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Abstract: Trichomonas tenax is a flagellated protozoan that inhabits the human and canine oral cavity in
patients with poor oral hygiene and periodontal disease. The loop-mediated isothermal amplification
(LAMP) assay could provide clinicians with a quick, cheap and reliable diagnostic test used for the
detection of T. tenax in various settings. In this study, we aimed to develop a LAMP assay that can
detect T. tenax with high sensitivity and specificity. A set of LAMP primers were specifically designed
to detect the ITS and 5.8S rRNA gene of T. tenax. The newly developed LAMP assay was 1000 times
more sensitive than conventional PCR. The limit of detection of the LAMP assay was 10 fg of genomic
DNA, or 0.2–1 cell. Moreover, the LAMP assay was specific, resulting in no cross-reaction even with
a closely related protozoan T. vaginalis or other microorganisms (Streptococcus pyogenes, Staphylococcus
aureus, Escherichia coli, Enterococcus faecalis, and Candida albicans) used. The present LAMP assay can
be performed directly without prior DNA extraction, making the assay an easy, fast, cheap, specific
and sensitive diagnostic tool for the detection of T. tenax at the point-of-care of both medical and
veterinary clinics in developed and developing countries.

Keywords: loop-mediated isothermal amplification (LAMP); Trichomonas tenax; sensitivity; specificity;
periodontal disease

1. Introduction

Trichomonas tenax is a flagellated protozoan that inhabits the human and canine oral
cavity in patients with poor oral hygiene and periodontal disease [1–4]. The protozoan
belongs to the same genus as T. vaginalis, a human pathogen of great medical importance
worldwide [5]. In addition, T. tenax has also been detected in other tissues and organs of
the body such as the respiratory tract and lymph nodes [6–9]. T. tenax has been reported
in humans since the 1960s [4] and has been specifically connected to human periodontal
disease by a systematic review and meta-analysis of 65 qualified publications [10]. In a
prospective study carried out in Jordan recently, it has been found that the prevalence
of T. tenax among healthy, gingivitis and periodontitis groups is 3.2%, 5.7% and 25.6%,
respectively. In the periodontitis group, the prevalence of T. tenax among individuals with
generalized or localized conditions is 19.6% and 0.0%, respectively (p = 0.039). Furthermore,
the odds ratios with T. tenax infection between periodontitis and healthy groups, and
between periodontitis and gingivitis groups are 4.7 (95% CI: 1.0–21.8, p = 0.045) and 7.2
(95% CI: 1.5–33.8, p = 0.013), respectively [11]. In a study of 92 samples of canine plaque
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using touchdown PCR and next generation sequencing, the proportion of Trichomonas sp.
among health, gingivitis, early and severe periodontitis is 3.5%, 2.8%, 6.1% and 35.0%,
respectively [12]. “Despite its relatively frequent association with periodontal diseases,
T. tenax has not received enough attention as a putative pathogen, mainly due to the lack
of simple detection methods” [1]. Over the past years researchers have been using PCR
to detect and identify T. tenax, and update the prevalence of this parasite from traditional
diagnostic methods previously used which included culture and microscopy [1–4,12,13].
PCR has a higher sensitivity compared to culture and microscopy [1–4,13]. Despite these
advantages, PCR assays still require expensive laboratory equipment, reagents, highly
trained professionals and it can be time-consuming to achieve accurate results [14].

Over the last two decades, a method termed loop-mediated isothermal amplification
(LAMP) has established itself as a method that amplifies DNA with high specificity, effi-
ciency and rapidity under isothermal conditions [15]. LAMP uses a DNA polymerase with
strand displacement activity and a set of 4–6 primers that amplifies DNA under isothermal
conditions, thus incubation can be done in a heat block or water bath [16]. Numerous
studies have concluded that LAMP is a rapid, cost-effective, sensitive and specific nucleic
acid amplification test that can be used for the diagnosis of various infectious diseases
especially in developing countries [15–18]. For example, it has been used to detect pro-
tozoa such as Toxoplasma sp., Trypanosoma sp., Cryptosporidium sp., Entamoeba histolytica,
Tritrichomonas foetus and T. vaginalis [18]; bacteria such as Mycobacterium tuberculosis [19],
Yersinia enterocolitica [17] and Enterococcus faecalis [20]. In this study, we aimed to develop
a LAMP assay that can detect T. tenax with high sensitivity and specificity. This newly
developed LAMP assay should provide a quick, cheap, easy and reliable method used for
the detection of T. tenax in both developed and developing countries that can be used as a
point-of-care test in human and veterinary medicine.

