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Abstract

Wedeveloped and evaluated an automatically extractedmeasure of cognition (seman-

tic relevance) using automated and manual transcripts of audio recordings from

healthy and cognitively impaired participants describing theCookie Theft picture from

theBostonDiagnostic Aphasia Examination.Wedescribe the rationale andmetric vali-

dation.We developed themeasure on one dataset and evaluated it on a large database

(>2000 samples) by comparing accuracy against a manually calculated metric and

evaluating its clinical relevance. The fully automated measure was accurate (r = .84),

had moderate to good reliability (intra-class correlation = .73), correlated with Mini-

Mental State Examination and improved the fit in the context of other automatic lan-

guage features (r = .65), and longitudinally declined with age and level of cognitive

impairment. This studydemonstrates theuseof a rigorous analytical and clinical frame-

work for validating automatic measures of speech, and applied it to a measure that is

accurate and clinically relevant.
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1 OVERVIEW

The power of language analysis to reveal early and subtle changes in

cognitive–linguistic function has been long recognized1,2,3 but chal-

lenging to implement clinically or at scale because of the time and

human resources required to obtain robust language metrics. This is

particularly true of picture description tasks, which are regarded as
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rich data sources because they require a broad range of cognitive and

linguistic competencies to successfully complete.4 For example, the

Boston Diagnostic Aphasia Examination (BDAE) includes an elicitation

of the Cookie Theft picture description5 and this task is widely used

clinically and in research across a swath of clinical conditions, includ-

ing cognitive decline and dementia.6,7 The information extracted from

transcripts of the picture descriptions provides insight to the likely
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sources of deficit and differential diagnosis. Yet, the burden of the anal-

yses on human resources is prohibitively high for routine clinical use

and impedes rapid dissemination of research findings. In this study, we

demonstrate the feasibility of using an automated algorithm to mea-

sure an interpretable and clinically relevant language feature extracted

from picture descriptions while dramatically reducing the human bur-

den of manually assigning codes to features of interest.

A commonly extracted, high-yield metric for the characterization

of cognitive–linguistic function in the context of dementia involves

assessment of the relationship of the words in the transcribed pic-

ture description to the word targets in the picture. This measure has

been described with varying terminology, including “correct informa-

tion units,”8 “content information units,”9 and “semantic unit idea den-

sity.” 1,10 All these terms encapsulate essentially the same concept: the

ratioof apre-identified set of relevant contentwords to the totalwords

spoken. For example, in the Cookie Theft picture description, people

are expected to use the words “cookie,” “boy,” “stealing,” etc., corre-

sponding to the salient aspects of the picture. We developed an auto-

mated algorithm to measure this relationship, called the Semantic Rel-

evance (SemR) of participant speech. We chose to use this new term,

“semantic relevance,” to better frame the concept of the measure.

SemR measures the proportion of the spoken words that are directly

related to the content of the picture, calculated as a ratio of related

words to total words spoken. Like its manual predecessor, “semantic

unit idea density,”1 the automated SemR metric provides an objec-

tive measure of the efficiency, accuracy, and completeness of a picture

description relative to the target picture.

The goal of this study is two-fold. First, we completely automated

the process for measuring SemR by transcribing recordings of picture

descriptions using automatic speech recognition (ASR) and algorithmi-

cally computing SemR; done manually, this is a burdensome task and

prohibitive at a large scale. Second, we use this study to illustrate a rig-

orous analytical and clinical validation11 framework inwhichwe evalu-

ated SemR on a new, large (>2000 observations) database.

We first show that the SemR scores remain accurate at each step

that the measure is automated. Next, we discuss our use of a large

evaluation sample to show the accuracy achieved after automating the

computation of SemR. We first show the accuracy achieved when the

content units for calculating SemR are identified algorithmically rather

than through manual coding. Second, we show the accuracy achieved

when the transcripts are obtained through ASR instead of manually

transcribing them.We thenevaluatedwhat happenswhen thedata col-

lection is done remotely and without clinical supervision. To do this,

we compared the SemR scores between participantswho provided pic-

ture descriptions in clinic supervised by a clinician and at home in an

unsupervised setting. In the second part of the study, we demonstrate

the relationship between SemR and cognitive function. We used the

fully automated version of SemR and evaluated it for its clinical rele-

vance computing its test–retest reliability, its association with cogni-

tive function, its contribution to cognitive function above and beyond

other automatically obtainedmeasures of language production, and its

longitudinal change for participants with different levels of cognitive

impairment.

