cut used in the 10th NJR Annual Report [16].
The data were anonymised in respect to patient, to sur-
geon and to operating unit identifying details. Approval
was obtained from Computing Subcommittee of the
University of East Anglia Ethics Committee, reference
number CMP/1718/F/10A. The NJR dataset provides the
following four groups of variables used in the time-to-
failure analysis of the hip replacements to risk-adjust the
CUSUM boundaries.

• Information on procedures, such as date of operation
or revision, and side;

• Institution and staff involved, such as unit and
consultant IDs (anonymised), and surgeon grade;

• Hip prosthesis characteristics, such as fixation type
(cemented, uncemented, hybrid, resurfacing), its
components (head, cup, stem, and liner brands), head
size, bearing surfaces (metal, polyethylene, ceramic);

• Patient characteristics, such as age, sex, ASA physical
status classification [17] at 5 levels from healthy (1) to
near death (5), Body Mass Index (BMI), index of
multiple deprivation (IMD)[18] (a higher IMD means
higher proportion of people in the area classed as
deprived), and death date.

Since about a half of records had missing BMI values,
this factor was excluded from further consideration.
ASA scores were grouped into two categories in further
analysis: ASA 1-2 - normal healthy patients and patients
with mild systemic disease, ASA 3-5 - patients with
serious, non-incapacitating systemic disease, patients
with life-threatening incapacitating systemic disease and
patients that are near death.
Data selection in SQL (elimination of duplicates, sec-

ond and subsequent revisions) resulted in 504,024 records
with the fields listed above. By further cleaning the follow-
ing records have been additionally excluded:

• Patients with bilateral operations;
• Records with missing or misreported side;
• Records with time to revision equal to 0;
• Records with date of operation after 31 December

2012;
• Patients younger than 50 years at operation day;
• Records with missing values of IMD.
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This process resulted in 281,265 records. Finally, all
records for the patients operated in units with less than
52 operations per year (i.e. less than once per week, on
average), and all records with implanted cup/head brands
in the bottom 20% in popularity that year, as well as
cup/head brands “DePuy” and “Biomet” were excluded
in the in-control dataset, resulting in 113,772 records in
total. To test the efficiency of our CUSUM procedure,
we have also selected two test datasets including only
the records with cup brands “DePuy ASR Resurfacing
Cup” (1734 records) and “Biomet M2A 38” (764 records),
respectively. The cases for prostheses revised within three
months of implantation were censored at the time of
revision to exclude failures that might be directly attribu-
tive to surgical technique or postoperative complications.
Description of the three datasets is given in Table 1. We
provide analysis of these data performed in R [19] in the
“Results” section.

Basics of CUSUMmethod for time-to-event data
The CUSUM method is a sequential analysis technique
based on the calculation of the series Wi, i = 0, 1, 2, ...,
defined by a simple recurrent equation

W0 = 0,
Wi+1 = max{0, Wi + Xi},

where index i stands for a single observation or for a group
of observations and Xi is the weight or score assigned
to index i. The CUSUM alerts when Wi crosses a con-
trol limit, usually chosen to guarantee a long average run
length (ARL) when the process is in control, or to pro-
vide a low false alarm probability [20]. In applications to
survival data, and assuming independent competing risks
of revision and death, the score Xi for an individual i
with time-to-revision ti and vector of covariates ui can be
defined as the logarithm of the revision-specific factor of
the likelihood ratio

Xi = log
(
f 1i (ti|ui)δi S1i (ti|ui)1−δi

f 0i (ti|ui)δi S0i (ti|ui)1−δi

)
,

where δi is a censoring indicator, S
j
i(.) and f

j
i (.) are survival

and density functions, respectively, and index j = 0, 1,
stands for null hypothesis H0 (process is under control)
and alternative hypothesis H1 (failure rate is higher than
expected by a certain margin). Under the assumption of
independent competing risks, the revision-specific factor
of the likelihood coincides with the likelihood function
that would be obtained be treating failures from any other
causes as censored observations.
For a set I of independent individuals, the score XI can

be calculated as a sum of individual scores Xi, i ∈ I:

XI =
∑
i∈I

Xi.

Assuming proportional hazards model with theWeibull
baseline distribution under hypotheses Hj, j = 0, 1, the
hazard functions hj(t|u) = μj(t)χ(u) are proportional
to the Weibull baseline hazards μj(t) and a regressor
function χ(u). The regressor function is usually speci-
fied as χ(u) = exp(β∗u) (the Cox’s regression term) for
a transposed column vector of unknown parameters β .
The baseline hazard function underH0 corresponds to the
hazard function μ0(t) = (k/λ)(t/λ)k−1 for the Weibull
distribution with the shape parameter k and the scale
parameter λ, and the baseline hazard function μ1(t)
under the alternative hypothesis H1 is proportional to μ0,
μ1(t) = HRμ0(t). The hazard ratio HR represents the
departure from the target survival that we want to detect.
For consecutive time intervals T, consider a subset I =

IT of NI individuals observed (prostheses in use) over
the time interval T. In this case, the scores XI can be
calculated as [7]

XI = OI log(HR) − (HR − 1)EI ,

where OI is the observed number of failures (revisions)
occurring during the interval T and EI is the number of
failures that would be expected in the same interval under
hypothesis H0.
Denote by (t1i, t2i) an intersection of the interval T with

the lifetime of the prosthesis i implanted at t0i. Then t1i
is the maximum of the lower bound of interval T and t0i,
and t2i is the minimum of the upper bound of interval T,
the time of revision of prosthesis i and the time of censor-
ing of the patient with prosthesis i. From this, the value of
(t2i − t1i) is equal to the length of time when prosthesis
i is in use in the time interval T. The values of EI can be
computed as

EI =
NI∑
i=1

λ−k
(
(t2i − t0i)k − (t1i − t0i)k

)
.