2. Materials and Methods
2.1. Cells and Culture

T. tenax strain Hs-4:NIH obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA) was axenically grown at 35 ◦C for 5 days in a modified Diamonds’
medium as previously described [21,22]. The medium was supplemented with 10% heat-
inactivated horse serum (Sigma-Aldrich, St. Louis, MO, USA) and penicillin and strep-
tomycin (ThermoFisher, Waltham, MA, USA). Cell density was monitored daily using
a hemocytometer (Hausser Scientific, Horsham, PA, USA) [23]. Genomic DNA was ex-
tracted from cultured cells using QIAGEN DNeasy Blood and Tissue Kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions and was used to optimize and
assess analytical sensitivity during the development of the LAMP assay. Bacteria including
Streptococcus pyogenes, S. aureus, Escherichia coli, Enterococcus faecalis and fungi such as
Candida albicans were also cultured using sheep-blood agar (BD BBL™, Franklin Lakes, NJ,
USA) under aerobic conditions at 37 ◦C for 24 h. Trichomonas vaginalis cells that originated
from T. vaginalis positive urine samples diagnosed by microscopy were a gift from the
Diagnostic Lab of the Joseph N. France General Hospital in St. Kitts and Nevis. These
samples that were normally destroyed right after diagnosis were given to us without any
patient information. They were only used to assess the analytical specificity of the LAMP
assay since T. vaginalis is closely related to T. tenax.

2.2. LAMP Reaction

The LAMP primers targeting the ITS and 5.8S rRNA gene of T. tenax (GenBank
Accession No. U86615) were designed using the software Primer explorer V.5 (http:
//primerexplorer.jp (accessed on 28 February 2020). These include FIP and BIP, F3 and B3,
LF, and LP (Table 1). Multiple sequence alignment using software CLUSTAL 1.2.4 (Clustal
Omega; https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 28 February 2020) was
carried out on the closely related protozoan T. vaginalis, to check for specificity.

http://primerexplorer.jp
http://primerexplorer.jp
https://www.ebi.ac.uk/Tools/msa/clustalo/
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Table 1. Loop-mediated isothermal amplification (LAMP) primer sequence for detection of T. tenax.

Name of Primer Primer Sequence (5′–3′)

FIP (forward inner primer) GTCATGATGTATGCAACTCCGG-TCCTCACACGATGAAGAACG
BIP (backward inner primer) GGTTAATCTTTGAATGCAAATTGCG-TGTACTGTTACACGCATGCTTCT
LF (forward loop primer) ACATTATGCCACGTTCTTCATCG
LP (backward loop primer) TGCGCTAAACTTGGCTTCGG
F3 (forward outer primer) AGCAATGGATGTCTTGGC
B3 (backward outer primer) GCAGACAACGTAAGTTTGT

For optimization of the LAMP assay, MgSO4 concentration, temperature and reaction
time were assessed. To optimize the MgSO4 concentration, 2, 4, 6, 8 and 10 mm MgSO4
were used. To optimize the temperature, reactions were carried out at 50, 53, 55, 58, 60,
63 or 65 ◦C. For time optimization, 15, 30, 45, 60 and 75 min were used. These were all
performed in Mastercycler® Nexus Gradient Cyclers (Eppendorf, Enfield, CT, USA).