RESEARCH INCONTEXT

1. Systematic Review: The authors conducted a literature

review to identify studies that make use of content infor-

mation units (CIU) extracted from picture description

tasks as a predictor of cognitive impairment. Several arti-

cles and abstracts discussed changes in CIUs and other

language parameters that reflect individuals’ cognitive

functioning.

2. Interpretation: Our study shows how a targeted lan-

guage feature was developed based on previous stud-

ies and fully automated such that it can be algorithmi-

cally extracted from the Cookie Theft picture description

recorded speech. We evaluated it on a large database

(>2000 samples) and showed that it is clinically relevant,

repeatable, and tracks changes in cognition.

3. Future Directions: The article illustrates a framework for

rigorous validation of digitally extracted language fea-

tures. This framework can be used in future work to val-

idate other speech-basedmeasures of cognition.

2 METHODS

2.1 Development dataset

We used a small dataset (25 participants, 584 descriptions of pic-

tures) for developing the SemR algorithm. These participants had amy-

otrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) of

varying degrees of severity. The inclusion of participants with unim-

paired speech along with speech impacted by dysarthria and cogni-

tive impairment for developing the algorithm provided us with a rich

datasetwith samples that varied in the picture descriptions’ length and

content. Details are found in the supporting information. This dataset

was used for the development of the algorithm, but not the clinical val-

idation, and therefore this study does not claim that the clinical valida-

tion results generalize to ALS or FTD.

2.2 Evaluation dataset

The sources of the evaluation data included the Wisconsin Registry

for Alzheimer’s Prevention (WRAP) study, DementiaBank,12 and Ama-

zon’s Mechanical Turk. WRAP and DementiaBank conducted the data

collection in clinicwith supervision froma clinician, andwere evaluated

for their degree of cognitive impairment. The data collection through

Mechanical Turkwas conducted remotely; participants self-selected to

participate in an online “speech task” study from their computers and

were guided through the study via a computer application.

At each data collection, recorded descriptions of the Cookie

Theft picture were obtained. The sample consisted of various
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TABLE 1 Description of the evaluation sample

Evaluation data

Demographic CU CU-D MCI Dementia

Agemean (SD) 58.5 (10.5) 63.6 (6.0) 66.7 (6.4) 71.2 (8.6)

Sex (% female) 58% F 61% F 73% F 65% F

Race (%White) 93%W 84%W 78%W 97%W

Education (% less than high school, %

completed high school, %more than high

school)

1%<HS,

16%HS,

83%>HS

2%<HS,

10%HS,

88%>HS

12%<HS,

15%HS,

73%>HS

33%<HS,

31%HS,

38%>HS

Number of observations 2,610 327 64 311

Number of participants 1258 180 26 195

Abbreviations: CU, cognitively unimpaired; CU-D, cognitive unimpaired showing atypical decline; HS, high school; MCI, mild cognitive impairment; SD, stan-

dard deviation.

TABLE 2 Number of observations for each sample characteristic

Sample characteristics

Number of

observations

Speechwasmanually transcribed 2716

Manual transcriptionwasmanually annotated to

manually calculate SemR

2163

Speechwas transcribed using ASR 2921

Speechwas collected in clinic 2716

Speechwas collected remotely 595

Speech sample was collectedwith pairedMMSE 2564

Speechwas collected in close temporal proximity

(separated by≈1week)

319

Abbreviations: ASR, automatic speech recognition; MMSE, Mini-Mental

State Examination; SemR, semantic relevance.

characteristics, including participants who provided repeated mea-

surements over the course of years, participants who completed a

paired Mini-Mental State Examination (MMSE),13 participants who

provided the picture descriptions in clinic supervised by a clinician,

and participants who provided the picture descriptions from home.

