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The neocortex, and with it the mammalian brain, achieves a level of

computational e�ciency like no other existing computational engine. A

deeper understanding of its building blocks (cortical microcircuits), and their

underlying computational principles is thus of paramount interest. To this end,

we need reproducible computational models that can be analyzed, modified,

extended and quantitatively compared. In this study, we further that aim

by providing a replication of a seminal cortical column model. This model

consists of noisy Hodgkin-Huxley neurons connected by dynamic synapses,

whose connectivity scheme is based on empirical findings from intracellular

recordings. Our analysis confirms the key original finding that the specific,

data-based connectivity structure enhances the computational performance

compared to a variety of alternatively structured control circuits. For this

comparison, we use tasks based on spike patterns and rates that require the

systems not only to have simple classification capabilities, but also to retain

information over time and to be able to compute nonlinear functions. Going

beyond the scope of the original study, we demonstrate that this finding is

independent of the complexity of the neuronmodel, which further strengthens

the argument that it is the connectivity which is crucial. Finally, a detailed

analysis of the memory capabilities of the circuits reveals a stereotypical

memory profile common across all circuit variants. Notably, the circuit with

laminar structure does not retain stimulus any longer than any other circuit

type. We therefore conclude that the model’s computational advantage lies in

a sharper representation of the stimuli.
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1. Introduction

Neurons of the neocortex are arranged in layers, forming

connectivity structures through their synapses that share many

properties across various brain areas. This suggests that diverse

cortical areas are likely based on a common microcircuit

template (see e.g., Mountcastle, 1997; Horton and Adams,

2005; DeFelipe, 2012; Harris and Shepherd, 2015). These

broad commonalities suggest a functional purpose behind

this structure that gives networks an information processing

advantage over randomly connected circuits.

To investigate this hypothesis, Stefan Häusler and Wolfgang

Maass developed a data-based microcircuit model and tested

its computational properties in comparison with networks

with equivalent dynamics but alternative connectivity structures

in their seminal paper A Statistical Analysis of Information-

Processing Properties of Lamina-Specific Cortical Microcircuit

Models (Häusler and Maass, 2007).

After this paper was published as one of the first studies

on data-based cortical column models, it was cited hundreds

of times and influenced the computational neuroscience

community’s view on the purpose and benefits of a laminar

cortical network structure. Since then, the model has been

used by Wolfgang Maass’s team to analyze, for example, the

distributions of network motifs in its connectivity structure

(Häusler et al., 2009) and to show how a version of the network

with stochastic neurons can exploit noise for computation

(Habenschuss et al., 2009; Maass, 2014). Rasch et al. (2011) use

the model as the basis for a larger network that also includes

a model of the retina and lateral geniculate nucleus (LGN) of

the thalamus to analyze its responses to natural stimuli and

compare them with in vivo activity. Since the publication of

Häusler and Maass (2007), modeling of cortical columns has

partially evolved toward large-scale networks of point neurons

whose focus is to accurately reproduce the statistical properties

of spike activity from in vivo data (e.g., Potjans and Diesmann,

2014). The other recent direction of modeling cortical columns

focuses on large networks of biophysically detailed neural

compartment models, such as Markram et al. (2015) and Billeh

et al. (2020). Nevertheless, smaller network models continue to

be relevant because simulating these large-scale models requires

huge amounts of computing resources that are beyond the

scope of many computational laboratories. Therefore, as a highly

influential study uncovering the relationships between structure,

dynamics and function, it would be of great benefit to have the

computational model introduced by Häusler and Maass (2007)

available for further study and quantitative comparison with

other models.

Unfortunately, as the model was originally implemented in

MATLAB (unknown version, but no later than R2006b) and the

C++ simulation plugin csim is no longer maintained, the code

can no longer be executed. In this article we present a replication

of the original study, which serves the twin purpose of testing

the original findings and providing an executable version of

the model to the computational neuroscience community.

Specifically, we re-implement their model using the open source

softwares NEST (Hahne et al., 2021) to simulate the networks,

NESTML (Babu et al., 2021) to define the neuron model

and Python for data analysis, thus ensuring a reusable and

maintainable code base.

Here, we use the term replication in the R5 sense described

by Benureau and Rougier (2018), i.e., striving to obtain the same

results using an independent code base, whereas a reproduction

(R3) of the model would have been achieved if we had obtained

the results of the original study using the original code. Note that

others have argued that these terms should be used the other way

around: see Plesser (2018) for an overview and analysis.

Following the structure of the original work, we construct

a cortical column model based on data from rat and cat

cortical areas published by Thomson (2002). The network

consists of spiking Hodgkin-Huxley neurons with an intrinsic

conductance-based noise mechanism that represents the

incoming currents generated by stochastically releasing

synapses and is connected by synapses with short-term

plasticity. Using this network model, we investigate the impact

of the data-based laminar structure on the computational

performance of the system. Besides the data-based model, we

implement additional control models that share the global

statistics of the microcircuit whilst removing specific network

properties. This allows analysis of how different network

properties affect the networks’ computational performance on

various tasks based on input signals that are encoded as precise

spike patterns or spike trains with changing firing rates.

These tasks are designed in such a way that they allow us

to draw conclusions about computational abilities of the models

under investigation by testing the networks not only on their

simple classification capabilities, but also on memory and their

nonlinear processing power. Following the reservoir computing

paradigm, the synaptic efficacies of the recurrent connections

within the network are not trained to improve performance; only

the projections from the network to separate readout neurons

are learned.

We successfully reproduce the main data-based model and

all six control circuit variants. The results on the computational

tasks confirm the findings of the original study, most

notably that the data-based circuit has superior computational

performance to circuits without laminar structure.

Going beyond the experiments of the original study, and

demonstrating the value of having executable versions of

important models, we further examine the generalizability of

the results with respect to the neuron model. Assuming that

the laminar structure is the most important component of

the model, we hypothesize that the central findings are not

dependent on the specific choice of the somewhat complex
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Hodgkin-Huxley neurons used in the original study. To

investigate this hypothesis, we simplify the neuron model by

reducing its complexity to basic integrate-and-fire dynamics and

show that this simplification not only maintains the superior

performance of the data-based circuit, but even increases its

absolute performance on almost all tasks. The same is true

for the removal of the noise mechanism from the Hodgkin-

Huxley model. Although noise was added mainly to increase

biological plausibility rather than to improve performance, it

is not necessarily the case that noise degrades the performance

of a neural system, since, for example, effects such as

stochastic resonance can improve the detection of weak signals

(Wiesenfeld and Moss, 1995; McDonnell and Ward, 2011).

Finally, we extend the original computational tasks to

include a more detailed examination of the memory capabilities

of the systems under consideration, reflecting the fact that the

ability to recall information over time forms the basis for a

variety of cognitive processes. Our results reveal a stereotypical

memory profile for all tested circuits and demonstrate that the

characteristic temporal structure of the stimulus has differential

effects on the task performance of the networks receiving it.

Apart from providing a reproducible and re-usable

implementation of the cortical microcircuit model in Häusler

and Maass (2007), our successful replication reduces the

likelihood that the original findings were influenced by

implementation errors (Benureau and Rougier, 2018; Pauli

et al., 2018). Our findings thus lend further support to the

hypothesis that the highly nonrandom connectivity structure

of cortical columns serves important computational purposes,

with the degree distributions, i.e., the distributions of the

number of incoming and outgoing connections per neuron,

playing the most prominent role. Going beyond the original

findings, we further demonstrate that the computational

benefits of the laminar structure are not dependent on the

complexity of the neuron model. Finally, we discover that

the laminar structure does not confer memory benefits in

the model—the circuits with laminar structure do not retain

stimulus information for longer than networks with other

connectivity assumptions—and conclude that the superior

computational performance is achieved primarily by generating

more distinct stimulus representations.