The optimized LAMP reactions for the assay were performed in a 25 µL reaction
mixture containing the following reagents: 0.8 µm FIP, 0.8 µm BIP, 0.4 µm LF, 0.4 µm LB,
0.2 µm F3, 0.2 µm B3, 4 mm MgSO4, 1 m betaine, 0.4 mm dNTPs, 1X thermopol buffer
[20 mm Tris-HCl, 10 mm (NH4)2SO4, 10 mm KCl, 2 mm MgSO4, 0.1% Triton X-100 pH 8.8],
6 U of Bst polymerase large fragment (New England Biotechnologies, New Haven, CT,
USA), 2 µL of template DNA and nuclease free water. Reactions were performed at 60 ◦C
for 60 min in the Mastercycler® Nexus Thermal Cyclers (Eppendorf, Enfield, CT, USA).

The amplified products were visualized using gel electrophoresis and SYBR Green
I (Thermo Fisher Scientific, Waltham, MA, USA). For gel electrophoresis, 10 µL of the
product was separated on 1% agarose gel containing 0.5 mg/mL ethidium bromide with a
100 bp ladder of DNA marker (Invitrogen, Carlsbad, CA, USA). For detection using SYBR
Green I, 1 µL of SYBR Green I was added to 10 µL of the product and examined under UV
light. Fluorescent green color is an indication of a positive reaction and orange color is an
indication of a negative reaction.

2.3. PCR Reaction

Primers F3 and B3 shown in Table 1 were used in the PCR. The PCR was carried
out in a 25 µL reaction mixture containing the following reagents: 2 µL template DNA,
1X Taq buffer with KCl, 0.2 mm dNTPs, 3 mm MgCl2, 1 µm F3, 1 µm B3, 2.5 U of Taq
DNA polymerase (Qiagen, Germantown, MD, USA), and nuclease-free water. PCR was
performed in Mastercycler® Nexus Gradient Cyclers. The thermal cycle was optimized
for annealing temperature as follows: initial denaturation for 5 min at 95 ◦C, 35 cycles of
denaturation for 1 min at 95 ◦C, annealing at 53 ◦C for 30 s, elongation at 72 ◦C for 1 min
and a final step at 72 ◦C for 5 min.

2.4. Limit of Detection and Specificity

To determine the limit of detection (LD) of the LAMP assay, a 10-fold serial dilution of
T. tenax genomic DNA in Tris-EDTA (TE) buffer without a carrier, ranging from 50 ng/µL
to 5 pg/µL was used. The results were compared to conventional PCR using the LAMP F3
and B3 primers. Analytical specificity of the newly developed LAMP assay was evaluated
using a close relative (T. vaginalis), along with other microorganisms (S. pyogenes, S. aureus,
E. coli, E. faecalis and C. albicans). Negative and positive controls using water and T. tenax
genomic DNA, respectively, were included. Each experiment was run three times for
repeatability and reproducibility.

2.5. Analytical Sensitivity of Spiked Samples

Cultured T. tenax cells were used to investigate the limit of detection of the spiked
samples. They were diluted in canine saliva, TE buffer or phosphate buffered saline (PBS)
in serial dilutions from 2 × 105 to 2 × 10−1 cells. These cells were subjected to boiling at
100 ◦C for 30 min followed by cooling down to 4 ◦C on ice. Alternatively, similar prepared
spiked samples were subjected to no pre-treatment at all and were directly used to perform
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LAMP. Positive and negative controls using T. tenax genomic DNA and water, respectively,
were included. The experiment was run three times for repeatability and reproducibility.

2.6. Analysis of Canine Samples

LAMP was performed on eight oral swabs that were collected from client owned pet
dogs that presented to the RUSVM Veterinary Clinic. These swabs were subjected to culture
up to 5 days as mentioned above for the presence of T. tenax. The cells were centrifuged,
collected and stored at −80 ◦C until use. To perform LAMP on these samples, the frozen
cells were taken by a sterile pipette-tip without thawing and immediately suspended in
PBS for quantification. The sample was applied directly to perform LAMP without DNA
extraction or boiling after resuspension in TE buffer followed centrifugation. In total, 2 cells
per reaction were used to perform LAMP. Positive and negative controls using T. tenax
genomic DNA and water, respectively, were included. The experiment was run three times
for repeatability and reproducibility.

