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The role of the mammalian vestibular efferent system in everyday life has been a long-
standing mystery. In contrast to what has been reported in lower vertebrate classes,
the mammalian vestibular efferent system does not appear to relay inputs from other
sensory modalities to the vestibular periphery. Furthermore, to date, the available
evidence indicates that the mammalian vestibular efferent system does not relay motor-
related signals to the vestibular periphery to modulate sensory coding of the voluntary
self-motion generated during natural behaviors. Indeed, our recent neurophysiological
studies have provided insight into how the peripheral vestibular system transmits head
movement-related information to the brain in a context independent manner. The
integration of vestibular and extra-vestibular information instead only occurs at next
stage of the mammalian vestibular system, at the level of the vestibular nuclei. The
question thus arises: what is the physiological role of the vestibular efferent system in
mammals? We suggest that the mammalian vestibular efferent system does not play
a significant role in short-term modulation of afferent coding, but instead plays a vital
role over a longer time course, for example in calibrating and protecting the functional
efficacy of vestibular circuits during development and aging in a role analogous the
auditory efferent system.

Keywords: vestibular, neural coding, multimodal, visual, somatosensory, efference copy, perception, evolution

INTRODUCTION

While the function of the mammalian auditory efferent system is well understood, the role of the
mammalian vestibular efferent system remains a mystery. Yet the peripheral vestibular system (i.e.,
the sensory epithelium of the three semicircular canals and two otoliths) receives central projections
from the vestibular efferent system in all vertebrate species (Meredith, 1988; Goldberg et al., 2012).
Interestingly, there is considerable heterogeneity in the organization and location of the efferent cell
bodies across different vertebrate classes (Figure 1A). In four of the five classes of vertebrates –fish,
amphibians, reptiles, and birds—the efferent neurons that project to the vestibular and auditory
periphery are localized in a single cell group. In aquatic vertebrates, efferent neurons within this
cell group also innervate lateral line neuromasts. In such vertebrates, a single efferent neuron can
innervate the sensory epithelium of both the vestibular and lateral-line systems (larval Xenopus:
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Claas et al., 1981; fish: Highstein and Baker, 1986; Meredith
and Roberts, 1987). In contrast to the other four vertebrate
classes, the organization of the vestibular efferent system is
markedly different in mammals as compared. Notably, the
cell bodies of efferents innervating the mammalian vestibular
and auditory periphery are located in separate nuclei; the
vestibular efferent nucleus is commonly referred to as the
“group-e,” whereas the auditory efferent nucleus is the superior
olivary complex.

In this review, we consider differences in both the structure
and function of the vestibular efferent system across vertebrate
classes. We focus on how the vestibular efferent systems
transmit extra-vestibular sensory and motor information
to the vestibular periphery in lower vertebrates (i.e., fish
and amphibians). We also discuss how this extra-vestibular
information influences the responses of vestibular afferents
in these aquatic vertebrates. Additionally, we contrast these
findings with those of studies in mammals establishing the
absence of such efferent-mediated effects. Taken together,
this evidence suggests an evolution in the primary role of
the vestibular efferent system. We speculate that instead of
playing a key role in the short-term modulation of afferent
coding as it does in aquatic vertebrates, the function of the
mammalian vestibular efferent system is to regulate pathway
efficacy during development in a role analogous the auditory
efferent system.

The Vestibular Efferent System:
Organization and Embryologic Origin
Vestibular, auditory, as well as lateral line efferents are thought
to have a common embryologic origin that is shared with facial
and branchiomotor motoneurons (Fritzsch, 1996). Accordingly,
both vestibular and auditory efferent neurons in some lower
vertebrates (e.g., eels and toads) are located within or overlapping
the facial nucleus. However, there is considerable heterogeneity
in the specific location of vestibular efferent neurons both
across vertebrate classes and across different mammalian species.
For example, in reptiles and birds the efferent nucleus is
distinct from the facial nucleus, and is located more dorsally
(Figure 1A, bottom). While a single nucleus comprises both
auditory and vestibular efferents in these vertebrates, the somas
of vestibular efferents tend to be located more dorsally (reviewed
in Goldberg and Cullen, 2011). In contrast, the cell bodies
of the mammalian vestibular efferent system are located in
the group-e nucleus, which is distinct from the auditory
efferent system. The mammalian group-e nucleus is located
even further from the facial nucleus, with the vestibular efferent
somas situated dorsal to the genu of the facial nerve and
just medial to the VI (abducens) nucleus (Figure 1A, top).
There is likewise heterogeneity in the dendritic morphology
of the vestibular efferent system across vertebrate classes. The
dendrites of efferent neurons in fish and amphibians span
a large portion of the brainstem, whereas the dendrites of
group-e neurons in mammals span a far more limited area
and are relatively sparse. These striking differences in the
anatomy and morphology of the vestibular efferent system likely

underlie differences in its functional role across vertebrate classes
(detailed further below).