2. Materials and methods

2.1. Microcircuit model

In the following sections we provide details of our

implementation of the microcircuit model that is publicly

available at Zenodo (Schulte to Brinke et al., 2022)

and compare it to the model described in Häusler and

Maass (2007), whose implementation is available at

ModelDB (McDougal et al., 2017; accession number

82385, https://senselab.med.yale.edu/ModelDB/showmodel

?model=82385).

2.1.1. Neuron model

The networks consist of single-compartment Hodgkin-

Huxley type neurons with three different active currents, as

described by Destexhe and Paré (1999), and an intrinsic

conductance noise mechanism introduced by Destexhe et al.

(2001):

Cm
dVm

dt
= −gL(Vm − EL)− INa − IK − IM − Inoise (1)

where Vm is the membrane potential, Cm is the membrane

capacitance, gL is the leak conductance and EL is the leak

reversal potential. INa is a voltage-dependent Na+ current with

the following dynamics:

INa = gNam
3h (Vm − ENa) (2)

dm

dt
= αm(Vm)(1−m)− βm(Vm)m (3)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h (4)

αm =
−0.32(Vm − VT − 13)

exp[−(Vm − VT − 13)/4]− 1
(5)

βm =
0.28(Vm − VT − 40)

exp[(Vm − VT − 40)/5]− 1
(6)

αh = 0.128 exp[−(Vm − VT − VS − 17)/18] (7)

βh =
4

1+ exp[−(Vm − VT − VS − 40)/5]
(8)

where gNa is the sodium peak conductance, ENa is the sodium

reversal potential, VS is a voltage that shifts the inactivation

toward hyperpolarized values and VT is a voltage offset that

controls dynamics and adjusts the membrane threshold. Note,

the model does not incorporate an explicit threshold; the

membrane potential threshold Vthresh in Table 1 is just the

potential at which the peak in the membrane potential is

recognized as a spike by the simulator. This is also the reason

why a refactory period tref is needed to avoid the emission of

multiple spikes during a peak in the membrane potential. IK is a

delayed-rectifier K+ current:

IK = gKn
4(Vm − EK ) (9)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (10)

αn =
−0.032(Vm − VT − 15)

exp[−(Vm − VT − 15)/5]− 1
(11)

βn = 0.5 exp[−(Vm − VT − 10)/40] (12)
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TABLE 1 Neuron parameters.

Parameter Value Source Description

Vm uniformly distributed between -70 and

–60 mV

Paper Membrane potential

VT –63 (–58) mV Code (Destexhe and Paré, 1999) Voltage offset that controls dynamics

Vthresh –30 mV Code Membrane potential threshold

VS –10 mV Destexhe and Paré, 1999 Shifting voltage

EL –80 mV Destexhe et al., 2001 Leak reversal potential

a 34,636 µm2 Paper Membrane area used for all but gM

ρCm 1 µF/cm2 Destexhe et al., 2001 Membrane capacitance density

Cm 346.36 pF a · ρCm Capacity of the membrane

ρgL 0.045 mS/cm2 Destexhe et al., 2001 Leak conductance density

gL 15.5862 nS a · ρgL Leak conductance

τsynex 3 ms Code Time constant of the excitatory synaptic exponential function

τsynin 6 ms Code Time constant of the inhibitory synaptic exponential function

tref 3 ms Code Duration of refactory period

Eex 0 mV Destexhe et al., 2001 Excitatory synaptic reversal potential

Ein –75 mV Destexhe et al., 2001 Inhibitory synaptic reversal potential

ENa 50 (60) mV Code (Mainen et al., 1995) Sodium reversal potential

ρgNa 516 (500) pS/µm2 Code (paper) Peak conductance density for INa

gNa 17,872.176 nS

(17,318 nS)

a · ρgNa Code (paper) Sodium peak conductance

EK –90 mV Code Potassium reversal potential

ρgK 100 pS/µm2 Paper Peak conductance density for IK

gK 3,463.6 nS a · ρgK Potassium peak conductance

aM 10,000 µm2 Code Membrane area used for gM

EM –80 (–90) mv Code (Mainen et al., 1995) Potassium reversal potential for IM

ρgM 10 (5) pS/µm2 Code (paper) Peak conductance density for IM

gMex 100 (173.18) nS aM · ρgM Code (a · ρgM paper) Peak conductance of additional potassium ion channel in exc. neurons

gMin 0 nS Paper Peak conductance of additional Potassium ion channel in inh. neurons

The source column indicates where the value can be found, searching in the following order: main replicated paper, referenced papers, source code. If a value was given in the paper which

differs from the one used in the code, the paper value is written in parenthesis.

Here, gK is the potassium peak conductance and EK is

the potassium reversal potential. The third current is a

non-inactivating K+ current responsible for spike frequency

adaptation, which is only activated for excitatory neurons and

was first described by Mainen et al. (1995):

IM = gMp(Vm − EM) (13)

dp

dt
= αp(Vm)(1− p)− βp(Vm)p (14)

αp =
r · (Vm + 30)

1− exp[−(Vm + 30)/9]
(15)

βp =
−r · (Vm + 30)

1− exp[−(Vm + 30)/9]
(16)

where gM is the peak conductance for this additional potassium

channel. The factor r is set to 0.0001 by Destexhe et al. (2001),

but Häusler and Maass (2007) use a value of 0.001 in their code,

and we followed the latter in our implementation. A complete

specification of all neuron parameters can be found in Table 1.

In addition to these ion channel dynamics, Häusler

and Maass (2007) used noisy background currents whose

conductances are modeled by an Ornstein-Uhlenbeck process.

This stochastic background activity was introduced by Destexhe

et al. (2001) to represent the spontaneous activations of

incoming synapses as follows:

Inoise = gne(t)(Vm − Eex)+ gni(t)(Vm − Ein) (17)

where gne is the time dependent excitatory conductance, Eex is

the excitatory synaptic reversal potential and gni and Ein are

their inhibitory counterparts.
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The conductances are calculated by the following

update rules:

gne(t+h) = ge0+[gne(t)−ge0 exp(−h/τne)+AeN1(0, 1)] (18)

gni(t+ h) = gi0+ [gni(t)− gi0 exp(−h/τni)+AiN2(0, 1)] (19)

where ge0 and gi0 are average conductances, τne and τni are

time constants, h is the integration step, N1(0, 1) and N2(0, 1)

are random numbers drawn from a normal distribution with

mean 0 and standard deviation 1, and Ae and Ai are amplitude

coefficients given by

Ae =

√

Deτne

2
[1− exp(

−2h

τne
)] (20)

Ai =

√

Diτni

2
[1− exp(

−2h

τni
)] (21)

De and Di are noise diffusion coefficients:

De =
2σ 2

ne

τne
(22)

Di =
2σ 2

ni

τni
(23)

where σne and σni are standard deviations of the excitatory and

inhibitory noise conductances, respectively. All of the parameter

values for the noise term can be found in Table 2. The neuron

model also handles synaptic conductances, which increase

immediately with each spike and then decay exponentially with

time constants τsynex for spikes coming from excitatory neurons

and τsynin for inhibitory ones. To implement the full neuron

model we described it in NESTML (Babu et al., 2021), from

which code can be automatically generated for NEST 3.0 (Hahne

et al., 2021).