CUSUM scores for shared frailty competing risks model
Under the proportional hazards model with frailty, the
hazard functions h(t|u,Z) for an observed vector of
covariates u and unobserved non-negative random frailty
component Z, is proportional to the baseline hazard μ(t),
frailty term Z, and a regressor function χ(u) = exp(β∗u).
The conditional survival function is given by

S(t|u,Z)=exp(−
∫ t

0
h(x|u,Z)dx) = exp(−Zχ(u)

∫ t

0
μ(x)dx).

The marginal survival function is defined by

S(t|u) = ES(t|u,Z).

We will use the index f, f = r, d, to denote the types of
failure (revision of implant or death of a patient without
implant failure, respectively), considered as competing
risks. For mathematical convenience, it is frequently
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Table 1 Description of the datasets

Variable Statistics Control DePuy Biomet

Males Females All Males Females All Males Females All

Sample size Number 44,468 69,304 113,772 1093 641 1734 315 449 764

% by sex 39.1 60.9 63.0 37.0 41.2 58.8

Revisions Number 596 740 1336 132 169 301 15 36 51

% by sex 44.6 55.4 43.9 56.1 29.4 70.6

Deaths Number 4074 5512 9586 56 31 87 40 37 77

% by sex 42.5 57.5 64.4 35.6 51.9 48.1

Censored Number 39,798 63,052 102,850 905 441 1346 260 376 636

% by sex 38.7 61.3 67.2 32.8 40.9 59.1

Age Mean 69.4 71.5 70.7 59.9 61.5 60.5 67.8 67.8 67.8

StDev 9.1 9.3 9.2 6.9 8.5 7.6 7.3 7.6 7.5

IMD Mean 19 19 19 18.6 17.3 18.1 11.6 12.3 12

StDev 9.2 9.2 9.2 10.8 10.4 10.7 5 5.2 5.2

HeadSize Mean 32.6 30.2 31.2 49.4 45.1 47.8 38 38 38

StDev 6.5 3.8 5.2 3 2.6 3.5 0 0 0

Fixation

Cemented Number 18,787 36,150 54,937 71 35 106 8 7 15

% 42.2 52.2 48.3 6.5 5.5 6.1 2.5 1.6 2

Uncemented Number 13,522 17,679 31,201 503 403 906 297 434 731

% 30.4 25.5 27.4 46 62.9 52.2 94.3 96.7 95.7

Hybrid Number 9029 14,260 23,289 49 25 74 10 8 18

% 20.3 20.6 20.5 4.5 3.9 4.3 3.2 1.8 2.4

Resurfacing Number 3130 1215 4345 470 178 648 0 0 0

% 7 1.8 3.8 43 27.8 37.4 0 0 0

ASA 1-2 Number 36,598 57,355 93,953 1012 587 1599 306 438 744

% 82.3 82.8 82.6 92.6 91.6 92.2 97.1 97.6 97.4

ASA 3-5 Number 7870 11,949 19,819 81 54 135 9 11 20

% 17.7 17.2 17.4 7.4 8.4 7.8 2.9 2.4 2.6

Cup/Head bearing surfaces

Ceramic/Ceramic Number 6584 8161 14,745 0 0 0 0 0 0

% 14.8 11.8 13 0 0 0 0 0 0

Metal/Metal Number 165 129 294 0 0 0 315 449 764

% 0.4 0.2 0.3 0 0 0 100 100 100

Polyethylene/Ceramic Number 4863 7070 11,933 0 0 0 0 0 0

% 10.9 10.2 10.5 0 0 0 0 0 0

Polyethylene/Metal Number 29,088 52,436 81,524 0 0 0 0 0 0

% 65.4 75.7 71.7 0 0 0 0 0 0

Resurfacing/Metal Number 318 233 551 534 447 981 0 0 0

% 0.7 0.3 0.5 48.9 69.7 56.6 0 0 0

Resurfacing/Resurfacing Number 3450 1275 4725 559 194 753 0 0 0

% 7.8 1.8 4.2 51.1 30.3 43.4 0 0 0
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assumed that frailty Zf is gamma-distributed with mean
1 and unknown variance σ 2

f . The assumption of gamma
distributed frailty is not too restrictive, as a number of
authors demonstrated that gamma-based shared frailty
models are robust for a wide class of frailty distributions
[21, 22]. The frailty variance σ 2

f characterizes heterogene-
ity in the population.