Additionally, the sample included transcripts that were manually

transcribed, transcripts transcribed by ASR, and transcripts that were

manually annotated by trained annotators to compute SemR. The

WRAP participants were diagnosed according to a consensus confer-

ence review process as being cognitively unimpaired and stable over

time (CU), cognitively unimpaired but showing atypical decline over

time (CU-D), clinical mild cognitive impairment (MCI), and dementia

(D). The DementiaBank12 participants were described as healthy con-

trols (coded here asCU) and as participantswith dementia.Mechanical

Turk participants self-reported no cognitive impairment (CU), absent

clinical confirmation. Table 1 shows descriptive statistics of the sample

for each diagnostic group. Table 2 shows the number of samples

available for each type of data, for a total of 552 (DementiaBank), 2186

(WRAP), and 595 (Mechanical Turk).

In the following sections, unless otherwise specified, each analysis

used all the data that was available given the required characteris-

tics (e.g., when estimating the accuracy of the automatically computed

SemR with the manually annotated SemR, all observations for which

both sets of SemR scores were available were used for the analysis).

2.3 Development of semantic relevance

We focused efforts on automation of the SemR measure because of

the demonstrated clinical utility of picture description analysis, as well

as its ability to provide insight into the nature of different deficit pat-

terns and differential diagnosis.1,3 The goal of the SemR measure is to

gauge retrieval abilities, ability to follow directions, and ability to stay

on task in a goal-directed spontaneous speech task. We used the com-

plex picture description task from the BDAE,5 in which participants

were shown a picture of a complex scene and were asked to describe

it. SemR is higher when the picture description captures the content

of the picture and is lower when the picture description shows signs

of word finding difficulty, repetitive content, and overall lack of speech

efficiency. In other words, SemR measures the proportion of the pic-

ture description that directly relates to the picture’s content.

The algorithm operates as follows: First, the speech is transcribed.

Then, each word is categorized according to whether it is an element

from the picture or not. For this, the algorithm requires a set of inputs

that indicate what elements from the picture need to be identified. For

theCookieTheft picture,we chose the23elements indicated inAhmed

et al.10 (e.g., boy, kitchen, cookie) and allowed the algorithm to accept

synonyms (e.g., “young man” instead of “boy”). Finally, the total num-

ber of unique elements from the picture that a participant identifies is

annotated and divided by the total number of words that the partici-

pant produced. Importantly, these keywords were fixed after develop-

ment andwere not modified during evaluation.

The supporting information contains an illustration of how SemR

provides a window into speech production in cognitive impairment.

2.4 ASR transcription

GoogleCloud’s14 Speech-to-Text software transcribed the speech sam-

ples. The ASR algorithm was customized for the task by boosting the
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standard algorithm such that the words that are expected in the tran-

script have increased probability that they would be correctly recog-

nized and transcribed. This was implemented in Python using Google’s

Python application programming interface.14

2.5 Data analysis

The data analysis is split into three sections to evaluate: (1) accuracy

of the automatic algorithm, (2) sensitivity of SemR to the adminis-

tration method, and (3) clinical utility of SemR by measuring differ-

ences in SemRscores across levels of cognitive impairment, andwithin-

participant longitudinal change.

2.5.1 Evaluation of semantic relevance: removing
the human from the SemR computation

In the manual implementation of SemR there are two steps that

involve human intervention, including manually transcribing the par-

ticipant’s recorded picture description then manually annotating the

content units mentioned. To establish the analytical validity of the

automated SemR, we tested replacement of human intervention in

two ways. First, we used manual transcriptions to compare perfor-

mance of the manually annotated SemR to the algorithmically com-

puted SemR. Second, we used ASR-generated transcripts to compare

the automatically computed SemR scores with the manually tran-

scribed and annotated SemR and manually transcribed and automati-

cally computed SemR scores. The goal of this series of analyses was to

show that the automated accuracy was maintained relative to ground

truth (human intervention) at each stepof transcription and calculation

of SemR.