3. Results
3.1. Development of LAMP Assay

Reaction temperature, MgSO4 concentration and time were optimized during the
development of the LAMP assay. To optimize temperature, the reaction was incubated
at 50, 53, 55, 58, 60, 63, and 65 ◦C, respectively, for 60 min. Amplification took place
at 58, 60, 63 and 65 ◦C, and 60 ◦C was chosen as the optimal temperature based on the
criteria of maximum LAMP amplification at the lowest temperature in order to extend the
enzyme half-life as long as possible (Figure 1A). The MgSO4 concentration was optimized
by incubation reaction using 2, 4, 6, 8 and 10 mm MgSO4, respectively. The optimal MgSO4
concentration selected for the assay was 6 mm (data not shown). To optimize the reaction
time the reaction was incubated at 15, 30, 45, 60 and 75 min, respectively. Amplification
was seen at 30 min and beyond, and the optimal time chosen for the assay was 60 min
(Figure 1B). Therefore, all LAMP reactions from this point forward were performed at 60 ◦C
using 6 mm MgSO4 for 60 min.

Figure 1. Optimization of LAMP assay for the detection of T. tenax. Odd and even lanes are without
and with T. tenax genomic DNA (100 ng), respectively. (A) Temperature optimization of LAMP
reaction: lanes 1 and 2, lanes 3 and 4, lanes 5 and 6, lanes 7 and 8, lanes 9 and 10, lanes 11 and 12 and
lanes 13 and 14 are at 50, 53, 55, 58, 60, 63 and 65 ◦C, respectively. (B) Time optimization of LAMP
reaction: lanes 1 and 2, lanes 3 and 4, lanes 5 and 6, lanes 7 and 8 and lanes 9 and 10 are at 15, 30, 45,
60 and 75 min, respectively. L: 100 bp DNA ladder marker. One of three repeats is shown.

3.2. Newly Developed LAMP Assay Is More Sensitive Than PCR

To determine the LD of the newly developed LAMP assay, a 10-fold serial dilution of
T. tenax genomic DNA with the original concentration of 50 ng/µL was used in LAMP and
conventional PCR. The results of both assays were compared. As shown in Figure 2, LD of
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the LAMP assay was 10 fg T. tenax genomic DNA whereas LD of conventional PCR was
10 pg T. tenax genomic DNA. The latter was 1000 times higher than the former.

Figure 2. Limit of detection of T. tenax by LAMP. Odd and even lanes are without and with serially
diluted T. tenax genomic DNA, respectively. (A) Lanes 1 and 2, lanes 3 and 4, lanes 5 and 6, lanes 7
and 8, lanes 9 and 10, lanes 11 and 12 and lanes 13 and 14 are at 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001
and 0.000001 ng, respectively. LAMP results are detected by gel electrophoresis (top panel) and
SYBR Green I with UV illumination (bottom panel). (B) Limit of detection of conventional PCR:
lane 1: negative control with water and lanes 2–8: 100, 10, 1, 0.1, 0.01, 0.001 and 0.0001 ng of DNA,
respectively. PCR results are detected by gel electrophoresis. L: 100 bp DNA ladder marker. One of
three repeats is shown.

3.3. Newly Developed LAMP Assay Is Specific

To determine the specificity of the newly developed LAMP assay, genomic DNA of
several microbes including T. vaginalis, S. pyogenes, S. aureus, E. coli, E. faecalis and C. albicans
were used along with that of T. tenax. As shown in Figure 3, LAMP did not amplify any
DNA of these microbes including closely related T. vaginalis. These results clearly show
that this LAMP assay is highly specific to T. tenax.