We also assume that the baseline hazard functions are
μ0,r(t) = (kr/λr)(t/λr)kr−1 and μ0,d(t) = λd exp(kdt)
with the shape parameter kf and the scale parameter
λf , f = r, d, for the Weibull and Gompertz distribu-
tions, respectively. In this case, the type-of-failure specific
marginal survival function is given by

Sf (t|uf ) = (1 + σ 2
f e

β∗uf Hf (t))
−1/σ 2

f

with the type-of-failure specific baseline cumulative haz-
ards Hr(t) = (t/λr)kr and Hd(t) = (λd/kd)(exp(kdt) − 1).

Correlated frailty terms for revision and death can be
constructed as

Zr =Y0 + Yr ,

Zd =mr
md

Y0 + Yd
(1)

for independent gamma distributed random variables
Y0 ∼ G(l0,mr) and Yf ∼ G(lf ,mf ) with lf = 1/σ 2

f − l0,
mf = 1/σ 2

f , f = r, d; 0 ≤ ρ ≤ min(σr/σd, σd/σr).
The result of this construction is that the frailties are
gamma-distributed with EZf = 1, VarZf = σ 2

f , and
Corr(Zr ,Zd) = ρ. Given the frailties (Zr ,Zd) and the
covariates (ur , ud), type-of-failure specific instantaneous
risks are assumed to be conditionally independent at any
time t.
The bivariate marginal survival function for the type-of-

failure specific latent timemoments (tr , td) is given by the
formula

S(tr , td|ur ,ud) =ES(tr , td|ur ,ud ,Zr ,Zd)

=E exp(−Zrχ(ur)Hr(tr) − Zdχ(ud)Hd(td))

=
(
1 + σ 2

r χ(ur)Hr(tr)
)−lr (

1 + σ 2
dχ(ud)Hdtd

)−ld(
1 + σ 2

r χ(ur)Hr(tr) + σ 2
dχ(ud)Hd(td)

)l0
[23]. If left truncation is present at ages (t0r , t0d), we cal-
culate the conditional survival function by dividing the
bivariate survival function by S(t0r , t0d|ur ,ud).
In the context of hip replacement, the shared frailty

terms arise from the assumption that the nj patients
who have undergone surgery in the same unit j, j =
1, · · · , J , have the same, possibly correlated, unobserved
risks of revision and death. This means that the full
likelihood function for our model has a form of L =

∏J
j=1 Lj(t̄jr , t̄jd|ūjr , ūjd) for

Lj(t̄jr , t̄jd|ūjr , ūjd) =
nj∏
i=1

(
− ∂

∂tjir

)δjir (
− ∂

∂tjid

)δjid
Sj(t̄jr , t̄jd|ūjr , ūjd), (2)

where δf = 0, 1 is the censoring indicator with δf = 0
indicating right censoring, and t̄jf and ūjf are the vec-
tors of cause-specific latent times and of covariates for the
patients from unit j, respectively, f = r, d, and

Sj(t̄jr , t̄jd|ūjr , ūjd)

=
(
1 + σ 2

r
∑nj

i=1 χ(ujir)Hr(tjir)
)−lr (

1 + σ 2
d

∑nj
i=1 χ(ujid)Hd(tjid)

)−ld

(
1 + σ 2

r
∑nj

i=1 χ(ujir)Hr(tjir) + σ 2
d

∑nj
i=1 χ(ujid)Hd(tjid)

)l0 ,

where a subscript i, i = 1, ..., nj, corresponds to a cur-
rent patient i from unit j. This likelihood can be used for
parameter estimation.
Proposed CUSUM scores for a competing risks model

with shared frailty are based on the likelihood ratio L. For
a time interval T, let Ij(T) be a set of individuals from unit
j whose implants are in use during the period T, and I =
I(T) = ⋃

Ij(T). The scores XI(T) for the time interval T
are defined as

XI(T) =
J∑

j=1
log

(
E

∏
i∈Ij(T) L1(tjir , tjid|ujir ,ujid ,Zjr ,Zjd)

E
∏

i∈Ij(T) L0(tjir , tjid|ujir ,ujid ,Zjr ,Zjd)

)
, (3)

where Zjr , Zjd are the shared frailty terms for unit j, the
superscript h, h = 0, 1, stands for hypothesis, and

Lh(tjir , tjid|ujir ,ujid,Zjr ,Zjd)

=
(

− ∂

∂tjir

)δjir (
− ∂

∂tjid

)δjid
Sh(tjir , tjid|ujir ,ujid,Zjr ,Zjd).