2.1.2. Neuron model variations

We examine the robustness of the model results to

simplification of the neuron model described above. The first

variation we apply is to disable the intrinsic conductance noise

mechanism by setting σne and σni to 0. This adjustment also

allows us to study the susceptibility of the networks to noise

in the system. In a second step, we additionally disable the

INa, IK , and IM currents, resulting in leaky integrate-and-

fire (iaf) neurons. We leave all parameters unrelated to these

ion channel currents unchanged, but change the membrane

potential thresholdVthresh of each population (L2/3-E:−52mV ,

L2/3-I:−55mV , L4-E:−49mV , L4-I:−55mV , L5-E:−57.0mV ,

L5-I: −65.0mV) such that the means of the population firing

TABLE 2 Neuronal conductance noise parameters; source definition

as in Table 1.

Parameter Value Source Description

τne 2.7 ms Paper Time constant for the

excitatory noise conductance

τni 10.5 ms Paper Time constant for the

inhibitory noise conductance

gne 12 nS Paper Mean conductance of the

excitatory noise

gni 57 nS Paper Mean conductance of the

inhibitory noise

σne 3 nS Paper Standard deviation of the

excitatory noise conductance

σni 6.6 nS Paper Standard deviation of the

inhibitory noise conductance

rates of the data-based circuit with integrate-and-fire neurons

match those of the network with Hodgkin-Huxley neurons as

closely as possible (see Supplementary materials for firing rate

distributions of all networks).

2.1.3. Synapse model

For the synaptic short-term dynamics, we use the

tsodyks2_synapse model implemented in NEST. This

model implements short-term synaptic plasticity according to

Maass and Markram (2002) with the following equations, which

are also used in the replicated paper:

Ak = w · uk · Rk (24)

where Ak is the amplitude of the postsynaptic potential for the

kth spike andw is the synaptic weight. The release probability uk
is given by:

uk = U + uk−1(1− U) exp(−
1k−1

τfac
) (25)

where U determines the increase in u with each spike, 1k

denotes the time since the last spike and τfac is the time constant

for recovery from facilitation. Rk is the fraction of synaptic

efficacy available for the kth spike and follows:

Rk = 1+ (Rk−1 − uk−1Rk−1 − 1) exp(−
1k−1

τrec
) (26)

where τrec is the time constant for recovery from depression. The

variables uk and Rk are initialized with u1 = U and R1 = 1.

The mean values for U, τfac and τrec as well as the synaptic delay
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TABLE 3 Population type dependent synaptic parameters; source definition as in Table 1.

Parameter Source Description

From/to E I

E U 0.5 s 0.05 s Paper Increase of release probability with each spike

τrec 1.1 s 0.125 s Paper Time constant for depression

τfac 0.05 s 1.2 s Paper Time constant for facilitation

d 1.5 ms 0.8 ms Code Synaptic delay

I U 0.25 s 0.32 s Paper Increase of release probability with each spike

τrec 0.7 s 0.144 s Paper Time constant for depression

τfac 0.02 s 0.06 s Paper Time constant for facilitation

d 0.8 ms 0.8 ms Code Synaptic delay

depend on the type of their source and target neurons and can

be found in Table 3.

These parameters are not fixed for a given ensemble of

synapses between a source population j and a target population

i; instead they are drawn from a Gaussian random distribution

with a standard deviation of 50% (bU forU, brec for τrec and bfac
for τfac), 10% (bd for the delay) or 70% (bw for the weight) of

their mean values. As described by Häusler and Maass (2007),

all negative values or values bigger than the upper bound of

the range (for U) are replaced by values drawn from a uniform

distribution between 0 and two times the mean. Note that using

a truncated normal distribution leads to a different network

activity with higher firing rates (data not shown).

The mean amplitudes Aij of the postsynaptic potentials for

the connections between populations j and i, which are needed

to calculate their mean weights, can be found in Figure 1. With

this we get the value for their weight w by:

wex =
Aij

|Eex − Vmean|
(27)

for excitatory synapses and

win =
Aij

|Ein − Vmean|
(28)

for inhibitory ones. Eex and Ein are the excitatory and inhibitory

synaptic reversal potentials and Vmean is the mean membrane

voltage of a neuron without input. All values of the synaptic

parameters can be found in Tables 3, 4.

2.1.4. Network models

In this section, we describe the different network models

implemented in the original work and in this replication. All

circuits comprise 560 of the Hodgkin-Huxley neurons described

above, unless otherwise stated. Another common feature shared

by six of the seven circuits is that they are connected by

synapses with short-term adaptation as described above. The

exception is the data-based model variant with static synapses,

which helps us examine the effects of synaptic dynamics on task

performance. Figure 2 shows the histograms of degrees (number

of incoming and outgoing synapses) for the different circuits;

this serves as the first validation of our work, as they are visually

indistinguishable from those presented in Figure 7 of Häusler

andMaass (2007), which is the best that can be achieved without

access to the original data.

Data-based circuit

The data-based model consists of three layers, each divided

into an excitatory and an inhibitory population. Figure 1

illustrates the network’s connectivity structure; a specification of

the parameters can be found in Tables 3, 4. Since the data on

which the circuit is based comes from biological systems with

a much larger number of incoming connections per neuron,

the synaptic weights in the model are scaled up by a factor

SRW to obtain a reasonable network activity. In the paper, the

value of this scaling factor is given as 60000/N (about 107 for

N = 560), but in the published code this parameter is calculated

as 66825/N (about 119 for N = 560). We use the second

value in our implementation, because it gives a network activity

closer to the reported one. The distribution of degrees for this

connectivity model (and all following models) can be seen in

Figure 2.

Amorphous circuit

The amorphous circuit is derived from the data-based

circuit by destroying the laminar connectivity structure: for each

connection, we replace the source neuron with a random neuron

of the same type (excitatory or inhibitory) and also the target

neuron with a random neuron of the same type (excitatory or

inhibitory), whereby the new randomly selected neurons are

not constrained to belong to the same layer as the ones they

replace. Multiple connections between the same neuron pair

are excluded. This results in a network that shares most global

statistics with the data-based model: number of synapses, their

pre- and postsynaptic neuron type and the distribution of all
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FIGURE 1

Structure of the data-based microcircuit model. The connection arrows are labeled with the connection strength (mean amplitude of PSPs in

mV, c.f. parameter A in Table 4) and the connection probability (in parentheses). Red arrows represent inhibitory connections and excitatory

connections are black. The excitatory input connections are represented as gray dashed arrows. Neuron numbers are based on a network size

of N = 560 neurons. C.f. Figure 1, original publication (Häusler and Maass, 2007).

TABLE 4 Synapse parameters.