To measure the accuracy achieved at each step, we computed the

correlation between each pair (using amixed-effectsmodel15 given the

repeated measurements per participant) and the mean absolute error

(MAE) of the two.

2.5.2 Evaluation of semantic relevance: removing
the human from the data collection

Next, we evaluated the feasibility of automating the data collection

to be done remotely, without supervision, instead of in clinic and

supervised. We selected a sample of 150 participants matched on age

and sex, half of whom provided data in clinic (WRAP, DementiaBank)

and half at home (Mechanical Turk). We selected only in-clinic par-

ticipants who were deemed CU by a clinician, and at-home partici-

pants who denied cognitive impairment. The final sample for this anal-

ysis consisted of 75 participants in clinic and 75 participants at home

with average age 62 (standard deviation = 8.0) years old and with

42 women and 33 men in each group. A Welch’s test (unequal vari-

ances) was conducted comparing the mean SemR scores of the two

samples.

TABLE 3 Correlations and differences between themanually
annotated, manually transcribed algorithmically computed, and
ASR-transcribed algorithmically computed SemR values

Analysis Correlation MAE

Human-transcript-and-SemR versus

Human-transcript-automatic-SemR 0.87 0.04

Human-transcript-automatic-SemR versus

ASR-transcript-automatic-SemR 0.95 0.01

Human-transcript-and-SemR versus

ASR-transcript-automatic-SemR 0.84 0.03

Abbreviations: ASR, automatic speech recognition; MAE, mean absolute

error; SemR, semantic relevance.

2.5.3 Evaluation of the clinical relevance of SemR

After establishing the accuracy and feasibility of fully automating the

data collection and computation of SemR, we generated an ASR tran-

script and automatically computed SemR for each participant.Weeval-

uated its clinical relevance by: (1) estimating the test–retest reliabil-

ity using intra-class correlation (ICC), standard error of measurement

(SEM), and coefficient of variation (CV); (2) estimating its association

with cognitive function and its contribution to cognitive function above

and beyond other automatically obtained measures of language pro-

duction by fitting amodel predictingMMSE and by classifying between

disease groups (CUvs. the three disease groups); and (3) estimating the

longitudinalwithin-person change of SemR for participants at different

levels of cognitive impairment using a growth curve model (GCM). The

supporting information provides a detailed description of the statisti-

cal analyses performed.

3 RESULTS

3.1 Evaluation of semantic relevance: removing
the human from the semR computation

For the analytical validation of SemR, we compared the automatic

SemR on manual transcripts, SemR calculated based on manual anno-

tations on the manual transcripts, and automatic SemR on ASR tran-

scripts. Figure 1 shows the plot for each comparison and Table 3

shows the correlations and MAE. All three versions of SemR cor-

related strongly16 and had a small MAE, indicating that the auto-

matic computation of SemR did not result in a substantial loss of

accuracy.

3.2 Evaluation of semantic relevance: removing
the human from the data collection

Next, we evaluated the impact of the data collection method by

comparing SemR scores of supervised (in-clinic) and unsupervised
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F IGURE 1 Scatterplots showing: (A) themanually annotated SemR values versusmanually transcribed algorithmically computed SemR values,
(B) manually transcribed algorithmically computed SemR values versus ASR-transcribed algorithmically computed SemR values, and (C) manually
annotated SemR values versus ASR-transcribed algorithmically computed SemR values. SemR, semantic relevance

(at-home) participants. A Welch’s test indicated that the mean SemR

scores were significantly different between the two groups (at

home= .21, in clinic= .18, t= 2.55, P= .01, Cohen’s d= .43). However,

Cohen’s d = .43 indicated that the difference between the two groups

was small. Figure 2 shows the boxplots with the SemR scores for the

at-home and in-clinic samples.

3.3 Evaluation of the clinical relevance of SemR

3.3.1 Test–retest reliability

To evaluate the clinical validity of SemR, we first estimated the test–

retest reliability. We found that ICC = .73, SEM = .04, CV = 19%.
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F IGURE 3 Test-retest reliability plot for SemR. SemR, semantic
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This was moderate17 to good18 reliability, which was considerably

higher thanmost off-the-shelf language features extracted fromtext.19

Figure 3 shows the test–retest plot.

