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Abstract: The ongoing biomedical nanotechnology has intrigued increasingly intense 
interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). 
Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic 
activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic 
nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. 
Also, they can well complement other materials in tissue engineering (TE). Pertinent to the 
properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize 
the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue 
engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and 
shortcomings of CeO2-NPs in this review expect to provide reference values for the future 
research and development of therapeutic agents based on CeO2-NPs. 
Keywords: CeO2-NPs, green synthesis, ROS, bone tissue engineering, coating, orthopedic 
implants

Introduction
Cerium is the first element with 4f electron among the 17 rare earth elements or 
lanthanides. The peculiar 4f orbitals of equal energy endow cerium with character-
istic physicochemical properties.1 Besides, cerium turns out the most abundant of 
the rare earth elements. Light, electricity, magnetism, and other fields have wit-
nessed inordinately ample scope for the application of cerium.2–5 At present, efforts 
have gone into exploring the further application of cerium. CeO2-NPs are nano-
crystalline derived from cerium. Cerium is mostly in the form of ceria with unique 
face-centered cubic fluorite lattice structure. The common knowledge believes that 
the fast and convenient oxidation state transition from Ce3+ to Ce4+ contributes to 
the high redox activity of CeO2.6 During the oxidation state transition, the alter-
nating loss of oxygen and/or other electrons in CeO2 and CeO2−x (non- 
stoichiometric compounds) generates oxygen vacancies or defects in the lattice 
structures7 seen in Figure 1. The high oxygen storage capacity of the lattice and 
the high oxygen mobility in the lattice impel a broad application of ceria to 
biological effect relevant to redox reaction.8 Evidence suggests that a higher surface 
to volume ratio of CeO2-NPs makes the surface atomic lattices softer than those in 
bulk. Nanometer effect is significant to the catalytic activity of CeO2. Compared 
with the conventional block structure, nano-CeO2 can improve catalytic activity by 
two orders of magnitude.9 The reduced particle size and increased surface-to- 
volume ratio lead to the formation of more oxygen vacancies. Loss of even one 
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oxygen atom after size reduction will result in a high 
lattice strain.10 The stronger the catalytic activity, the 
higher the effect of CeO2-NPs in biomedical applications.

The rapid development of nanotechnology has broa-
dened the heuristic path for nanoezyme based on inorganic 
nanoparticles. The combination of computer simulation and 
theoretical calculation has solved the possible catalytic 
mechanism of these nano-enzymes. CeO2-NPs is a typical 
nano-enzyme, the Ce3+ to Ce4+ valence conversion of which 
is analogous to various redox enzymes’ mechanisms and can 
also catalyze the reversible redox in cells and tissues.11 The 
Ce4+ and low surface vacancy formation are essential for 
oxidation, while the Ce3+ and electron reshuffling in lattice 

oxygen vacancy provides the impetus for reduction. The 
specific catalytic mechanisms of the simulated enzymes are 
partly precise, such as automatic recovery after redox and 
substrate binding, but some are still under study.12,13 The 
ability to mimic the activity of multiple enzymes provides 
excellent convenience for biomedical applications that are 
primarily dependent on redox activity, such as anti- 
inflammation, anti-bacteria, angiogenesis, and others.

Excellent catalyst performance distinguishes CeO2-NPs’ 
multipurpose industrial application to photochemistry and 
electrochemistry, such as solid oxide battery,14 degradation 
of organic pollutants,15 high-performance catalyst,16 

sensors,17 abrasive particles,18 coating material,19 and others. 
The application of CeO2-NPs to bioinformatics and compu-
tational biology has been receiving increasing attention. 
CeO2-NPs have played an essential role in tissue engineering 
and regenerative medicine, especially for orthopedic medical 
treatment,20 for their prospective oxidation resistance, anti-
bacterial property, anti-inflammation, cancer resistance, non-
toxicity, angiogenesis, drug/gene delivery, and others.21,22

CeO2-NPs’ Properties and Synthesis
CeO2-NPs’ Properties
The application of CeO2-NPs to nano-biomedical technol-
ogy has been increasingly conventional. The increasing 
research on their atomic lattice model, lattice parameter, 
surface oxygen vacancy, and others by electron microscope 
and microscope provide the experimental basis for their 
robust catalytic mechanism.23,24 Huang et al25 further dis-
covered the highest reactivity on the surface of CeO2 (100) 
through transmission electron microscopy and first- 
principles calculations. After the investigation of the elec-
tronic nano-structure of CeO2 and associated catalytic 
complexes through density functional theory (DFT), Bruix 
and Neyman8 elaborated on the reasons why CeO2-NPs in 
specific size represent a higher reactivity and the interaction 
between nanostructures and metal carriers. Size also affects 
CeO2-NPs’ enhanced electronic conductivity, pressure- 
induced phase transformation, size-induced lattice relaxa-
tion, and blue shift in ultraviolet absorption spectra.9,26 The 
size will limit or enhance the uptake of CEO2-NPs by cells, 
and affect the biological parameters such as biological half- 
life, diffusivity, immunogenicity, and others.27,28 Besides, 
size also affects the toxicity of CEO2-NPs in vivo and 
internal environment.29 Except for catalytic performance, 
for, the recommendation is to read on for more specific 
material physics and defect chemistry of ceria.9,30