Parameter Value Source Description

A see Figure 1 Paper Mean amplitude of PSPs

Ainput 1.924779612734342 mV (1.9 mV) Code (paper) Mean amplitude of PSPs for input connections

Vmean –65 mV Destexhe et al., 2001 Mean membrane voltage of a neuron without input

SRW 66,825/N (60,000/N) Code (paper) Scaling parameter for recurrent connections

SRWstatic SRW/73 Experiment SRW for data-base circuit with static synapses

S1 14.85 (14) Code (paper) Scaling parameter for connections from stream 1

S2 36.498 (33) Code (paper) Scaling parameter for connections from stream 2

wex SRW ·
A·gL

|Eex−Vmean |
Code Maximum conductance for excitatory synapses

win SRW ·
A·gL

|Ein−Vmean |
Code Maximum conductance for inhibitory synapses

bU 0.5 Paper Factor defining the std. for the distribution of U

brec 0.5 Paper Factor defining the std. for the distribution of τrec

bfac 0.5 Paper Factor defining the std. for the distribution of τfac

bd 0.1 Code Factor defining the std. for the distribution of d

bw 0.7 Paper Factor defining the std. for the distribution of wex and win

The source column indicates where the value can be found, searching in the following order: main replicated paper, referenced papers, source code, own experiments. If a value was given

in the paper which differs from the one used in the code, the paper value is written in parenthesis.
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FIGURE 2

Histograms of degrees (number of incoming and outgoing connections per neuron) per population for each circuit. Values are aggregated for

100 runs with di�erent seeds for each model. C.f. Figure 7, original publication (Häusler and Maass, 2007).

synaptic parameters such as the weights and the parameters

defining the short-term dynamics remain unchanged.

Degree-controlled circuit

The degree-controlled circuit is also derived from the data-

based circuit by scrambling its connections. However, in this

network, we ensure that the number of incoming and outgoing

connections (the degree) for each neuron remains unchanged.

To achieve this, we randomly select two synapses whose source

neurons are of the same type (excitatory or inhibitory) and

whose target neurons are also of the same type, and exchange

the target neurons of these synapses.We continue this procedure

until none of the original connections remain. Just as in the

amorphous circuit, the global statistics of the network are

preserved. In addition, the number of incoming and outgoing

connections per neuron is the same as in the data-based circuit.

Degree-controlled circuit without input or output

specificity

The degree-controlled circuit without input or output

specificity is derived from the degree-controlled circuit by

changing the neurons to which external input is given and

from which the states are read out. We implement this by

randomly exchanging the layer assignations of neurons of the

same type (excitatory or inhibitory) after recurrently connecting

the network, but before connecting the external input streams

and readouts.

Small-world network

As introduced byWatts and Strogatz (1998), the small-world

network is one in which the underlying undirected graph has

small-world properties. Such networks show a higher clustering

coefficient than amorphous circuits, while keeping the average

shortest path length at a comparable value. Watts and Strogatz
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define the local clustering coefficient of a node as the fraction

of all possible connections between the node’s neighbors that

actually exist. It represents how close the neighborhood is to

being a clique. The global clustering coefficient of a network is

the average of all local clustering coefficients. The shortest path

length between two nodes measures the separation of nodes and

is defined as the minimum number of links required to get from

one node to the other. This shortest path length is averaged over

all possible node pairs in the network. We generated a small-

world network using the spatial growth algorithm proposed by

Kaiser and Hilgetag (2004); first we initialize the network by

assigning the position (0.5, 0.5) to a random node, then we

perform the following steps:

1. Take a new node and assign it a random position (x, y) with

coordinate values drawn from the interval [0,1].

2. Connect the new node with all other nodes with probabilities

defined by:

P(u, v) = βe−αd(u,v) (29)

where d(u, v) is the euclidian distance between the nodes u

and v, β is a general density parameter and α is a spatial range

parameter, which regulates the dependence of the connection

probability on the distance.

3. Repeat steps 1 and 2 until the desired number of nodes has

been reached.

By choosing α = 4 and β = 1.32 we obtain small world

networks which have a clustering coefficient around 36% and a

average shortest path value of about 1.75 links, comparable to

those of data-based circuits.

To get the final connections for the network, we randomly

assign a direction to every edge and set the weight and

other synaptic parameters according to the neurons’ population

affiliations (see Figure 1 and Table 3). If a neuron pair belongs to

two populations which aren’t connected in the data-based circuit

(see Figure 1), we randomly draw a weight from connection

definitions for the same synapse type (excitatory or inhibitory).

For example, given a connection from L5-E to L4-I, we

would randomly select another excitatory connection such as

L4-E to L4-I and use its weight. Since the other synaptic

parameters depend only on the type (excitatory or inhibitory)

of the connected neurons and not on the exact population

affiliation, we can read them out from Table 3 as we did for all

other connections.

Data-based circuit with static synapses

This network is identical to the data-based circuit, but

with the dynamic synapse model replaced by static synapses.

To achieve a similar network activity we have to adjust the

scaling parameter SRW . As this value is not explicitly stated by

Häusler and Maass (2007), we tuned this parameter by hand

to obtain firing rates of the network as close as possible to

the data-based circuit, under the condition that no population

is silent. This is achieved at a value SstRW = SRW/73 (see

Supplementary materials for the resulting firing rate histograms

of all networks).

Data-based circuit with random synaptic dynamics

This network is identical to the data-based circuit, except

that the short-term dynamics of the data-based network’s

connections are scrambled. To do this, for each synapse we

randomly select one of the four connection types (EE, EI, IE,

II) independently of the actual source and target of the synapse.

We then draw values for the parameter values U, τrec, τfac, and

d according to the corresponding distributions for the selected

connection type, with mean values as given in Table 3 and

standard deviation factors as given in Table 4.

2.2. Tasks

Häusler and Maass (2007) implemented several different

tasks to evaluate the computational performance of the different

networkmodels. Some of the tasks are based on the classification

of precise spatio-temporal spike patterns and for others the

circuits need to perform computations on the input firing rates

of input spike trains whose spikes are generated by a Poisson

process. All tasks are based on inputs given as two input streams

which are connected to the network as shown in Figure 1.

Analogously to the scaling of recurrent connections by the

factor SRW , the weight values of the synapses from these streams

to the circuit are multiplied by their scaling factors S1 and S2. As

can be seen in Table 4 the values given in the paper differ from

the values in the code; we use the latter in our implementation.

Depending on the task, the input streams consist of either

four (rate based tasks) or 40 (spike pattern classification tasks)

spike trains. Per trial, 15 segments with a duration of 30ms are

generated, resulting in a spike train of 450ms for each trial. Only

the input for the retroactive spike pattern classification with

fixed inter-stimulus input and the more finely resolved memory

tasks, which are both further explained in the next section, are

exceptions to this scheme.

Figure 3 illustrates how these input streams are generated for

the spike pattern based tasks. For each segment, two different

spike patterns are generated which encode either a zero or a

one and the randomly generated input value (bottom row of

zeros and ones in the figure) defines which of them is used in

the current trial. These two possible patterns for each segment

remain identical for each trial. In this way a sequence of 15

zeros and ones is translated into a set of spike trains of 450ms

length. In addition, each input spike is jittered by a Gaussian

distribution with mean 0ms and a standard deviation of 1ms.

We apply this jittering once per trial to the selected templates

and each neuron connected to the input receives the same

jittered version of the spike train. Even though some tasks are

calculated based on only one of the inputs, both streams are
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FIGURE 3

Input generation for spike pattern based tasks. The first row shows the di�erent trials of an experiment and the spike patterns below that

represent a zero or one value for each segment of a single trial. These spike pattern templates are identical for all trials. The spike patterns at the

bottom are chosen based on and therefore represent the randomly generated sequence of zeros and ones underneath, which also define the

target for the readout training (value of segment 14 for delayed classification and segment 15 for the undelayed classification). We give a jittered

version of these spike trains to the network (jittering is not shown). C.f. Figure 4, original publication (Häusler and Maass, 2007).

activated and connected all the time, and the tasks are then

evaluated for each input separately.