3.3.2 Cross-sectional relationship between SemR
and cognitive impairment

We fit a series of models to evaluate how SemR was related to cogni-

tive impairment. The final results showed that when using SemR alone,
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F IGURE 4 Scatterplot showing the predicted and observed
Mini-Mental State Examination (MMSE) values

the correlation between SemR andMMSEwas r= .38.When using the

set of automatically computed language metrics (not including SemR),

the correlation between the predicted and observedMMSE (using 10-

fold cross-validation) was r = .38 with MAE = 4.4. Finally, when using

SemR in addition to the set of metrics to predict MMSE, the corre-

lation between the observed and predicted MMSE was r = .65 and

MAE= 3.5. Finally, we evaluated SemR’s ability to classify disease (CUs

vs. the three clinical groups) above and beyond the MMSE alone, and

found that the area under the curve (AUC) increased from AUC = .78

(MMSE alone) to AUC = .81 (MMSE and SemR). This indicated that

SemR offered insight into one’s cognition both as a stand-alone mea-

sure and above andbeyondwhatwas possible throughothermeasures.

Figure 4 shows the observed and predicted MMSE scores for the final

model.

3.3.3 Longitudinal trajectory of SemR

The longitudinal analyses showed that all groups had declining SemR

scores. However, the CUs had slower-declining SemR scores than the

impaired groups. Among the impaired groups, the results showed an

apparent non-linear decline, in which the scores started at the highest

point among the CU-D participants, followed by the MCI participants

with intermediate scores and the steepest decline, finally followed by

the dementia participants, who had the lowest SemR scores andwhose

trajectory flattened again. Table 4 shows GCMparameters for the four

groups. Figures 5A and B show the expected longitudinal trajectories

according to the GCM parameters for the healthy (A) and cognitively

impaired (B) groups. Although all data were used for the analyses, for

easier visualization of the results in the cognitively impaired groupswe
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TABLE 4 Parameter estimates for the GCMs for each cognitive group

Parameter CU estimate (S.E.) CU-D estimate (S.E.) MCI estimate (S.E.)

Dementia estimate

(S.E.)

Fixed effects

Intercept (centered at age 65) 0.158 (.002) 0.167 (.004) .163 (.01) .132 (.005)

Slope −.0004 (.0002) −.0014 (.0006) −.0026 (.0015) −.0005 (.0004)

Random effects

Participant intercepts SD 0.03 0.05 0.03 0.03

Residuals SD 0.04 0.04 0.04 0.05

Abbreviations: CU, cognitively unimpaired; CU-D, cognitive unimpaired showing atypical decline;GCM, growth curvemodel;MCI,mild cognitive impairment;

SD, standard deviation; S.E., standard error.

(A)

(B)

F IGURE 5 Longitudinal plots showing the SemR values as a function of age for (A) cognitively unimpaired participants and (B) cognitively
unimpaired declining, mild cognitive impairment, and dementia participants. The dark solid lines are based on the fixed effects of the growth curve
model, and the shaded areas show the 95% confidence bands
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restricted the plots to the age rangewith the greatest density of partic-

ipants in each group (approximately between Q1 and Q3 for each cog-

nition group).

4 DISCUSSION

The present study builds on the work of Mueller et al.,1 which eval-

uated the contribution of connected language, including the Cookie

Theft picture descriptions, to provide early evidence ofmild cognitive–

linguistic decline in a large cohort of participants. They used latent fac-

tor analysis to discover that longitudinal changes in the “semantic cate-

gory” ofmeasuresweremost associatedwith cognitive decline. Seman-

tic relevance in this highly structured picture description task cap-

tures the ability to speak coherently by maintaining focus on the topic

at hand. Some studies have shown that older adults tend to produce

less global coherence (and more irrelevant information) in discourse

than younger adults.20 Furthermore, more marked discourse coher-

ence deficits have been reported across a variety of dementia types

includingAlzheimer’s disease (AD) dementia21 and the behavioral vari-

ant of FTD.22 The neural correlates of coherence measures are diffi-

cult to capture, becausemultiple cognitive processes contribute to suc-

cessful, coherent language. However, the SemRmeasure is an ideal tar-

get for the cognitive processes known to be affected across stages of

dementia. For example, in the case of ADdementia, lower semantic rel-

evance could be the result of a semantic storage deficit,23 search and

retrieval of target words,24 or inhibitory control deficits,25 all of which

can map onto brain regions associated with patterns of early AD neu-

ropathology.