In general case, expression for XI(T) does not have a
simple closed form. In the special case of ρ = 0, the com-
peting risks of revision and death are independent, and
the score XI(T) is the sum of the respective component
scores for revision and death (see Appendix). If the inter-
est lies in the risk of revision only, death can be treated
as a non-informative censoring, and we concentrate on
the CUSUM analysis of revision scores to the end of this
Section.
For the baselineWeibull hazard function, under the pro-

portionate alternatives μ1(t) = HRμ0(t), we can rewrite
the revision component of the score (3) as

Xr
I (T) = OI log(HR) −

J∑
j=1

(σ−2
r + Oj)

× log
(
1 + σ 2

r HR
∑

i∈Ij(T) eβ
∗uiλ−k((t2i − t0i)k − (t1i − t0i)k)

1 + σ 2
r

∑
i∈Ij(T) eβ

∗uiλ−k((t2i − t0i)k − (t1i − t0i)k)

)
,

(4)

where Oj is a number of revisions in the unit j during
period T so that OI = ∑

j Oj (see Additional file 1 for
proof).
Often, the proportional hazards assumption is too

strong; different groups of patients and prostheses do not
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necessarily have proportional hazard functions for the hip
revision times and/or for death. We weaken this assump-
tion by allowing different shape parameters kf (u) in the
baseline Weibull and Gompertz hazard functions which
depend on covariates through additional Cox-regression
multipliers, kf (u) = exp(β∗

ku)kf . Then the CUSUM scores
for revision are calculated as

Xr
I (T) = OI log(HR) −

J∑
j=1

(σ−2
r + Oj)

× log
(
1+σ 2

r HR
∑

i∈Ij(T) eβ
∗ujiλ−kr (uji)((tj2i−tj0i)kr (uji)−(tj1i−tj0i)kr (uji))

1+σ 2
r

∑
i∈Ij(T) eβ

∗ujiλ−kr (uji)((tj2i−tj0i)kr (uji)−(tj1i − tj0i)kr (uji))

)
.

(5)

CUSUM chart control limits for the shared frailty model for
revision
The unknown parameters of the time-to-revision model
under the null hypothesis H0 are estimated from the in-
control (learning) dataset. These are the Cox-regression
parameters β and βk , parameters of the Weibull base-
line distributions k and λ, and the variance of the
frailty term σ 2. The vector of unknown parameters ξ =
(ln k, ln λ, ln σ 2,β ,βk) is estimated using the maximum
likelihood method to obtain the estimates ξ̂ . The time-
to-failure distribution with these estimated parameters is
then used to compute the CUSUM scores for the two
test datasets and to estimate the control limits for the
CUSUM chart: See Additional file 1 for details of calcu-
lation of the CUSUM score. Let P = P(ξ) be the true
distribution function for revision times, and τ = τc(P; ξ)

is the time at which the chart alerts when it exceeds a
threshold c. The false alarm probability in T time units is
hit(P; ξ) = P(τc(P; ξ) ≤ T) for some finite T > 0. The
threshold chit(P; ξ) = inf{c > 0 : hit(P; ξ) ≤ α} for some
0 < α < 1 is needed to restrict the false alarm probability
to α. However, only P̂ and ξ̂ = ξ(P̂) are known.
A parametric version of the bootstrap algorithm pro-

posed by Gandy and Kvaløy [12] is used to estimate the
control limits to guarantee, that the false alarm rate of a
CUSUM chart with the in-control distribution P, condi-
tional on ξ̂ , is below nominal level α with high probability
1 − γ .
Define the first time τc(P|ξ̂ ) at which the CUSUM

chart conditional on ξ̂ exceeds the given value c. We are
interested in the boundary chit(P|ξ̂ ) defined by equation
chit(P|ξ̂ ) = inf{c > 0 : P(τc(P|ξ̂ ) ≤ T) ≤ α} for some
0 < α < 1. Since P is unknown, chit(P|ξ̂ ) is unknown too
and the estimate chit(P̂|ξ̂ ) is usually used instead. How-
ever, such estimate does not guarantee the false alarm rate
of the chart. Following [12], we estimate the 1 − γ quan-
tile for the threshold chit(P|ξ̂ ) for some 0 < γ < 1 using
the following algorithm.
Algorithm.
Let N be the number of records (patients) in the con-

trol dataset, NSim be the number of simulations needed to

estimate chit(P̂|ξ̂ ),NBoot be the number of bootstrap repli-
cates, and T =[Tmin,Tmax] be the observation period.

1. Calculate the maximum likelihood estimate (MLE) ξ̂

of the vector of unknown parameters ξ as well as the
estimate Ĉov of the covariance matrix cov (inverse
Hessian) for ξ̂ using the control dataset and the
survival model with Weibull hazard described above;

2. Generate from the multivariate normal distribution
with mean ξ̂ and the covariance matrix Ĉov, a
random vector ξcur ;

3. Keeping the covariates in all three test datasets fixed,
generate for all patients new times-to-revision trev on
the basis of the survival model with Weibull hazard
described above and vector ξcur . Update the
censoring using the rule δ = 1 if
trev <= min{tdeath,Tmax} and δ = 0, otherwise.
Replace trev for δ = 0 by trev = min{tdeath,Tmax}.
Repeat NSim times and calculate for the test dataset j,
j = 1, 2, the values of cjhit(P̂cur|ξ̂cur) and cjhit(P̂|ξ̂cur);

4. To take into account multiple testing, we set
chit(P̂cur|ξ̂cur) = max

j=1,2
{cjhit(P̂cur|ξ̂cur)} and

chit(P̂|ξ̂cur) = max
j=1,2

{cjhit(P̂|ξ̂cur)}. Calculate
pcur = chit(P̂cur|ξ̂cur) − chit(P̂|ξ̂cur);

5. Repeat steps 2-4 NBoot times and calculate the 1 − γ

empirical quantile pγ of pcur .