Figure 1 The structural representation of CeO2-NP, and its self-storage stability 
and self-regeneration capacity exerting antioxidant chemical reaction.
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In nanomedicine, inorganic enzyme mimic nanomaterials 
have become the latest research focus. Besides mimicking 
the structure and function of natural enzymes, enzyme mimic 
nanomaterials are more stable, more controllable, and more 
natural to prepare at a lower cost. CeO2-NPs have become 
one of the research proprieties because of their multiple 
enzyme activities,31,32 such as mimetic activities of super-
oxide dismutase,33 catalase,7 phosphatase,34,35 peroxidase,36 

oxidase,37 and others. Although studies have illustrated that 
the mimic activities of phosphatase and catalase follow dif-
ferent chemical methods and involve different active sites,38 

the more complex mechanisms warrant further study. 
Surprisingly, superoxide dismutase- and catalase-mimetic 
activities serve as the two primary methods to eliminate 
reactive oxygen species (ROS). Proverbially, ROS is the 
initiator of oxidative stress in many diseases. The adaption 
of various enzymes’ properties to 3D biomaterials in the 
treatment system achieves CeO2-NPs’ antibacterial, anti- 
inflammatory, anticancer effect directly or indirectly.21,39

CeO2-NPs’ Synthesis
The temperature, reactants’ concentration, pH, reaction 
environments, and stabilizers in the synthesis of CeO2-NPs 
affect CeO2-NPs’ physicochemical and biological 
properties.40 A well-designed synthetic method can fine- 
tune CeO2-NPs’ surface properties. Traditional chemical 
synthesis and maturing green synthesis are the primary syn-
thetic methods for CeO2-NPs. General views believe that the 
green synthesis without the requirement for severe reaction 
conditions of high temperature and high pressure is more 
propitious to biological applications for avoiding potential 
chemical toxicity and maintaining higher biocompatibility.41 

However, chemical synthesis’s advantages suggest it shall 
continue befittingly, for instance, the increasingly maturing 
ability to control the reaction conditions and reactant proper-
ties, achievable mass production, and diminishable chemical 
toxicity by altering end-capping reagent and other 
measures.42 A large number of recent research on synthetic 
methods for CeO2-NPs have emerged.21,43 The review reca-
pitulated some of the recently reported synthetic approaches 
related to or potential for biomedical applications. The strong 
recommendation is to read on for synthetic methods and 
more detailed classifications.

Precipitation Method
Precipitation proves the easiest and most widely used 
synthetic method CeO2-NPs. The common precursor is 
cerium nitrate hexahydrate and the reaction environment 
is alkaline (seen in Table 1).44–48 Other precursors and 
capping agents are still in research and development.

Hydrothermal Method
The hydrothermal method is a common synthetic method 
for CeO2-NPs by heating water as the solvent in the auto-
clave. The synthetic process of the hydrothermal method 
can complete by the mediation of the surface-active agent. 
The hydrothermal method can produce multiple forms of 
CeO2-NPs. The solvents, stabilizers, and synthesis condi-
tion can influence CeO2-NPs’ biomedical-related perfor-
mances (seen in Table 2).7,49–52

Green Synthesis
Green synthesis for CeO2-NPs has received increasing 
focus. Except for the elimination of the adverse effects of 
agents and chemical methods on the synthetic environment, 

Table 1 CeO2-NPs Synthesized by Precipitation Method for Biological Applications

Capping or Stabilizing 
Agent

Related 
Organisms

Biomedical-Related Performances Particle 
Size (nm)

References

– Human keratinocyte 

cell line (HaCaT)

Biocompatibility, light protection, reduce free-radical 

production of core TiO2 nanoparticles

4.8 [44]

Citrate acid 

ethylenediaminetetraacetic 
acid (EDTA)

Neuro-2a murine 

neuroblastoma cells 
(N2A cell).

Product stability, non-toxic to cells, highly monodispersed 13 

nm crystallites with a pH at the potential of zero point 
charge (pHzpc) of 2.2

13 [45]

DNA – Excellent and adjustable optical properties 6 [46]

Urea Escherichia coli 
(E. coli)

Photothermal sterilization and deep tissue imaging potential 181 

(composite 
nanosphere)

[47]

Xanthan gum Rattus norvegicus Dose-dependent, paramagnetic 22 [48]
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green synthesis is not harsh on the reaction conditions, 
which is popular with the biological application, especially 
when the biocompatibility is enhanced. Nutrients, fungi, 
plants, bacteria, and biopolymers are the known material 
able to mediate the synthesis of CeO2-NPs (Seen in 
Table 3).27,43,53–59 For instance, primary and secondary 
metabolites in plant extracts can serve as capping or stabi-
lizing agents.60 Most natural CeO2-NPs represent antioxi-
dant, antibacterial, photocatalytic activity.61–64 When the 
reactants for synthesis combine with biocompatibility mate-
rials or other materials beneficial to biological applications 
will achieve better synthesizing effect,65–67 such as biolo-
gical sensing property and others.