The development of the automated SemR metric in the present

report was intended tomitigate the labor-intensive task of coding con-

tent units manually, in an effort to validate a tool that can expedite

research and enhance clinical assessment in the context of pre-clinical

detection of cognitive decline. The clinical validation of SemR yielded

results that were consistent with previous research (e.g., declining

scores for older andmore cognitively impaired participants).

In addition to developing and thoroughly evaluating the automat-

ically extracted language measure SemR, this article illustrates the

use of a rigorous framework for analytical and clinical validation11 for

language features. There has been a great deal of recent interest in

automated analysis of patient speech for assessment of neurological

disorders.26,27,28 In general, machine learning (ML) is often used to find

“information” in this high-velocity data streamby transforming the raw

speech samples into high-dimensional feature vectors that range from

hundreds to thousands in number. The assumption is that these fea-

tures contain the complex information relevant for answering the clin-

ical question of interest. However, this approach carries several risks29

andmostmeasures of this type fail to undergo rigorous validation, both

because large datasets containing speech from clinical groups are dif-

ficult to obtain, and because there is no way to measure the accuracy

of an uninterpretable feature, for which there is no ground truth. The

consequence is measures that vary widely in their ability to capture

clinically relevant changes.11 In contrast, we followed best practices

for “fit for purpose” algorithm development, as put forth by the Digi-

tal Medicine Society.11 First, the algorithm was developed on one set

of data from participants with ALS and FTD, and then tested on a sep-

arate, large, out-of-sample dataset from a different clinical population

(CU,MCI, andD), thus fully separating the development, freezing of the

algorithm, and testing. During the testing of the algorithm, we showed

howwe evaluated for accuracy at each step of the automation. Finally,

we validated SemR as a clinical tool, evaluating its reliability, associa-

tion with cognitive function, and change over time.

5 LIMITATIONS AND FUTURE DIRECTIONS

A surprising finding in the GCM (longitudinal) analyses was that CU-

D participants had slightly higher mean SemR than CU participants (a

mean SemR difference of < .01 between the two groups), and the dif-

ference remained even after controlling for age, sex, education, read-

ing scores, and the number of sessions per participant. Because there

are many factors that could be responsible for small differences in

point-wise estimates in GCM models, between-group differences at

any given point should be interpreted with caution. Rather, the GCM

analysis should be used to visualize approximate longitudinal trends

across groups. Evaluating point-wise trends at different points in time

requires an age-matched sample and an analysis that controls for other

variables that may impact language that are not accounted for in this

study.

There are also several other ways in which SemR can be further val-

idated. First, SemR was evaluated for its association with cognition by

comparing it toMMSE scores.However, theMMSE is only a singlemea-

sure of cognitive functioning with established ceiling effects. There-

fore, further measures of cognitive function, including language mea-

sures or brain imaging biomarkers, should be tested to further extend

the SemR validation.

Second, the effect of demographic characteristics on SemR was not

evaluated. Although this study showed that SemR declined with cogni-

tive impairment and age, cross-sectional effectsmay be confounded by

education, intelligence, culture, generational differences, etc.

Third, in this study we compared the in-clinic and at-home scores

in CU participants only. This comparison needs to be extended using

the clinical populations of interest to determine whether cognitively

impaired participants can perform the same tasks unsupervised.

Finally, SemR does not by itself completely characterize cognition.

Ongoing work is needed for continuing the development and out-of-

sample validation of complementary features that can assess other

cognitive domains as accurately and reliably as the semantic relevance

measure presented here.
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