The tasks are performed by the networks using a reservoir

computing approach and thus require readout neurons. We

connect two different readouts to the systems: the first readout

mimics an excitatory neuron of layer 2/3 and sums up the

filtered spike trains of its inputs. Exactly like a normal layer 2/3

neuron, it does not receive input from all possible sources in

a linked population, but is randomly connected to a subset of

the units based on the corresponding connection probability.

The second readout mimics an excitatory layer 4 neuron in the

same way. We filter the spikes with an exponential function

using a time constant of 15ms. Note that inhibitory neurons are

connected to the spike filtering devices with a negative weight,

resulting in negative values. This is important because the

readout weights are trained with a linear least squares method

with non-negativity constraints. This results in non-negative

readout weights and thus forces the readouts to be in accordance

with Dale’s principle (Eccles et al., 1954), which states that a

neuron releases the same set of transmitters at all of its synapses.

The states on which the readouts are trained and tested are the

values of the filtered spike trains at the end of each 450ms trial.

A specification of the task parameters can be found in Table 5.

2.2.1. Spike pattern based tasks

We implemented three main spike pattern tasks: spike

pattern classification tcli(t), where i denotes the input stream

for which the classification is performed, delayed spike pattern

classification tcli(t − 1t), and the exclusive-or task (XOR). The

inputs for all of these tasks are exactly the same; the difference

lies in the task-specific training of the readout weights. For the
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TABLE 5 Task and training parameters.

Parameter Value Source Description

τfilter 15ms Paper Time constant for spike filtering

Ttrain 1, 500 Paper Default number of training trials

Ttest 300 Paper Number of test trials

nseg 15 Paper Number of segments per trial

tseg 30 Paper Duration of a single input segment

instantaneous spike pattern classification, the readout weights

are trained on the prediction of the value (0 or 1) of the last

segment of each trial (segment 15), whereas the target of the

delayed classification is the value of the penultimate segment

(segment 14), see Figure 3.

In a further set of experiments that go beyond the original

study, we use a step duration of 5ms instead of the standard

30ms and classify the spike patterns of all 15 segments. As these

tasks are all based on only one input, we evaluate them for both

input streams separately.

In contrast to this, the XOR task is computed based on the

value of the last segment of both input streams. To evaluate the

task performances we use a threshold of 0.5 to fix the readout

predictions to values of zero or one, and calculate the kappa

coefficient between the target output and the predicted output.

The kappa coefficient is calculated as:

κ =
P0 − PC

1− PC
(30)

where P0 is the agreement between the target and the observed

prediction and PC is the chance agreement.

In addition to these three task types, we also implemented

the retroactive spike pattern classification with fixed inter-

stimulus input, which Häusler and Maass (2007) use to evaluate

the training convergence in dependence on the number of

training trials. The task is to classify spike patterns consisting of

four spike trains with a duration of 100ms after an intervening

fixed spike pattern of 100ms was given to the network in every

trial. We implemented this by setting the segment duration

to 100ms, the number of segments per trial to two, the input

dimension to four, the second input value of every trial to zero

and the first input value as the target for the readout. We also

disabled spike jittering for the fixed spike trains between the

target stimuli.

2.2.2. Firing rate tasks

In addition to the spike pattern based tasks, computational

tasks were also defined using time varying firing rates. The

structure of the input streams is similar to the one used in

the previously described tasks and the visualization in Figure 3.

However, instead of taking one of two pre-generated spike

patterns, we define a target firing rate between 15 and 25 spks/s

for each of the 15 segments in both input streams and generate

the spike trains based on this rate. The firing rate of the last 15ms

of each trial is used as the target for the readouts. To avoid errors

resulting from a division by zero, we ensure that at least one

spike is placed in this last 15ms window of the input streams.

The tasks we implemented are the quotient of the two input

streams r1/r2 and the square of their difference (r1 − r2)
2. As

the kappa coefficient can’t be used for these analog prediction

tasks, we evaluate the performance on the basis of the Pearson

correlation coefficient between the prediction and the target.

2.3. Simulation and analysis framework

We simulate the spiking neural network experiments with

a timestep of 0.2ms using NEST 3.0 (Hahne et al., 2021). Since

the neuron model we describe above is not included in NEST,

we implement it using NESTML 4.0.0 (Babu et al., 2021). For

all other data analysis and plotting we use Python 3.8.8 and a

modified version of the Functional Neural Architectures library

(Duarte et al., 2021).

3. Results

3.1. Network activity

After establishing that the degree distributions of the various

networks were visually indistinguishable from the published

distributions (see Figure 2), we then examined the activity of

the data-based network. Figure 4A shows a raster plot for the

network with input stream two becoming active at 100ms, and

Figure 4B provides the corresponding firing rate histograms

for the six populations and, combined, the three layers (c.f.

Figure 1). These plots can be compared with Figures 2B,C of the

original publication.

Note that whereas the firing rate histograms in Figure 4B

are very similar to those shown in the original paper, the raster

plot in Figure 4A exhibits some discrepancies. Most notably,

the latency of network activity is longer in our implementation

than in the original. Only a few inhibitory layer 4 neurons show

earlier activity, and although both figures are based on trials of

only 450ms, this behavior is consistent in our experiments. Less

consistent is the measured firing rate of layer 5. In contrast to

the original study, which reports a stable firing rate of around

8.5 spks/s in this layer, we observe a range of firing rates between

3 and 9 spks/s for differently seeded runs. A possible explanation

for these discrepancies is that in the original code, the values

of EM and Vm are transformed into a different simulation

voltage range to compute the non-inactivating K+ current IM .

For this transformation, values of −70mV for the resting

potential and −40mV for the threshold potential were used,
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FIGURE 4

Activity of the data-based circuit. (A) Raster plot for the data-based circuit after input stream two was activated at 100ms. Excitatory neurons are

black and inhibitory neurons are red. (B) The corresponding firing rate histograms for each population and layer. C.f. Figures 2B,C, original

publication (Häusler and Maass, 2007).

rather than the values used in the rest of the study (−80mV ,

−30mV , see Table 1). In our implementation, we elected not

to include these transformations in the neuron model, as we

could determine neither a biological basis nor a computational

advantage for so doing; as shown in the following sections, a

qualitative reproduction of the task performances is achieved

without such transformations.

3.2. Task performance for the circuit
variants

Figure 5 shows the results of the seven main tasks for

the data-based and the amorphous circuits. Although the

performance values are not identical to the ones in the original

study, the values are close and qualitatively reproduce the key

finding that the data-based circuit outperforms the amorphous

control circuit in every task. The main difference between

our results and those reported in the original study is our

comparatively low performance at rate based tasks and the

delayed spike pattern classification of input stream one (for

both circuits).

Additionally, Figure 6A shows the performance of the

data-based and amorphous circuit for the retroactive spike

pattern classification task with fixed inter-stimulus input for

different numbers of training examples. The original study

does not specify which input stream was used to generate the

corresponding figure in their work (Figure 8); we therefore

tested both of them. Our experiments show more similar results

for input stream one, and so we use those results as the basis

for Figure 6A. As in the original study, the data-based circuit

has a lower test and training error than the amorphous circuit

for all sizes of training set. Taken together, Figures 5, 6A support

the argument put forward by the original study that a laminar

structure has a positive effect on the computational performance

of a circuit.

The quantitative performance measures for all circuits

(Section 2.1.4) and all tasks (Section 2.2) can be found in Table 6.

These results can also be expressed as percentage difference from

the performance of the data-based circuit; this analysis is given

in Table 7.