Alternate Methods of Synthesis
The synthetic methods determine the configuration, physi-
cal and chemical properties, surface groups, zeta potential, 
and others, thus determining the application behavior and 
therapeutic effect of CeO2-NPs. Recently, the solvother-
mal method, a microwave-mediated end-capping of alco-
hols such as ethylene glycol, could synthesize CeO2-NPs 
co-doped with Co2+ and La 3+, which presented a certain 
weak magnetism, different shapes, and controllable 
sizes.68,69 The study on the application of magnetic nano-
particles to the drug delivery system started early.70 

Alzheimer’s disease model has witnessed the application 

of magnetic CeO2-NPs constitution to the magnetic 
separation of amyloid-beta (A-beta) peptides; Moreover, 
the magnetic CeO2-NPs constitution could enhance the 
magnetic resonance imaging (MRI) in the treatment for 
cerebral hemorrhage.71,72 This review believes that CeO2- 
NPs co-doped with Co2+ and La 3+ has potential in the 
future magnetic drug delivery field.

Spray coating has also recently been applied to the 
synthetic CeO2-NPs in cellular biology. Vassie et al73 

first investigated the effect of particle size on uptake and 
intracellular transport of CeO2-NPs (d = 7 and 94 nm) 
synthesized by flame spray pyrolysis in human cancer 
cells. The findings demonstrated that larger CeO2-NPs 
presented a more robust clearance of intracellular ROS 
than the smaller ones, and the longer the therapy went, 
the more clearance of intracellular ROS. Simultaneously, 
folic acid-functionalized CeO2-NPs showed a greater reg-
ulation on ROS than the control group of CeO2-NPs in 
colon cancer cells.74 However, CeO2-NPs induced ROS in 
ovarian carcinoma cells, probably because of the increas-
ing uptake of CeO2-NPs by ovarian carcinoma cells. The 
experimental results imply a prospect in the application of 
CeO2-NPs to anticarcinogen delivery.

The synthesis of CeO2-NPs via the sol-gel process is one 
of the classic popular methods. The microemulsion of reverse 
micelles acts as one of the generic assistive technologies in the 

Table 2 CeO2-NPs Synthesized by Hydrothermal Method for Biological Applications

Capping or 
Stabilizing 
Agent

Related Organisms Biomedical-Related Performances Particle 
Size 
(nm)

References

– Gram-positive bacteria S. aureus and 

B. subtilis, Gram-negative bacteria 
E. coli and P. aeruginosa

Better antibacterial and antioxidant activity, and more 

suitable for biological application than precipitation method 
under uniform conditions;

10 [49]

E. globulus 
leaf extract

Human cell lines A549 and HCT-116 Excellent photocatalysis, anticancer activity; 8–20 [50]

β- 

Cyclodextrin 

(β-CDs)

Imiquimod (IMQ)-induced Psoriasis 

mouse model

β-CDs on the surface endowed the NPs with drug-loading 

function via host-guest interactions;

80 [7]

Justicia 
Adhatoda 
leaves 

extract

HeLa (human cervical cancer cells) Good antibacterial and anticancer activity; 28 [51]

– Human lung cancer epithelial (A549) 

cells

Cerium oxide-reduced graphene oxide (CeO2-RGO) 

reducing cytotoxicity, CeO2 nanoparticles (NPs) alone 

significantly increasing glutathione (GSH) levels in A549 
cells

– [52]
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sol-gel process, which is easy to control the superficial area, 
form, and other properties of nanoparticles. Torres-Romero 
et al synthesized Titania-Ceria composite at different sizes 
through titanium butoxide and cerium nitrate hexahydrate as 
the precursors.75 Three years later, Torres-Romero et al76 

indicated that the Titania-Ceria composite presented excellent 
biocompatibility and delivery efficiency in the drug delivery 
systems (DDSs) with daunorubicin (DNR) against cancer. 
Another exciting piece of research demonstrated that CeO2- 
NPs synthesized by the sol-gel process reduced brain edema, 
microglia/macrophage recruitment around the hemorrhagic 
lesion, and inflammatory protein expression after the intrave-
nous injection into mouse models of cerebral hemorrhage.77

Reverse-Phase has been applied in the first study in 
which liposomes acted as the carrier for cerium oxide 
nanoparticles.78 Such a system has the advantages of lipo-
some targeting, protection from protein scavenging, static 
stability, as well as CeO2-NPs catalytic activity, and potent 
antioxidant capacity. Besides, the system presented excel-
lent biocompatibility, tolerance, and uptake efficiency in 

fibroblasts. Except for the above methods, oxidation, ball 
grinding, thermal decomposition, acoustic chemistry, and 
others are outside the scope of this review for their little 
value in the biological application.