The estimate of the adjusted threshold is equal to
chit(P̂|ξ̂ ) − pγ . This threshold guarantees that in approxi-
mately 100(1 − γ )% of the applications the probability of
false alarm will not exceed the value of α.
In the “Results” section, we use the values of NSim = 100,
NBoot = 100, α = 0.1, and γ = 0.1, Tmin = 01.01.2005,
and Tmax = 31.12.2012 for the analysis of the NJR data.

Estimating operating unit performance
Estimating performance across surgical units is also
of potential importance in the quality control setting.
The posterior frailty distribution obtained from the
fitted shared frailty survival model described in the
“Methods” section, can be used for this purpose. Given the
prior gamma distribution with (shape, scale) parameters
(a, b) = (σ−2, σ 2), mean ab = 1 and variance ab2, and the
observed dataDj, the posterior frailty distribution for unit
j, is the gamma distribution with (shape, scale) parameters
(aj, bj) equal to

aj = a + Oj,

bj = b
1 + b

∑
i∈Ij H(ti,ui)

,
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whereOj is the number of observed revisions in unit j, Ij is
set of all patients from unit j, and H(ti,ui) is the cumula-
tive hazard for individual i from unit j with time to revision
(or censoring) ti and the vector of covariates ui [24].
The effects of the units (shared frailties) are given by

the conditional expectation E(Zj|Dj) = ajbj, and param-
eters aj and bj can be estimated by substituting the MLE
estimates ξ̂ of the unknown parameters ξ [21]. Given the
proportional hazards formulation, the shared frailty term
can be interpreted as an excess hazard of a unit relative
to the baseline hazard. Because of this interpretation, we
refer to these estimated frailties as unit-level hazard ratios
and denote them by HRj.
Additionally, we propose a new score characterizing the

quality of the hip replacement surgery in a unit as

Qj = P{Zj|Dj} < 1, (6)

where Dj is the data from the control dataset relating
to unit j. Large value of Q indicates a decreased hazard
of revision in a unit, whereas small value of Q indicates
poor performance of a unit. Since the values of Q and HR
depend on the vector of unknown parameters ξ and only
the MLE estimate ξ̂ of this vector is available, we generate
a set of Naverage estimates ξ̂l from N(ξ̂ , ĉov) distribution,
and take the average of the obtained estimates ofQ(ξ̂l) and
of HRj(ξ̂l) over this set of parameters.

Results
For the control dataset described in the “Methods”
section, we estimated unknown parameters of the com-
peting risks model with and without shared frailty terms
maximizing the likelihood function (2). These include the
parameters for the baseline hazard distributions and the
coefficients of the Cox’s regressions for time-to-revision
and time-to-death, allowing for the possible covariate-
dependent shape parameters, as described at the end of
the “Methods” section. Significant predictors had been
chosen using the backward elimination in stepwise regres-
sion. The estimated coefficients and their confidence
intervals for the models with and without frailty compo-
nents are given in Table 2. The notation “kf " before the
name of a variable means that its coefficient relates to the
shape parameter kf . The baseline values for the categori-
cal and binary regressors were: males for sex, cemented for
fixation, ceramic/ceramic for cup/head bearing surfaces,
and operation date before 01.01.2007.
Comparing likelihood, AIC and BIC values in Table 2 we

see that the correlation between cause-specific frailties Zr
and Zd does not differ significantly from zero, and the best
(in terms of AIC and BIC) model includes a frailty term
only for revision. That is, the risks of revision and death
can be modelled as independent, and formula (5) can be
used to calculate CUSUM scores for revision.

Females had a decreased hazard of revision of hip pros-
theses compared to males on the time-to-revision interval
[0, λ]. Hazard of revision decreased with age and head
size. Uncemented hip prostheses had an increased hazard
of revision compared to cemented or hybrid fixation.
The cup/head combinations with resurfacing/metal
and resurfacing/resurfacing bearing surfaces also had
increased hazards compared to other types of bearings,
whereas the polyethylene/ceramic bearing surfaces
provided a decreased risk of revision compared to the
ceramic/ceramic ones. These results agree with the find-
ings by [8]. Those patients who underwent the surgery
after 01.01.2007 had an increased hazard of revision. This
may reflect the fact that early revisions were missed by
the NJR due to poor data quality in the early years. We
also have found a significant random effect of units, with
the estimated frailty variance σ 2

r equal to 0.18 with confi-
dence interval of (0.12 − 0.28). i.e. the hazard of revision
differed by units.
Patients with serious disease (ASA P3-P5) and patients

from areas with high deprivation (IMD 4-5) had increased
hazards of death. The cup/head combination with
polyethylene/metal bearing surfaces had a significantly
increased hazard of death compared to ceramic/ceramic
bearing. The shape parameters for baseline hazards of
death also differed by these factors and by the date of
surgery before/after 01.01.2007.
Based on the fitted revision submodel with frailty under