The last four rows of both tables show results averaged over

both readouts and over a category of tasks. The memory row

averages over all tasks for which the networks need to memorize

earlier inputs [tcl1(t − 1t) and tcl2(t − 1t)], the nonlinear

row averages the results over the tasks based on nonlinear

computations (XOR, r1/r2 and (r1 − r2)2) and the other row

summarizes all other tasks [tcl1(t) and tcl2(t)]. The last row of

the tables averages the results over all tasks. In the original paper

only the last four rows of Table 7 were presented (Table 2 in

Häusler and Maass, 2007).

According to the averaged results, the data-based circuit

outperforms all other circuits on all tasks. Here we have broad

agreement with the original study, in which only the degree

controlled network had slightly superior performance in two

task categories.

Examining the disaggregated data in Table 7, we

observe that there are 17 instances where a control

circuit exhibited superior performance to the data-

based circuit. In particular, most networks surpass the

data-based circuit on all rate-based tasks. However, as

Table 6 shows, the performance for these tasks is very

low for all networks, which means that even a small

absolute increase in the correlation coefficient results in
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FIGURE 5

Performance of trained linear readout neurons in layers 2/3 and layer 5 for the classification tasks on spike patterns and computations

performed on the rates of the two input streams (see Section 2.2), both for data-based laminar microcircuit models (gray bars) and for the

amorphous control circuits (scrambled laminar structure; black bars). Light purple bars represent the results for networks with neurons without

conductance noise and light orange bars networks consisting of integrate-and-fire neurons. Error bars are the standard errors of mean. All

values are averaged over 20 runs. C.f. Figure 5, original publication (Häusler and Maass, 2007), likewise averaged over 20 runs.

a substantial percentage increase. We therefore consider

this partial contradiction of the original study to be

neuroscientifically uninteresting.

In addition to the rigorous analysis of the effect of circuit

connectivity, the original study also considered the influence of

network size by increasing the number of neurons within each

population of the circuit. Figure 6B shows the dependence of the

XOR task performance as a function of the number of neurons

in the circuit. As with the original study, our results show a

systematically better performance for the data-based circuit over

the amorphous circuit, and an increase in performance for both

circuits types with increasing circuit size up to 5, 000 neurons.

While the data-based network still benefits from increasing the

network size to 10, 000, the performance of the amorphous

circuit reaches its maximum value at 5, 000 neurons. This effect

could not be observed in the original study, as the maximum size

of network examined was 1, 000 neurons.

3.3. Robustness to neuron model
simplifications

The original study demonstrated the computational benefits

of lamina-specific connectivity using a fairly complex neuron

model. We therefore hypothesize that the details of the neuron

model are not relevant to this key finding. To test this hypothesis,

we examine the robustness of our dynamical and computational

results to variations in the neuron model (see Section 2.1.2).

First, we consider the intrinsic noise mechanism. As shown

by the raster plots and firing rate histograms in Figure 7, the

firing activity in the networks does not change significantly

for the data-based and amorphous circuits in the absence

of intrinsic noise. Moreover, we observe that the data-based

connectivity structure is still superior to all other connectivity

patterns in all task types, which Figure 5 (light purple bars)

illustrates for the comparison with the amorphous circuit
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FIGURE 6

(A) Training and testing error of readouts from data-based and amorphous circuit models as functions of the size of the training set. 300 trials

are always used for testing. Error bars indicate the standard error of means. Values are averaged over 30 runs. C.f. Figure 8, original publication

(Häusler and Maass, 2007), averaged over 20 runs. (B) Performance (kappa coe�cient) on the XOR task of projection neurons in layers 2/3 and

layer 5 for di�erent circuit sizes, with and without a data-based laminar structure. All values are averaged over 30 runs. Error bars indicate the

standard error of the means. C.f. Figure 6, original publication (Häusler and Maass, 2007), averaged over 10 runs.

TABLE 6 Performance measures for all networks and all tasks.

Tasks/circuits Data-based Amorphous Small-world DC DC (no io) Random dynamics Static synapses

tcl1(t) (L23) 0.87 –0.305 –0.17 –0.106 –0.235 –0.117 0.013

tcl2(t) (L23) 0.947 –0.175 –0.171 –0.097 –0.168 –0.44 –0.067

tcl1(t) (L5) 0.693 –0.115 –0.145 –0.106 –0.049 –0.407 –0.069

tcl2(t) (L5) 0.968 –0.084 –0.117 –0.065 –0.191 –0.469 –0.159

tcl1(t−1t) (L23) 0.389 –0.224 –0.024 –0.061 –0.131 +0.021 –0.056

tcl2(t−1t) (L23) 0.352 –0.158 –0.02 +0.071 –0.081 –0.185 –0.091

tcl1(t−1t) (L5) 0.418 –0.217 –0.073 –0.117 –0.101 –0.136 –0.258

tcl2(t−1t) (L5) 0.49 –0.175 –0.119 –0.007 –0.187 –0.259 –0.196

XOR (L23) 0.304 –0.097 –0.145 –0.053 –0.114 –0.174 –0.061

r1/r2 (L23) 0.058 –0.05 +0.083 +0.043 +0.076 +0.073 –0.007

(r1− r2)2 (L23) 0.1 –0.056 +0.026 +0.028 +0.012 +0.006 –0.013

XOR (L5) 0.383 –0.132 –0.206 –0.102 –0.198 –0.206 –0.095

r1/r2 (L5) 0.051 –0.04 +0.069 +0.064 +0.116 +0.029 –0.025

(r1− r2)2 (L5) 0.11 –0.052 +0.026 +0.017 +0.014 –0.02 –0.067

Memory 0.43 –0.183 –0.07 –0.001 –0.147 –0.17 –0.135

Nonlinear 0.168 –0.072 –0.025 –0.001 –0.016 –0.049 –0.045

Other 0.938 –0.162 –0.144 –0.083 –0.196 –0.373 –0.093

All 0.463 -0.129 -0.072 -0.024 -0.105 -0.176 -0.084

Spike based tasks are evaluated with the kappa coefficient and rate based tasks with the correlation coefficient. The data-based column gives the absolute value and the other columns show

the difference from this value. The best performance per task/row is marked in bold. Gray/blue shading denotes tasks from the categories memory/nonlinear. All values are averaged over

20 runs (10 runs in original paper).
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TABLE 7 Performance measures for all control networks and all tasks expressed as average di�erence (in percent) from the performance of the

data-based circuit.

Taks/circuits Amorphous
Small-
world

DC
DC
(no io)

Random
dynamics

Static
synapses

tcl1(t) (L23) –35.1 –19.6 –12.2 –27.0 –13.4 1.5

tcl2(t) (L23) –18.5 –18.1 –10.2 –17.8 –46.5 –7.1

tcl1(t) (L5) –16.6 –20.9 –15.3 –7.2 –58.7 –10.0

tcl2(t) (L5) –8.6 –12.1 –6.6 –19.6 –48.4 –16.4

tcl1(t−1t) (L23) –57.5 –6.2 –15.6 –33.8 5.4 –14.4

tcl2(t−1t) (L23) –44.9 –5.9 20.1 –23.1 –52.6 –25.9

tcl1(t−1t) (L5) –52.0 –17.5 –28.1 –24.3 –32.5 –61.8

tcl2(t−1t) (L5) –35.7 –24.3 –1.4 –38.2 –52.9 –40.0

XOR (L23) –31.9 –47.8 –17.6 –37.5 –57.4 –20.2

r1/r2 (L23) –86.8 142.6 74.1 130.8 126.5 –11.2

(r1− r2)2 (L23) –56.1 26.3 28.2 11.8 6.3 –12.7

XOR (L5) –34.5 –53.9 –26.7 –51.8 –53.9 –24.8

r1/r2 (L5) –79.2 136.1 126.4 227.8 57.4 –48.6

(r1− r2)2 (L5) –47.1 23.7 15.5 12.3 –18.0 –61.2

Memory –42.5 –16.4 –0.2 –34.1 –39.7 –31.3

Nonlinear –42.5 –14.7 –0.3 –9.5 –29.0 –26.6

Other –17.3 –15.3 –8.8 –20.9 –39.8 –9.9

All –27.9 –15.5 –5.2 –22.6 –38.1 –18.2

Positive values indicating a performance improvement with respect to the data-based circuit are marked in bold. Gray/blue shading denotes tasks from the categories memory/nonlinear.