Orthopedic Biomedical Applications
Bone defects caused by congenital deformity, natural dis-
asters, traffic accidents, and others are common orthopedic 
disease in clinical medicine. Traditional treatment meth-
ods, including autograft and allograft, have presented 
limitations.79 The development of new bone graft substi-
tutes has been a hot research topic. Bone tissue engineer-
ing (BTE) provides a new solution to the above 
limitations.80 The selection of BTE materials is significant 
because the required properties are numerous and com-
plex. The acknowledged properties do cover osteoconduc-
tivity, biocompatibility, degradability, mechanical 
properties, pore structure, and processability.81

Moreover, traditional treatment methods require regu-
latory capacity on the shape, imaging, infection, healing, 

Table 3 CeO2-NPs Synthesized by Green Synthesis for Biological Applications

Capping or 
Stabilizing Agent

Related Organisms Biomedical-Related Performances Particle 
Size 
(nm)

References

Garlic extract Gram-positive and gram- 

negative bacterial strains fungal 
strains

Ag@CeO2 composite shows excellent photocatalytic and 

sonocatalytic activity, a superior synergetic effect, 
excellent recyclability, improved antimicrobial activity.

10–20 [53]

Glucose, fructose, 
lactose

CCL30 (squamous cell 
carcinoma) cells

Concentration changes shape, and smaller CNP presents 
passive cellular uptake function.

3–5 [27]

An aqueous extract of 

Ziziphus jujube fruit

Colon (HT-29) cancer cell Excellent UV protection and sunscreen physical 

absorption properties.

18–25 [54]

Thermal 

decomposition of 

cerium alginate 
biopolymer gel

– Surface charge and surface functional groups which can 

act as a binding template, Drug release and potential 

applications to biological scaffolds.

5 [55]

Aqueous extract of 
Salvadora persica

HT-29 Rapid production process, high yield, non-toxic products. 10–15 [56]

Linum usitatissimum 
L. (Lu) seeds Extract

Labeled with technetium 
(99mTc) for in vivo bio- 

distribution study in Wistar rat

Smaller particles are produced at a lower calcination 
temperature, which significantly reduces the reactive 

oxygen species produced by cell metabolism, in vivo 

stability, and nontoxicity.

3–5 [57]

Fresh egg white (EW) Human periodontal fibroblasts 

cells

Controllable size, nontoxicity even at high doses. 25 [58]

Pectin Human erythrocyte Broad-spectrum of antibacterial activity, antioxidant 

potential, and no cytotoxicity.

5–40 [59]
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immune response, and others.82 At present, the composite 
materials used for traditional treatment primarily include 
medical metal, bioceramics, and biopolymer materials.83 

CeO2-NPs have begun to look for a favorable position in 
these materials. Further exploration has gone into CeO2- 
NPs’ potential in stem cells, scaffold materials, and growth 
factors, namely the three significant elements of BTE. The 
potentials cover CeO2-NPs’ capacity, properties to 
enhance or resist other material. Synchronously, as 
a component of the nano-drug delivery system, CeO2- 
NPs will act as a pro-oxidant or antioxidant according to 
different environments in the complex extracellular envir-
onment of cancer cells, to induce apoptosis of cancer cells 
by relying on oxidative stress.84,85 CeO2-NPs have also 
involved in the treatment of osteosarcoma. Hence, this 
review designs to summarize the primary data of CeO2- 
NPs in orthopedics.

Osteosarcoma
Anticancer therapy has not witnessed a broad application 
of CeO2-NPs. Interestingly enough, CeO2-NPs can exhibit 
antioxidant activity or oxidizing agents from different pH 
levels of subcellular localization.86 For example, in 
Colorectal Carcinoma Cells, CeO2-NPs can induce DNA 
fragmentation by increasing the production of ROS, result-
ing in cellular apoptosis through the p53-dependent mito-
chondrial signaling pathway.84 Yazici et al87,88 discovered 
positive effects to varying degrees on osteosarcoma when 
they studied the cytotoxicity of 0.1 M and 0.01 M dextran- 
coated CeO2-NPs based on dose and time dependence. 
After that, the results found that at pH 6.0, CeO2-NPs 
were the most damaging to bone cancer cells and the 
least damaging to healthy bone cells.89 Besides ROS and 
other mechanisms related to redox reactions, activated 
Cytotoxic CD8+ T cells (CTLs) treated by CeO2-NPs 
released more effector molecules and cytokines, including 
interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α), 
granzyme B and perforin, which could lead to better 
immunotherapy for cancer.90 The above research attested 
CeO2-NPs a type of promising nanoparticles for bone 
cancer treatment. Surface functionalization of CeO2-NPs 
and tumor microenvironment will affect the activity of 
antioxidants or pro-oxidant. Cell type or cell microenvir-
onment may also pose different effects on cytotoxicity. 
However, the specific influencing mechanism needs 
further exploration.