independent competing risks, and targeting the hazard
ratios of 1.25, 1.50 and 1.75 under alternative hypothe-
ses, the CUSUM scores were calculated quarterly for the
period 2005-12. The bootstrap-based boundaries were
calculated at the false alarm rate α = 0.1 and the tolerance
level 1 − γ = 0.9 and adjusted for multiple compar-
isons for two tested hip implants. The CUSUM scores
did not differ much between the models with and with-
out frailty component. Figure 1 presents the CUSUM
charts for the two test datasets as well as the in-control
dataset for the models without/with frailty component at
all three target hazard ratios. The CUSUM charts without
frailty for DePuy ASR Resurfacing Cup produced alarm
in the 4th quarter of 2009 for HRs of 1.25 and 1.75, and
in the 3rd quarter of 2009 for HR of 1.50. The charts
with frailty produced alarm somewhat later, in the 4th
quarter of 2009 for all three values of the hazard ratio.
This is comparable with the alarm based on PTIR by
NJR in April 2010. For the Biomet M2A 38, the CUSUM
charts without frailty hit the boundary in the second quar-
ter of 2011 for HR=1.25, in the first quarter of 2011
for HR of 1.50, and in the second quarter of 2010 for
HR= 1.75. The CUSUM charts with frailty alarm in the
2rd, the 1nd and the 2nd quarter of 2011, respectively.
This is 3 to 4 years prior to the NJR alarm issued in
2014 [8].
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Table 2 Description, parameter estimates and confidence intervals for the competing risks models with/without frailty

Variable No frailty terms Frailty for revision only Independent frailty terms Correlated frailty terms

Sample size 113,772 113,772 113,772 113,772

Number of revisions 1336 1336 1336 1336

Number of deaths 9586 9586 9586 9586

Number of censored 102,850 102,850 102,850 102,850

Loglik -114132.6 -114081.9 -114081.9 -114081.9

AIC 228305.2 228205.9 228207.9 228209.9

BIC 228498.0 228408.3 228419.9 228431.6

Revisions Estimate CI Estimate CI Estimate CI Estimate CI

λr (year) 15.46 8.923 - 26.79 11.58 7.298 - 18.39 11.52 7.262 - 18.27 11.59 7.298 - 18.4

kr 1.66 1.171 - 2.355 1.63 1.149 - 2.312 1.642 1.158 - 2.329 1.63 1.149 - 2.311

kr Females 1.096 1.018 - 1.179 1.137 1.049 - 1.233 1.134 1.046 - 1.23 1.137 1.049 - 1.233

kr Age 0.9936 0.9884 - 0.9988 0.9936 0.9884 - 0.9987 0.9934 0.9883 - 0.9986 0.9936 0.9884 - 0.9987

kr Cup/Head Resurf/Metal 1.515 1.126 - 2.039 1.569 1.167 - 2.11 1.576 1.172 - 2.119 1.57 1.167 - 2.11

Operation Date from 2007 1.26 1.112 - 1.427 1.288 1.132 - 1.464 1.286 1.131 - 1.463 1.288 1.132 - 1.464

Age 0.9692 0.9621 - 0.9765 0.9695 0.963 - 0.976 0.9694 0.9629 - 0.9758 0.9695 0.963 - 0.976

Uncemented 1.732 1.522 - 1.97 1.595 1.376 - 1.85 1.595 1.376 - 1.85 1.595 1.376 - 1.85

Head size 0.9677 0.9506 - 0.985 0.9563 0.94 - 0.9728 0.9563 0.9401 - 0.9728 0.9563 0.94 - 0.9728

Cup/Head Poly/Ceram 0.6017 0.4859 - 0.745 0.6592 0.5275 - 0.8238 0.6592 0.5274 - 0.8238 0.6593 0.5276 - 0.824

Cup/Head Resurf/Metal 9.37 4.556 - 19.27 10.88 5.796 - 20.43 10.8 5.75 - 20.28 10.89 5.797 - 20.45

Cup/Head Resurf/Resurf 4.558 3.113 - 6.673 5.595 3.804 - 8.227 5.593 3.803 - 8.224 5.594 3.804 - 8.226

σ 2
r - - 0.1829 0.1205 - 0.2778 0.1829 0.1205 - 0.2777 0.1837 0.121 - 0.2787

Deaths Estimate CI Estimate CI Estimate CI Estimate CI

105λd (1/year) 1.286 0.9214 - 1.795 1.286 0.9214 - 1.795 1.288 0.9223 - 1.8 1.284 0.9204 - 1.792

10kd (1/year) 0.9873 0.9404 - 1.037 0.9873 0.9404 - 1.037 0.987 0.9398 - 1.037 0.9875 0.9406 - 1.037

kd Operation Date from 2007 0.9624 0.9561 - 0.9687 0.9624 0.9561 - 0.9687 0.9624 0.9562 - 0.9688 0.9624 0.9561 - 0.9687

kd ASA P3-P5 0.6133 0.5639 - 0.6671 0.6133 0.5639 - 0.6671 0.6135 0.5641 - 0.6672 0.6132 0.5638 - 0.6669

kd Cup/Head Poly/Metal 0.9458 0.9073 - 0.9859 0.9458 0.9073 - 0.9859 0.9459 0.9073 - 0.9861 0.9456 0.9072 - 0.9857