All values are averaged over 20 runs. C.f. Table 2 in original publication (Häusler and Maass, 2007).

(see Supplementary materials for the summarized performance

measures for all circuit types). Figure 5 also shows that networks

without noise (both data-based and amorphous circuits)

perform slightly better than their noisy counterparts in most

of the tasks performed, and even considerably better in the

nonlinear XOR task.

Second, we reduce the neuron model from a Hodgkin-

Huxley to a much simpler integrate-and-fire neuron model. To

obtain firing rate ranges in the data-based circuit as close as

possible to those of the network with Hodgkin-Huxley neurons,

we adjust Vthresh of the integrate-and-fire neuron model to a

different value for each population (see Section 2.1.2 for the

parameter values and Supplementary materials for the firing

rate distributions). The top right part of Figure 7 shows the

corresponding raster and firing rate plots.

Also among the circuits consisting of integrate-and-fire

units, the data-based network has the best task performance

(see Supplementary materials for the summarized performance

measures). Moreover, Figure 5 shows similar results for the

Hodgkin-Huxley neural networks without noise (light purple

bars) and the iaf circuits (light orange bars), with the XOR

task values of the amorphous circuits showing the most

noticeable difference.

We conclude that these results confirm our hypothesis that

the superiority of the data-based connectivity structure does

not depend on the specifics of the neuron model. Moreover,

they reveal that a reduction in complexity even leads to an

increase in performance on the tasks conducted.We hypothesize

that the dynamics of the Hodgkin-Huxley model, which are

much more intricate than those of integrate-and-fire neurons,

may effectively act as an additional noise source that reduces

task performance.

3.4. Detailed memory tasks

To get further insight into the memory capabilities of the

networks, we devised a modification of the retroactive spike

pattern classification task, namely reducing the step size from

30ms to 5ms and classifying the spike patterns of all 15 segments

(see Section 2.2). This gives our view on retroactive spike pattern

classification a six times higher resolution with one data point

for every 5ms interval instead of only every 30ms, allowing us

to determine the memory profile for each circuit variant. Our

results for the more detailed memory tasks are summarized

in Figure 8.

We observe that all network variants require some

processing time to reach their peak performance, see Figure 8A.

For all combinations of network, input stream, and readout

location, the maximum kappa coefficient is reached after a
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FIGURE 7

Raster plots and firing rate histograms for the data-based and amorphous circuits for the three di�erent neuron types (original: Hodgkin-Huxley

neurons that were used in the original publication, disabled-noise: Hodgkin-Huxley neurons without intrinsic conductance noise, iaf neuron:

integrate-and-fire neurons). The spikes of the inhibitory populations are colored red, while those of the excitatory populations are shown in

black. As in Figures 2B,C, original publication (Häusler and Maass, 2007), for the raster plots input stream two starts at 100ms.

delay of two steps (10ms), i.e., the networks have the greatest

accuracy in identifying the stimulus inserted two steps before

the current one. The only exception is the layer 5 classification

of input stream 1 of the data-based network with random

synaptic dynamics, which reaches its maximum after a delay

of three steps (15ms). However, in general the performance

increases steeply up to delay 2 (10ms) and then decreases

more slowly until all circuits reach a value close to zero at

delay 10 (50ms).

Notably, the performance of the undelayed classification

is worse than that of the short-term delayed classification,

in contrast to the results presented in Figure 5 for a step of

30ms. This can be understood by considering that the networks

need more than 5ms to process the input and generate an

informative response from the few neurons on which the

readouts are based. One reason for this is synaptic delays,

since for example excitatory-to-excitatory synapses already

require an average of 1.5ms to transmit a single spike from

a presynaptic to a postsynaptic neuron. With the longer

step of 30ms, the network has plenty of time to respond

informatively to the undelayed stimulus, whereas the effects

of the previous stimulus have already faded considerably.

Likewise, the longer step duration provides greater possibilities

for readout weights to be learned that accurately distinguish

between stimuli, resulting in a better peak performance for

the 30ms task.
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FIGURE 8

Results of retroactive spike pattern classification tasks for all network types. (A) Performances (kappa coe�cient) for the classification of spike

patterns with a duration of 5ms at di�erent delays, separated by input stream and readout (averaged over 40 trials). (B) Bars representing the sum

of task performances over all delays for the same task as in (A). Error bars represent the standard error of mean. (C) Values from (B) averaged

across all input streams and readouts. (D) Averaged results of the delayed classification of 30ms spike patterns (data of memory row in Table 6).

The heights of the bars in Figure 8B indicate the sum of

the values for all delays in Figure 8A. This illustrates that not

only does the peak performance of the circuit with data-based

connectivity surpass that of all other systems at the optimal

delay, as shown in the previous line graph, but also that a

more general view encompassing the task results for all delays

reveals the superiority of this circuit. As the data-based circuit

does not retain stimulus information for longer than the other

circuits, we conclude that its superior performance must be due

to the laminar connectivity enabling it to generate more distinct

representations of the input stimuli.

Figure 8C generalizes this view even further by averaging the

results shown in Figure 8B over the input stream and readout

location, and sorting the networks by performance. Here,

the degree-controlled circuit follows the best-performing data-

based circuit and the network with random synaptic dynamics

has the lowest result. The next four systems (SS, SW, AM, and

DCio; Figure 8C) are comparatively at the same level with only

minor differences. Although one can not directly compare the

averaged sum over multiple delays with the performance based

on only a single delay, it is interesting to note that this graph

does not display the same order as the results of the previous

memory tasks with the longer step of 30ms shown in Figure 8D

and Table 6. While in both cases the data-based circuit is best

and the degree-controlled circuit second best, the difference is

much smaller for the original memory tasks and the order of

the remaining networks is different. For both step durations, the

amorphous and the degree-controlled circuit without input and

output specificity show results at similar levels to the network

with static synapses. For the 30ms memory task type the small-

world network performs comparatively better than this group,

positioning itself in third place, whereas for the detailed memory

tasks with 5ms resolution, the network with random synaptic

dynamics performs noticeably worse than the other circuits.

Clearly, the stimulus step duration has an effect on the

computational capabilities of the networks and can move a

network’s peak performance to different delays. Moreover, the

ordering differences in Figures 8C,D suggest that the optimal

step duration for a network depends on the connectivity

structure. However, the good performance of the degree-

controlled circuit and especially the data-based circuit for both

step durations tested show that both of these systems have a

lower dependence on this duration parameter and can more

robustly handle stimuli of different lengths.