Recombination with Hydroxyapatite (HA)
Hydroxyapatite (HA), the natural form of calcium apatite, 
is the primary mineral component of bones and teeth. HA 
can bind to tissue at the interface by chemical bonds to 
release ions and participate in metabolism.91 What is more 
remarkable, the new bone will regenerate along the surface 
of the direct bone-to-implant contact where HA serves as 
the implant.92 HA has found a broad application in the 
clinical and experimental field for biocompatibility, non-
toxicity, and osteoconductivity. However, HA’s mechani-
cal modulus and fracture toughness are not ideal.93 The 
two primary recombinations between CeO2 and HA are 
HA-based scaffolds, and surface coatings for other bone 
implants, namely the composite coating of CeO2 and HA.

Pandey et al have made a further study on hydroxya-
patite reinforced with ceria and silver (HA-CeO2-Ag). 
After obtaining hydroxyapatite with 5 wt% CeO2 NPs 
and 2.5 wt% Ag NPs (HA-5C-2.5Ag) by spark plasma 
sintering (SPS), they first tried to make up the low 
mechanical and tribological properties of HA alone by 
HA-CeO2-Ag.94 Fretting and scratch tests testified the 
protective tribofilm and oxide protection in CeO2/Ag rein-
forced hydroxyapatite. HA-CeO2-Ag restricted the tribo-
logical damage effectively over multi-length scales. They 
further improved the tests on the bactericidal activity, 
inoxidizability, and bioactivity of HA-CeO2-Ag.95 The 
results showed that the count of human osteoblasts 
(hFOBs) in the experimental group increased by 6.7 
times compared to the control group. The filopodial exten-
sions (60–150 μm) and matrix-like deposition reflected the 
cell-substrate intimacy. The analysis believed that 
increased protein hydrophobicity might enhance the 
absorptivity of HA-CeO2-Ag to cells. They also believed 
that HA-CeO2-Ag could act as not only the independent 
porous scaffolds, surgically for internal fixation, to be 
a reliable substrate with effective load-bearing capacity 
in orthopedic applications, but also a type of antimicrobial 
bioactive coatings on the femur stem (during implant 
manufacturing) for total hip arthroplasty.

Li et al96–98 prepared CeO2-HA composite coatings by 
plasma spraying technique and conducted considerable 
research to testify the coatings’ application. Because of the 
antioxygenic property of CeO2, the increase of CeO2 content 
in the coatings can improve the cell viability and reduce the 
cell apoptosis, but decrease the chemical stability slightly. 
The up-regulation of Wnt/β-catenin signal transduction can 
better protect BMSC from H2O2-induced damage in 
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osteoblasts differentiation. Besides, CeO2-HA composite 
coatings can protect H2O2-induced BMSC from generating 
osteoclasts, which is in reflection by the increased OPG/ 
RANKL ratio. The above research results provide 
a theoretical basis for the material in osteoporosis bone 
regeneration.96 In the study on the inflammatory response, 
the results found that the increase of CeO2 content in HA 
coatings enhanced the osteogenic activity of BMSC through 
the Smad-dependent-BMP signaling pathway.97 The addition 
of CeO2 also endowed HA coatings with anti-inflammatory 
effect. HA-30Ce, by inducing a drift towards an M2 pheno-
type, presented an ideal effect on macrophage polarization. 
Such results suggested that the composite coatings had osteo-
genic and anti-inflammatory properties. Except for the above 
experiments, a group result found that a higher Ce4+ concen-
tration up-regulated the expression of anti-inflammatory 
cytokines (IL-10 and IL-1RA) and osteoinductive molecules 
(BMP2 and TGF-1) by macrophages, implying that the reg-
ulation of cerium valence might be a valuable strategy for 
improving osteogenic properties and reducing inflammatory 
responses.99

Another application is that the CeO2 and HA composites 
attach to other materials with specific mechanical stability, 
such as AZ91 Mg alloy.100 Researchers developed manga-
nese (Mn), and strontium (Sr) substituted hydroxyapatite 
(Mn, Sr-HAP) coatings on the CeO2 coated AZ91 Mg alloy, 
which enhanced the corrosion resistance of the whole mate-
rial to facilitate the clinical application of AZ91 Mg alloy. 
Sanyal et al101 prepared ceria-stabilized zirconia (CSZ) in 
fluorohydroxyapatite (FHA) by the sol-gel method. As 
a hard material, CSZ has received verification on toughness 
and osteoconduction. Besides, the composite of HA-CNT- 
CeO2 -Ag, namely plasma-sprayed HA-coated Ti-6A1- 
4V,102 is 2.3 times, 1.6 times, and 3.1 times enhanced 
Vickers hardness, estimated modulus, and fracture tough-
ness, respectively, than HA alone. Meanwhile, the compo-
site of HA-CNT-CeO2-Ag also presented cell adhesion, 
bactericidal activity, and others. Similar effects were also 
in a composite of cerium-doped glass-reinforced hydroxya-
patite (GR-HA).103