ASA P3-P5 36.53 23.83 - 56.01 36.54 23.83 - 56.01 36.46 23.79 - 55.86 36.58 23.86 - 56.08

Cup/Head Poly/Metal 1.563 1.193 - 2.047 1.563 1.193 - 2.047 1.562 1.192 - 2.045 1.564 1.194 - 2.049

4-5 quintiles of the IMD 1.084 1.04 - 1.13 1.084 1.04 - 1.13 1.084 1.04 - 1.13 1.084 1.04 - 1.13

σ 2
d - - - - 2.031e-07 2e-07 - 2e-07 5e-07 5e-07 - 5e-07

ρ - - - - - - 0.00166 0.0013 - 0.0020

The estimates of the quality scores Qj and the hazard
ratios HRj have been calculated for 269 units included
in the control dataset using Naverage = 100. Our results
demonstrate high heterogeneity in performance. 17 units
out of the total of 269 had the quality scores greater than
0.9. HRs for these units were between 0.38 and 0.67. 15
units had the quality score values less than 0.1. Their HRs
varied from 1.52 to 2.28.
To check the goodness-of-fit of chosen parametric dis-

tributions in our models for revision and mortality, we
compared semiparametric estimates of baseline cumu-
lative hazard functions to baseline cumulative hazards

obtained from our parametric models, separately within
each strata of a moderate to large size with a particular
shape value. The results are shown in Fig. 2 for theWeibull
baseline hazards in the revision model, and in Fig. 3 for
the Gompertz baseline hazards in the mortality model.
Additionally, these figures include plots of the residuals
between the parametric and semiparametric estimates of
the baseline hazards pooled across the strata. In Fig. 2,
the larger deviations are still very small in absolute value,
and mostly correspond to the small number of opera-
tions performed before 2007. Figure 3 is the confirmation
of a well-known fact [25] that the Gompertz distribution
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Fig. 1 CUSUM charts calculated for quarterly revision rates in the three NJR datasets: DePuy ASR Resurfacing Cup (black), Biomet M2A 38 (blue) and
in-control dataset (magenta), over the period 2005-12. The control bounds (solid red lines) are estimated by the parametric bootstrap
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Fig. 2 Comparison of the baseline cumulative hazard functions estimated using semiparametric (magenta) and parametric (Weibull model, grey)
methods. Age&sex groups for revision data
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describes human mortality well only up to 95 years, and
the oldest patients in Fig. 3 are the outliers. Overall, the
Weibull and the Gompertz models fit the revision and the
mortality data, respectively, very well.
To assess the predictive value of our models, we also cal-

culated the Harrell’s concordance index [26, 27] between
the predicted and the observed survival. In the models
without frailty, the estimates of the concordance were
equal to 0.818 (SE=0.009) and 0.732 (SE=0.003) for revi-
sion and mortality data, respectively. For the models
with frailty, the concordance values were equal to 0.819
(SE=0.009) and 0.732 (SE=0.003), respectively.

Discussion
In hip replacement surgery, the continuous monitoring of
the revision experience of hip prostheses is necessary due
to delayed outcomes after the introduction of new brands
into practice. CUSUM charts are a useful tool for early
detection of changes in the revision rates after hip replace-
ment. In the standard applications of the CUSUM-based
monitoring, the learning data set required for the model
identification is usually chosen from a preceding period.
This assumes the stationarity of the process and leads
to loss of information and the reduction of the period
under study. Instead, we chose the in-control and the test
data from the same period. This novel approach is espe-
cially beneficial for the future development of the adaptive
version of the algorithm.
In the absence of the gold standard, the choices of the

learning dataset and the model describing the data play
an important role in the analysis using a self-starting
CUSUM.After the routine cleaning of the original dataset,
we excluded the records from units with less than 52 hip
replacements per year to guarantee to some degree the
sufficient experience of the implant within surgical teams.
Similarly, only the top 80% of cup/head brands in each
year were included to exclude rarely used brands, where
the measure of failure rate was unlikely to be stable or
robust.
Naive analysis treating competing risk events as non-

informative censoring can lead to bias in estimates if
competing risks are not independent. The competing risks
model with dependent unobserved risk factors (frailties)
is a convenient analytical tool for such data.
Two types of failure - revision and death without revi-

sion - are considered in this study. Other events during
the follow-up period (e.g. loss to follow-up due to migra-
tion) are treated as noninformative censoring. In addition
to observed factors, we included in the competing risks
model correlating type-of-failure-specific random effects
and all patients from a unit shared their values [28]. Sex,
age, fixation, bearing surfaces, head size, and the date
of operation were significantly associated with the life-
time of the hip prosthesis. Bad health (ASA 3-5), high

deprivation (IMD 4-5), polyethylene/metal bearing sur-
faces, and the date of operation were significantly associ-
ated with the higher hazards of death. These effects were
robust against the frailty settings.
Identifiability of the competing risks model with ran-