Figure 3. Newly developed LAMP assay is highly specific. Lane 1: no DNA (negative control with wa-
ter); lanes 2–8: containing 2 µL genomic DNA of various microbes. Lane 2: T. tenax (5 ng/µL); lane 3:
T. vaginalis (137 ng/µL); lane 4: S. pyogenes (74ng/µL); lane 5: S. aureus (160 ng/µL); lane 6: E. coli
(52 ng/µL); lane 7: E. faecalis (70 ng/µL); and lane 8: C. albicans (60 ng/µL). LAMP results are detected
by gel electrophoresis (top panel) and SYBR Green I with UV illumination (bottom panel). L: 100 bp
DNA ladder marker. One of three repeats is presented.
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3.4. Newly Developed LAMP Assay Can Detect T. tenax without Prior DNA Extraction

It has been reported that LAMP works in some microbes even without prior DNA
isolation such as T. vaginalis [16]. We probed this possibility with T. tenax. Cultured T. tenax
cells were diluted in PBS or TE buffer in a 10-fold serial dilution. The diluted cells were
boiled at 100 ◦C for 30 min and then used directly in LAMP after being cooling down to
4 ◦C. As shown in Figure 4, the newly developed LAMP assay detected T. tenax in TE
buffer to as few cells as 0.2–1 cell per reaction (Figure 4B). In contrast, LAMP reaction was
negative even with as many as 2 × 105 T. tenax cells in PBS (Figure 4A), indicating that
either PBS directly inhibits LAMP reaction or PBS does not release genomic DNA after
boiling of cells.

Figure 4. Detection of T. tenax without DNA extraction by newly developed LAMP assay. Serially
diluted samples of T. tenax cells in PBS (A) or TE buffer (B) boiled at 100 ◦C for 30 min: lanes 1 and
2: negative and positive controls without and with T. tenax genomic DNA (100 ng/µL); lanes 3–9:
containing 2 × 105, 2 × 104, 2 × 103, 2 × 102, 2 × 101, 2 × 100 and 2 × 10−1 cells, respectively. L:
100 bp DNA ladder maker. One of three repeats is presented.

3.5. Direct Detection of T. tenax Spiked Saliva and Clinically Collected Canine Samples

Since T. tenax resides in the oral cavity of humans and canines, we next aimed to
determine the limit of detection of the newly developed LAMP assay in saliva. We first
spiked canine saliva with cultured T. tenax using a 10-fold serial dilution ranging from
2 × 105 to 2× 10−1 cells. The cells were boiled at 100 ◦C for 30 min without DNA extraction
and directly used in both LAMP and conventional PCR. The assay showed no amplification
in LAMP; however, conventional PCR showed a detection limit of 2× 103 cells (Figure 5A,B).
These data demonstrate that canine saliva contains some inhibitors for LAMP, but not for
conventional PCR.

We next investigated whether PBS washed spiked saliva samples can be directly used
without DNA extraction in LAMP. Similarly, as mentioned above, a 10-fold serial dilution
of cultured T. tenax cells was spiked in saliva. The spiked samples were centrifuged, and
the cell pellets were resuspended in PBS as wash. The cells were centrifuged once again
and then re-suspended in TE buffer. The latter was directly used to perform LAMP. The
results showed that the limit of detection was also 0.2–1 cell per LAMP reaction (Figure 5C).

Finally, we were interested in whether canine samples can be directly used in detection
of T. tenax without prior DNA extraction. We have been collecting oral swabs along the
gumline of client owned pet dogs presented to RUSVM Veterinary Clinic. From 44 samples
collected eight were positive for trichomonad protozoa by microscopy after initial culture in
Diamonds’ media. The cells were pelleted by centrifugation after being washed in PBS and
were immediately frozen at −80 ◦C. Cells from each of these frozen samples were picked
up with a pipette-tip and re-suspended in PBS and quantified. They were then diluted in
TE buffer and directly used in LAMP. As shown in Figure 6, all eight canine samples were
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detected as positive for T. tenax. Collectively, our data convincedly showed that clinical
oral swabs can be directly used in the detection of T. tenax by the newly developed LAMP
without prior DNA extraction. Therefore, it can be used at the point-of-care of both medical
and veterinary clinics.