Ceria Doped in Mesoporous Bioactive 
Glasses
Mesoporous bioactive glasses (MBG) based on SiO2- 
CaO-P2O5 composition were prepared in 2004 by combin-
ing the sol-gel method and supramolecular chemistry 
method.104 Subsequently, Shruti et al105 synthesized 

mesoporous bioactive glass scaffolds (MBG_Scs), based 
on 80% SiO2-15% CaO-5% P2O5 (in molar ratio) meso-
porous sol-gel glasses substituted with Ce2O3, Ga2O3, and 
ZnO. This composite contains super-pores suitable for 
vascularized interconnections for nutrient supply and nor-
mal cell growth, seen in Figure 2.

Direct addition of ceria into HA will generate cerium 
phosphate, which affects the biocompatibility to some 
extent.106 Therefore, Nicolini et al107 dopped CeO2-NPs 
with Ce 3+ and Ce 4+ at different molar ratios into MBGs 
with 80%SiO 2–15%CaO-5% P2O5. These MBGs with 
a high superficial area would form HA after being 
immersed in simulated body fluid (SBF). The test illu-
strated that Ce-MGB could reduce catalase and superoxide 
dismutase mimic (SOD). The best catalase activity 
appeared in 45S5 bio-glass containing cerium, and the 
highest cerium content could achieve 5.3%. Both infrared 
spectroscopy and X-ray diffraction analysis verified the 
existence of HA in some type of Ce-MGB. The above 
tests, including bioactivity tests, indicated the feasibility of 
MBG with inoxidizability and synthetase mimic activity. 
Atkinson et al108 synthesized Ce-MBGs by evaporation- 
induced self-assembly (EISA) and conducted the above 
tests. They verified the biocompatibility by mouse fibro-
blasts. The antibacterial and biological activities of 50% 
SiO2-(45-x) % CaO-5% P2O5 MBG with molar content of 
1, 5% CeO2-NPs have also been verified.109,110 Recently, 
45S5 bio-glass with ceria has been developed with 
a polyhedral shape and large size, and the cellular uptake 
capacity, survivability, and proliferate ability have been 
demonstrated.111 CeO2-NPs doped in MBG with MgO 
could decrease the degradation rate and enhance chemical 
durability. Meanwhile, the tests verified that the “sol-gel” 
synthesis technique promoted hydroxyapatite growth rate 
over the conventional “melt quenching” route.106

The above experiments are the preliminary evidences 
for the application of CeO2-NPs doped in MBG to bone 
regeneration materials. Future research may focus on 
MBG based on 3D bioactive scaffolds and in vivo experi-
ments. Recently, Lu et al112 constructed CeO2-NPs mod-
ified Ce-BG scaffolds using hollow Ce-BG microspheres 
with chitosan (CTS) via a freeze-drying procedure. The 
CeO2-NPs in the scaffolds could rapidly promote the pro-
liferation and osteogenic differentiation of hBMSC, which 
was verified by the up-regulation of osteogenic markers of 
osteocalcin (OCN), alkaline phosphatase (ALP), type 
I collagen (COL-1), and others. The enhancement of Ce- 
MBG scaffolds’ osteoinduction primarily relates to 
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activated ERK pathways and can be prevented by the 
addition of selective ERK1/2 inhibitors (SCH772984). In 
vivo experiments on rat skull defect models showed that 
Ce-MBG scaffolds could promote collagen deposition, 
osteoblastic formation, and bone regeneration compared 
with sole MBG scaffolds.

Stabilized Zirconium Oxide Coating
Metal-free dental zirconia implants have attracted much 
attention. Due to the excellent mechanical properties, 
stable physical and chemical properties, and excellent 
biocompatibility, metal-free dental zirconia implants can 
avoid the grey appearance of gums and potential hyper-
sensitivity of titanium implants.113 The durability of tradi-
tional materials raises questions. Yttria stabilized zirconia 
(3Y-TZP) is aging or low-temperature degradation (LTD), 
which basically involves a phase transformation that leads 
to microcracking, resulting in catastrophic failures;114 

High-purity alumina (Al2O3) is weak in toughness. Base 
material of novel zirconia is emerging to overcome the 
significant shortcomings of 3Y-TZP.115

At present, the mainstream uses tetragroconic zirconia 
polycrystal (CE-TZP) with stable cerium dioxide as 
the second phase to improve the toughness of alumina 
composites and finally forms the composite of CE- 
TZP/Al2O3. The macroscopic and microscopic mechan-
isms for increased toughness have been demonstrated.116 