4. Discussion

4.1. Replicability

Our results demonstrate that we could replicate the circuits

of the original study and both confirm and strengthen their key

findings. However, we encountered significant challenges during

this process and it would have been essentially impossible if we

had only had the paper as a source of information. As can be

seen in the parameter Tables 1, 3, 4, several of the neuron and
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synapse parameters were not given in the paper, or a different

value was reported than was used in the code. For example,

only by examining the code could we determine the specification

of the synaptic delay, namely that it is drawn from a random

distribution with a mean value that depends on the connection

type (EE, EI, IE, and II).

Likewise, the synaptic time constants were only given

in the code and the parameterization of the neuron ion

channels showed some discrepancies. In addition to minor

differences in the parameters of the Na+ ion channel, there

was greater variation in the definition of the K+ ion channel,

which is responsible for the current IM. Häusler and Maass

(2007) provide peak conductance densities for the different ion

channels and a single membrane area, which can be used to

calculate the peak conductance of every channel. Examining the

code reveals that for the standard sodium and potassium ion

channels, the reported membrane area is used to calculate the

conductivity, however it is based on a different (and unreported)

area value for the other potassium ion channel (responsible for

IM). In addition, the conductance density of the latter channel

is twice as large as that stated in the paper and different factor r

was used in equations 15 and 16 defining the channel dynamics,

which is a deviation that is easy to overlook. These differences in

parameters significantly alter the activity of the network and led

us to disable the M ion channel in early experiments to obtain

approximately comparable network responses.

Besides the difficulty in specifying basic synaptic and

neuronal parameters, the scaling parameters of the synaptic

weights SRW, S1 and S2 also caused some problems. All of them

were different from the values reported in the paper and it was

hard to track them down in the MATLAB code, because the

final scaling parameter values were not set directly, but defined

by somewhat convoluted calculations distributed over multiple

source code files. This was a particularly challenging example

of a general problem: as the code was not executable due to

its age, it was not possible to simply output the final values

of variables, or examine the parameters and dynamic variables

of the neurons and synapses. Instead, calculations had to be

painstakingly reconstructed by analyzing the source code and

replicating the logic.

As a final example of the nature of the replication challenges,

the input scaling parameters in the code are approximately—

but not exactly—1,000 times smaller than given in the paper,

because the input weight to be scaled is approximately—but

not exactly—1,000 times bigger than reported. In contrast

to the weights inside the network, which are defined in the

code as amplitudes of post-synaptic potentials in the same

way they are given in the paper, the input weights are

defined as a post-synaptic current of 30 nA. This results in the

following PSP-amplitude:

PSPinput =
PSCinput

gL
= 1.924779612734342V (31)

instead of the reported 1.9mV. However, the combination of

these differences results in a scaled input weight with the same

order of magnitude as the one reported in the paper.

These hurdles to replicating the paper provide a good

demonstration of the argument presented in Pauli et al.

(2018): whereas provision of source code is the absolute

minimum requirement for replicating a study in computational

neuroscience, the process is rendered much simpler if

appropriate care is taken with the code implementation,

e.g., writing modular, encapsulated, well-commented code

with separation of parameters and program logic. Moreover,

many of the hurdles we encountered would have been

substantially reduced if the code had been executable. To foster

reproducibility, we therefore recommend (again following Pauli

et al., 2018) that models should not be expressed in homebrewed

code, as this is unlikely to be maintained. Instead, developing

the model using a simulator that is actively developed by a

community reduces the maintenance load and increases the

likelihood that the model will remain accessible, executable, and

part of the scientific discourse for years to come.

5. Conclusion

We analyzed how the lamina structure of a cortical column

model affects the computational capabilities of spiking neural

networks. In a first step, we replicated the models and

experiments described by Häusler and Maass (2007). Although

we did not get identical network activity and task results,

the activity results and degree histograms are close enough to

demonstrate that the replication was successful. Our findings

on the tasks defined in the original study confirm their

key result, that the degree distribution exhibited by laminar

structure of the data-based circuit confers a computational

advantage over circuits with modified connectivity patterns that

destroy the laminar connectivity whilst maintaining the global

statistics of the network. We reach this conclusion by training

readout weights to solve tasks based on spike patterns and

firing rates that require linear and non-linear computations

on two separate input signals and the memorization of

prior information.

The microcircuit model at the heart of the original study

shares many properties with biological microcircuits. In

addition to its data-based structure, it consists of Hodgkin-

Huxley neurons with different ion channel dynamics and a

conductance-based background noise mechanism, and its

synapses exhibit short-term plasticity. For further biological

plausibility, its readouts receive only inputs restricted to layer

2/3 and layer 5 specific connections. The readout weights

observe Dale’s principle (Eccles et al., 1954): excitatory

neurons contribute only positive values to the activity

function of the readout neuron, and inhibitory neurons only

negative values.
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Given the superior performance of the data-based circuit, we

formulated the hypothesis that the results should be robust with

respect to the specifics of the neuron model. We extended the

analysis of the original study by decreasing the complexity of

the neuron model, first removing the intrinsic noise and then

reducing the dynamics to that of an integrate-and-fire neuron.

The results confirmed our hypothesis that neuron model details

were not important to the key result: in both cases the data-

based circuit continued to exhibit superior performance over

all other variants. Our results also rule out the possibility

that a complex neuron model is necessary for the data-based

circuit to reach a good performance, since the two simpler

neuron types tested outperform it in the majority of tasks.

Likewise, we found that relaxing the biologically motivated

restriction on the readout weights increases performance (data

not shown).

To obtain a higher temporal resolution in the examination

of the memory capabilities of the circuit variants, we

additionally extended the original analysis to include

retrospective classification of spike patterns of much

shorter segments with a duration of 5ms instead of 30ms,

and classifying all of the segments rather than just the

last two. Here we observe a stereotypical memory profile

for all circuit types, where the data-based circuit beats

the other networks in peak performance and summed

reconstruction capability across all delays, with comparable

performance for the degree-controlled circuit. However,

there is no significant difference between the various

networks when comparing the maximum delay up to

which the signal can still be at least partially reconstructed.

Thus, we conclude that the advantage of the laminar

connectivity structure lies primarily in the clarity of the

internal representation rather than in significantly longer

information retention. These results also highlight the

characteristic time scale of the input as a relevant parameter

for determining the computational capacities of a spiking

neural network.

In future work, we will use our NEST implementation

of the data-based microcircuit model, which is now freely

available to all researchers, to lay the groundwork for further

experiments to investigate the computational properties of

cortical columns and to make quantitative comparisons with

alternative microcircuit models. In this context it would also

be reasonable to tune the network to obtain biologically more

realistic long-tailed firing rate distributions with a mean below

1 spks/s instead of the comparatively high activity currently

exhibited by the model (about 40 spks/s for layers 2/3 and 4).

For the simplified network with integrate-and-fire neurons, this

can probably be achieved by adjusting the firing threshold per

population based on in-vivo data rather than using the activity

of the original model as a basis. Similarly, for the network

with Hodgkin-Huxley neurons, it is likely that population-level

tuning of neuron parameters and probably adjusted scaling

of recurrent weights will be required to achieve the intended

firing rates.

From here it is also possible to add other biological details

such as additional or different plasticity mechanisms, or to

investigate the computational capacities of larger networks

using this microcircuit as a basic building block for systems

representing the meso- or macroscopic level. This could

be achieved, for example, by adjusting the weight scaling

parameters along with the network size and connecting multiple

differently parameterized instances of the microcircuit using

inter-area connectivity that is based on experimental findings.
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