Figure 5. Limit of detection in spiked saliva samples as shown in gel electrophoresis. (A) LAMP.
(B) PCR. Lane 1: nuclease-free water as a negative control; lane 2: positive controls with 100 ng
T. tenax genomic DNA; lanes 3–9: canine saliva spiked with 2 × 105, 2 × 104, 2 × 103, 2 × 102,
2 × 101, 2 × 100 and 2 × 10−1 cells, respectively. They were boiled at 100 ◦C for 30 min with no DNA
extraction. (C) LAMP using the similarly prepared samples as above that were re-suspended in TE
buffer after being washed in PBS. L: 100 bp DNA ladder marker. One of three repeats is presented.

Figure 6. Direct detection of T. tenax among clinical samples without prior DNA extraction. Lane 1:
nuclease-free water as a negative control; lane 2: positive controls with 100 ng T. tenax genomic DNA;
lanes 3–10: eight microscopically confirmed trichomonad samples of individually owned pet dogs
containing two cells per sample. LAMP results are detected by gel electrophoresis. One of three
repeats is presented.

4. Discussion

The LAMP assay developed in this study to detect T. tenax is a fast and easy method
to perform. It has been previously shown that LAMP amplification takes place in 30 min
if loop primers are used to accelerate the reaction [24]. The optimized time for the newly
developed LAMP assay is 60 min. However, the results also showed that amplification
using loop primers took place in as little as 30 min (Figure 1B), which is in agreement with
the previous observations [24].

The LAMP assay designed has a 1000-fold lower LD compared to conventional PCR
when both methods targeted the same fragment of ITS and 5.8S rRNA gene of T. tenax, i.e.,
10 fg vs. 10,000 fg of T. tenax DNA, which is similar to several other studies [16,25]. Many
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other studies on LAMP have reported LD between 10 and 100 fold lower in comparison
to PCR [17,18,26]; some others have reported similar LD between LAMP and PCR [27,28].
Further, LD of the conventional PCR varies depending upon its target sequence. It is
100 fg of genomic DNA of T. tenax targeting the 18S rRNA gene [1] although data are
not available in the literature for other targets such as β-tubulin [4]. Ten times greater
analytical sensitivity of the current study targeting the ITS and 5.8 s rRNA gene by LAMP
than the previous one targeting the 18S rRNA gene by conventional PCR is likely due
to the high copy nature of the former although the exact copy number is not known at
present. The LAMP assay was not only sensitive but was also found to be specific, as
illustrated in Figure 3. There was no cross-reactivity seen with any of the microorganisms
used (S. pyogenes, S. aureus, E. coli, E. faecalis and C. albicans), or even with T. vaginalis,
a close relative of T. tenax. This high specificity of LAMP is the result of 4–6 primers
targeting 6–8 regions of the target DNA [15]. Additionally, after performing a multiple
sequence alignment using the software CLUSTAL among T. tenax, T. vaginalis and T. brixi
(Supplementary Materials Figure S1) we predict that our newly developed LAMP would
be able to distinguish T. tenax from T. brixi as well. We could not confirm this prediction
due to lack of T. brixi DNA. The latter is a new trichomonad species recently found in dogs
and cats in Europe [13].