Scientists have previously attested that CE- CE- 
TZP/Al2O3 could promote HA formation and osteoblast 
proliferation and differentiation.117 The research compared 
the biomechanical and histological behaviors of Ce- 
TZP/Al2O3 and 3Y-TZP in rats.118 Ce-TZP/Al2O3 showed 
stronger shear strength but slightly lower average surface 
roughness. No significant difference appeared in the new 
bone thickness around the implant in the bone marrow 
region and bone-implant contact (BIC). Osteoclasts were 
not observed at any time in the experiment of CE- 
TZP/Al2O3, but in 3Y-TZP group, which indicated the 
better biocompatibility of Ce-TZP/Al2O3. The surface 
roughness could be treated with hydrofluoric acid, and 
the nanometer morphology could significantly enhance 
bone formation and bone integration in vivo.119 In addition 

Figure 2 Schematic representation of possible biological properties possessed by Ce3+, Ga3+, and Zn2+-substituted MBG_Scs prepared by rapid prototyping: 3-D printing. 
Notes: Reprinted from Acta Biomaterialia, 9(1), Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L, Vallet-Regi M. Mesoporous bioactive scaffolds prepared with cerium-, 
gallium- and zinc-containing glasses. 4836–4844, Copyright 2013, with permission from Elsevier.105
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to rats, the study in dogs also proved CE-TZP/Al2O3 an 
excellent dental implant, including excellent bone resorp-
tion and soft tissue attachment.120,121

Based on CE-TZP/Al2O3 to continue to solve hydro-
thermal aging, Altmann et al developed a new type of 
stable zirconia-alumina-aluminate composite ceramics 
(ZA 8 Sr 8-Ce11). The result found the most conspicuous 
long-term attachment of primary osteoblasts, and miner-
alized deposition of extracellular matrix (ECM). ZA8 Sr8- 
Ce11 with microporous morphology is one of the best 
materials for clinical application.122 The 3D-printed Ce- 
TZP/Al2O3 showed compression strength similar to that of 
leather bone, almost 200 MPa. Besides, the viability and 
differentiation ability of cultured cells are also powerful. 
In general, such composites present excellent aesthetic 
properties, chemical stability, and negligible corrosion 
and abrasion, as well as excellent mechanical and biologi-
cal properties.

Cerium Oxide Coating for 
Titanium-Based Implants
Titanium and its alloys have found a broad application in 
orthopedic and dental implants.123 The three critical factors 
for long-term clinical success of implants are antimicrobial, 
anti-inflammatory, and stability of osseointegration, which 
have been addressed in many ways.124,125 CeO2-NPs would 
undoubtedly be a suitable potential material. Li et al126 

developed a novel Ti surface modified with different shapes 
of CeO2-NPs (nanorod, nanocube, and nano-octahedron). 
They also tested the antimicrobial and anti-inflammatory 
responses of the composite of different CeO2-NPs depos-
ited into Ti. The results showed that the three types of CeO2- 
modified Ti showed the same strong antibacterial 
properties. Nano-octahedron CeO2 modified Ti had the 
best anti-inflammatory effect (Figure 3). Zhao et al127 

deposited TiO2 coating doped with different percentages of 
CeO2 on the cp-TI substrate through APS. The results 
demonstrated that the dose dependence of CeO2 determined 
the corrosion resistance, cellular compatibility, and antibac-
terial properties. Less than 20% of doping would not affect 
the crystal structure.

As with the recombination with HA, the effect of CeO2- 
NPs as a coating for titanium-based implants on the cerium 
valence state was also investigated. The results showed 
significantly up-regulated expression of osteogenic genes 
and proteins at a high Ce4+ concentration, and high expres-
sion of the polarization of macrophages to the M2 pheno-
type. The increase in M2 percentage could increase the 
production of anti-inflammatory cytokines.128 Also, the 
high Ce4+ presented a higher catalase activity, but a lower 
peroxidase activity. Results of protein adsorption and con-
formation indicated that the exposed cell-binding sites of 
fibronectin and subsequent cell morphology were associated 
with the Ce valence state.80 Overall, regulation on cerium 

Figure 3 Schematic illustration of implant surface modified by CeO2-NPs (rod- CeO2, cube-CeO2, octa-CeO2) for antibacterial and anti-inflammatory properties. 
Notes: Reprinted from Acta Biomaterialia, 94, Li X, Qi M, Sun X, et al, Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti- 
inflammatory capabilities. 627–643. Copyright 2019, with permission from Elsevier.126
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valence may be a good strategy for designing orthopedic/ 
dental implant coatings with beneficial immune responses.