dom effects was studied in [29]. The main assumption
for the identifiability of this model is the finite mean of
the frailty. Identifiability of the bivariate survival mod-
els with time-dependent frailties given by the correlated
Lévy-processes was studied in the recent publication [30].
Our methodology can be easily adapted to this scenario.
There is no consensus on whether the risks of revision

and death are independent in hip replacement. Shwarzer
et al. [31] showed these risks to be dependent in their data.
However, a recent publication by Sayers et al. [32] argued
for independence. Comparing the results from four com-
peting risk models with and without shared frailty terms,
we found that the best model included the shared frailty
for revision but not for death. This means that the com-
peting risks of revision and death are independent in the
NJR data. The variance of the frailty term for revision dif-
fered significantly from zero, in other words, there were
significant differences between units.
We used the classical AIC and BIC for the model

selection. However, the conditional AIC (cAIC) [33–35]
is more appropriate for use in frailty models, since the
marginal AIC favors smaller models excluding random
effects. We believe that the use of cAIC would not have
changed our models because of the negligibly small values
of the estimates for the variance of the frailty for mortal-
ity, the very small correlation between frailties, and the
practically unchanged value of the log-likelihood com-
pared to the model without a random effect for mortality.
The cAIC methods are also very computationally inten-
sive. However, our final model includes the random effect
for revision. We intend to incorporate cAIC for model
selection in our further work.
We proceeded with CUSUM monitoring of revision

rates. The two cup brands, DePuy ASR Resurfacing Cup
and Biomet M2A 38, were not included in the learn-
ing dataset and their performances were monitored using
CUSUM charts. We calculated the adjusted boundaries
for three target values of the hazard ratios to guaran-
tee approximately 10% of false alarm rate with probability
of 0.9 during the observation period 2005-12. The esti-
mates of the boundary calculated using the models with
the frailty component were higher, i.e. more conserva-
tive, than the one calculated using the model without
the frailty component. This delayed two of the alarms,
by three and by 12 months. The charts were compara-
tively robust to the changes in the target HR levels. The
estimated CUSUM scores of the DePuy ASR Resurfacing
Cup consistently increased from mid-2009. The increase
of the CUSUM scores for the Biomet cup also started in
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2009 and produced alarms in 2010-11, four years before
the increased failure rate came to the attention of the UK
regulatory authorities [15].
Estimating the posterior frailty distribution allows to

compare the quality of the hip replacement surgery across
units. From the 269 units included in the control dataset,
17 (6.3%) had a decreased hazard of revision with a qual-
ity score higher than 0.90 and 15 (5.6%) had an increased
hazard of revision with a quality score less than 0.10. The
associated hazard ratios of revision across the units varied
from 0.38 to 2.28.
Due to low revision rates, the data set under study

has about 90% censoring. The properties of the statis-
tical methods in highly censored data sets are not well
known. A further simulation study is required to assess
the performance of our methods under varying amounts
of censoring. Another limitation of this study is the choice
of the gamma distribution for the correlated frailties. The
advantage of the gamma frailty is a closed form expression
for its Laplace transform. It allows for simple expressions
for CUSUM scores. However, this choice results in neces-
sarily positive correlations between revision andmortality
frailties. Other forms of the frailty distributions (e.g. log-
normal) to allow possible negative correlations will be
pursued in our future work.

Conclusions
This study developed and implemented, for the NJR data,
continuous monitoring methods for surgical outcomes.
We used the Weibull and the Gompertz hazard functions
to describe the baseline hazards of revision and death,
respectively. These functions appear to provide a good
approximation to the respective type-of-failure life-time.
However, adjustment for observed covariates is necessary
to improve this approximation and to better understand
the influence of the different factors on the life-times of
the hip prosthesis and the patient.
Flexible parametrization taking into account possible

influence of observed covariates on the shape and the
slope parameters of the revision and mortality hazard
functions as well as inclusion of the random effects
(frailties) accommodate non-proportional hazards and
improve the fit of our models to observed data.
Our results demonstrate that the competing risks of

revision and death are independent in the NJR data. This
finding will facilitate further development of continuous
monitoring methods for these data.
We developed a novel method of CUSUM-based mon-

itoring of revision rates. This method includes the choice
of the in-control and the test data from the same period,
and can be expanded for the subsequent development
of an adaptive algorithm. Implementation of the spe-
cial bootstrap algorithm to estimate the control limits
in the CUSUM method guarantees with high probability

that the false alarm rate is below a prespecified level.
An earlier detection of failure signal by our method in
comparison to the PTIR method may be explained by
proper risk-adjustment and the ability to accommodate
time-dependent hazards.
We found considerable variation in the hazard ratios of

revision across the units. Therefore, the continuous mon-
itoring of hip replacement outcomes should include risk
adjustment at both the individual and unit level.
Our approach can be easily adapted to other practice

areas requiring the continuous monitoring of the fail-
ure rates. Further development of the dynamic CUSUM-
based methodology similar to that of [36] is needed
to adapt our approach to real-time applications, where
the new data are regularly updated. Additionally, more
sophisticated methods are required to adjust for multi-
plicity if testing hundreds of various implant brands. We
intend to address these further challenges elsewhere.
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