Since oral swabs are normally collected from the oral cavity for the detection of T. tenax,
in this study spike saliva samples were evaluated. A 10-fold serial dilution from 105 to
10−1 of T. tenax cells was undertaken using saliva, these samples were boiled and directly
used to perform LAMP. The results showed no amplification for any of the dilutions, only
the positive control (Figure 5A). However, when the samples were used to perform PCR,
amplification was seen for cell concentrations as low as 103 cells (Figure 5B). This means
that there is a possibility that the LAMP assay is inhibited by saliva. This was also observed
in Figure 4A when PBS was serially spiked with T. tenax, the LAMP reaction was also
inhibited by PBS as no amplification was seen for any of the dilutions. This observation
agrees with an earlier discovery that biological samples such as blood and urine, and PBS,
can inhibit LAMP reactions [29]. Until now, there are no reports on saliva inhibiting LAMP
reactions. Serially diluted spike TE buffer samples, on the other hand, showed a detection
limit as low as 0.2–1 cell per reaction (Figure 4B). Furthermore, 10-fold serially diluted
saliva samples were washed with PBS and the cells were re-suspended in TE buffer. The
results show a detection limit of 0.2–1 cell per reaction (Figure 5C). These data collectively
show that the present LAMP assay developed to specifically detect T. tenax does not need a
DNA extraction or cell boiling step as samples in TE buffer can be used directly in LAMP.
This makes this assay even more rapid and easier to perform than other LAMP assays that
depend on DNA extraction or a cell boiling step. Eight oral samples collected from different
canines were cultured and the cells were diluted to two cells per reaction to perform
LAMP. All the samples were positive for T. tenax (Figure 6). The low limit of detection
and specificity exhibited by this newly designed LAMP assay is possibly a result of its six
primers targeting eight different regions of the target DNA, making it possible to amplify
even a fragment of the target genomic DNA as long as it is recognized by these primers.

In comparison to traditional techniques such as culture and microscopy, LAMP has
been proven to be far more sensitive and specific. The advantage that LAMP has over
culture is that cultures take 3 days or more to grow and demonstrate the parasite, it is
labor intensive and has a high-cost due to equipment and reagents required. LAMP is a
simple, rapid and cheaper diagnostic test compared to culture. Results for LAMP can be
obtained in one hour, the reagents are cheap, and it does not require expensive equipment
and it is not labor intensive. Microscopy is considered the gold standard in diagnosing
trichomonad protozoa. Unlike culture, microscopy is simple, cheap and does not require as
much labor as culture. However, microscopy requires well-trained personnel to properly
identify the parasite of interest. The major disadvantage of direct microscopy is that it
has very low sensitivity, hence why samples are often cultured first and then identified by
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microscopy. LAMP on the other hand is far more sensitive as well as specific compared to
culture, microscopy and PCR.

Although LAMP has many advantages, there are some disadvantages as well. Due
to the high sensitivity of LAMP in comparison to PCR, reports have shown that LAMP
reactions have a higher possibility of getting contaminated or producing false-positive
results [14,30,31]. Despite the disadvantages, LAMP remains a powerful molecular diag-
nostic tool for the rapid detection of T. tenax and other infectious pathogens in countries
with limited laboratory resources. Recently, the newly developed LAMP described here has
been directly used to detect T. tenax in a dozen mouth samples collected from owned dogs
on St. Kitts using a cotton swap. The samples were immediately preserved in 70% ethanol
upon collection in the field. They were tested in a laboratory after being resuspended in TE
buffer followed by washing in PBS without DNA extraction. Several samples were detected
as positive for T. tenax, which unequivocally demonstrates that the LAMP presented here is
capable of diagnostically detecting T. tenax at point-of care (unpublished data). Alterna-
tively, a clinical sample of human or canine origin, or of other mammals as sources, can be
put into the physiological saline upon collection. The sample is then centrifuged, and the
pellet is resuspended in TE butter, of which 2 µL can be directly applied to LAMP mixture
for testing. In short, this newly developed LAMP assay has shown how applicable and
convenient it is for use at point-of-care of both medical and veterinary clinics. The newly
developed assay does not require DNA extraction, cells can be directly applied to perform
LAMP and the results can be obtained within one hour. At point-of-care, this LAMP assay
could be a powerful diagnostic tool to effectively and rapidly detect T. tenax.

5. Conclusions

The LAMP assay developed in this study to detect T. tenax is rapid, specific, sensitive
and easy to perform. The assay designed is an affordable and powerful diagnostic test
for the detection of T. tenax at the point-of-care in medical and veterinary clinics in both
developed and developing countries. Further studies on clinical samples are needed to
validate its diagnostic sensitivity and specificity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms10030594/s1, Figure S1: Alignment of ITS and 5.8S rRNA sequences of
Trichomonas tenax (U86615), T. vaginalis (U86613) and T. brixi (KX977528). Loop-mediated isothermal
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