Other Applications
To further understand the biomaterial potential of CeO2, Ball 
et al129 fabricated porous ceria via direct foaming. The tests 
of cytotoxicity, inflammatory response, and reactive oxygen 
species found CeO2 similar to commercially available bio- 
glass. Another study found that cultured HMSCs increased 
osteogenic differentiation and collagen production when 
CeO2-NPs were doped to 3D nanocomposite scaffolds.130 

Evidence suggested that ceria promoted the migration of 
bone marrow stromal cells and osteogenic differentiation 
through the Smad1/5/8 signaling pathway.131 An essential 
finding illustrated that CeO2-NPs could induce stem cells’ 
growth in PLGA scaffolds. The formed PLGA/nano-CeO2- 
NPs scaffolds could regulate roughness, thus improving 
cells’ sensitivity to host surface characteristics.132

Insufficient angiogenesis hinders the clinical application of 
bone tissue engineering materials. The current mainstream 
solution is that bone tissue materials carry endogenous angio-
genic factors to promote the proliferation, migration, 

Figure 4 Scheme illustrates the mechanism of CNPs enhancing the blood vessel formation of EPCs. 
Notes: Reprinted with permission from Xiang J, Li J, He J, et al Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by 
Activating Calcium Channel of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces. 2016;8(7):4489–4499. Copyright © 2016 American Chemical Society.137
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differentiation, and angiogenesis of endothelial cells (EC) and/ 
or endothelial progenitor cells (EPC).133,134 Nethi et al135 

demonstrated the angiogenic property of functional nanocon-
jugates of organosilane functionalized CeO2-NPs (nano-
spheres), and suggested that the expression of p38 MAPK/ 
HIF-1α may be a reasonable signal transduction mechanism 
for its angiogenic property. In another research, CNPs accel-
erated the process of endochondral ossification by promoting 
sufficient hypertrophic differentiation of BMSCs via activa-
tion of the DHX15–p38 MAPK signaling pathway, which 
could better overcome the lack of vascularization and relevant 
hypoxia at the initial stage of implantation.136 CeO2-NPs can 
also activate calcium channels in mesenchymal stem cells and 
ultimately lead to EPC proliferation, migration, and differen-
tiation through chain reaction137 (seen in Figure 4).

Challenges
The research on CeO2-NPs as a nanozyme based on inor-
ganic nanoparticles is just unfolding. At present, the activity 
and specificity of nano-enzyme are still lower than that of 
a natural enzyme, and the influence of pH value is 
crucial.31,32 Significantly, in vivo biocompatibility is 
assessed by protein corona, and the presence of hard and 
soft protein corona will affect the bioactive interface, 
including usability, stability, and ecotoxicity. Haptens 
formed by adsorptive proteins also caused abnormalities 
in immune homeostasis.138 Antioxidant and pro-oxidant 
conversion is a double-edged sword, which needs total 
control on the external environmental conditions to ensure 
that the conversion can achieve the desired effect rather 
than the opposite effect. For instance, the pro-angiogenic 
and anti-angiogenic characteristics of CeO2-NPs are 
affected by the microenvironmental parameters, including 
pH, production of reactive oxygen species, and intracellular 
oxygen concentration.134 The same conversion issues that 
have led to conflicting toxicological reports pose challenges 
for future regulatory and environmental risk assessments 
for CeO2-NPs applications.29 Besides, Ce3+ enhances the 
expression and activity of nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase 1 (Nox1) in bone meta-
bolism, which increases ROS levels, thus activating the 
RANKL-dependent osteoclast differentiation pathway and 
generating osteoclasts, which may cause abnormal bone 
resorption.139 The latest study showed that the genotoxicity 
of CeO2-NPs was a function of concentration and particle 
diameter in vitro.140 While in vivo experiments showed that 
short-term exposure of rats to uncoated CeO2-NPs could 
induce pulmonary inflammation and non-dose-dependent 

DNA damage,141 which increased the difficulty in modifi-
cation and synthesis. In conclusion, the establishment of 
long-term clinical safety and ecological environmental 
safety assessment still needs a long process of research.

Discussion
CeO2-NPs has found a broad potential in the biomedical field. 
This review discussed the latest developments of CeO2-NPs’ 
orthopedic biomedical applications. The green synthetic 
method using biocompatible stabilizers grows in importance 
in the production of CeO2-NPs and its orthopedic biomedical 
applications. The surface chemistry, particle diameter, physi-
cal and chemical properties of CeO2-NPs need reasonable 
control. CeO2-NPs doped in the substitutes of metallic ele-
ments, like hot materials of graphene, PLGA, and others, are 
making progress in the application to bone implant materials. 
Besides, in terms of imaging, such as reducing the harmful 
effects of Gd, enhancing the contrast of MRI is very 
attractive;28 Regarding drug carrier, CeO2-NPs are applied as 
carrier encapsulated in liposome or pegylated to combine with 
other materials; magnetic nanoconjugate delivery system with 
core-shell structure is in research.27,142 In clinical application, 
the ability of CeO2-NPs to promote angiogenesis and devel-
opment turns out critical. Despite the challenges mentioned 
above, it is expected that in the future, CeO2-NPs will over-
come the limitations to work well in 3D tissue-engineered 
materials and flourish in interdisciplinary nanomedicine.
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