The Vestibular Efferent System in
Mammals: A Neural Circuit for the
Modulation of Motion Sensing
Across species the mammalian vestibular efferent system
comprises only about 300 neurons on each side and sends
bilateral projections to the peripheral vestibular system
(Goldberg and Fernandez, 1980; Marco et al., 1993). The
projections of an individual efferent axon can be profuse,
spanning multiple vestibular organs (Purcell and Perachio,
1997), where they target type II vestibular hair cells as well as
the afferents innervating both type I and II hair cells (Figure 1B,
reviewed in Goldberg, 2000). Experiments in monkey, cat, and
chinchilla have shown that electrical microstimulation of the
mammalian “group-e” nucleus (Figure 1A) evokes comparable
excitatory responses in the vestibular afferents on both sides
(Figure 1C; Goldberg and Fernandez, 1980; Marlinski et al.,
2004; McCue and Guinan, 1994). However, there are important
differences in the magnitude of efferent-activated responses
across individual afferents. In particular, the responses evoked
in afferents with more “irregular” resting discharges are an
order of magnitude greater than those evoked in their regular
counterparts (Figure 1C).

Importantly, both canal and otolith afferent fibers can be
classified based on the regularity of their resting discharge. In
general, regular afferents preferentially provide bouton endings
to type II hair cells, whereas irregular afferents have larger
axons and either transmit information from the type I hair
cells located at the center of neuroepithelium or integrate
inputs from both type I and II hair cells. The firing rates
of regular afferents in turn encode more information about
head motion than irregular afferents (Sadeghi et al., 2007).
On the other hand, more recent studies (Jamali et al., 2016,
2019) have shown that irregular afferents better discriminate
between head motion stimuli through differential patterns of
precise (∼6 ms) spike timing than regular afferents. These
two parallel streams of sensory input provided by regular
and irregular afferents are preserved and further refined in
mammalian central vestibular pathways. Notably, regular and
irregular afferents preferentially target vestibulo-ocular reflex
(VOR) and vestibulo-spinal pathways, respectively (reviewed in
Cullen, 2019). Thus, the fact that efferent-activated responses
are greater for irregular than regular afferents suggests that the
mammalian vestibular efferent system could potentially play a
more significant role modulating vestibulo-spinal vs. vestibulo-
ocular reflex) pathways.

To date, however, no study has directly recorded the responses
of mammalian vestibular efferent neurons. The sparsity of the
target population presents a challenge for definitively identifying
efferent units. Early experiments in lower vertebrates (fish
and amphibians) have established that the vestibular efferent
system integrates information across multiple vestibular end
organs and from both labyrinths (Gleisner and Henriksson,
1963; Schmidt, 1963; Precht et al., 1971; Blanks and Precht, 1976;
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FIGURE 1 | (A) of vestibular efferent (red) and afferent (blue) projections across vertebrates including: mammals (squirrel monkey: Goldberg and Fernandez, 1980),
birds (pigeon: Eden and Correia, 1981), reptile (lizard: Barbas-Henry and Lohman, 1988), amphibians (toad: Pellegrini et al., 1985), and fish (toadfish: Highstein and
Baker, 1986). (B) In mammals, irregular afferents (light blue) typically innervate both type I and II hair cells (i.e., dimorphic afferents), while regular afferent (dark blue)
more selectively innervate type II hair cells. Note that the mammalian vestibular efferent system innervates type II hair cells and their afferent bouton endings, as well
as the afferent calyces of type I hair cells (Lysakowski and Goldberg, 1997, 2008). In contrast, in lower vertebrates, which do not have hair cells with calyx endings,
the vestibular efferent system innervates type II hair cells and, in some species, such as the toadfish (Sans and Highstein, 1984) also their afferent bouton endings
[bottom inset, (A)]. (C) Comparison of the population-averaged efferent-mediated responses of irregular vs. regular afferents to electrical microstimulation of central
“group-e” neurons (Goldberg and Fernandez, 1980). (D) Efferent-mediated population responses of irregular (left) vs. regular (right) afferents to sustained high
amplitude rotation in the canal-null position (Sadeghi et al., 2009). Note, in contrast to their conventional evoked by natural head motion, afferents displayed
excitatory responses for stimulation in both directions—termed a type III response. AO, nucleus anterior octavus; LSO, MSO, MT, lateral and medial superior olive
and medial nucleus of the trapezoid body; MLF, medial longitudinal fasciculus; IO, inferior olive; S, L, M, superior, lateral and medial superior vestibular nucleus; SO,
superior olive; V, trigeminal nucleus; VI, abducens nucleus; VII, facial nucleus.

Hartmann and Klinke, 1980). Vestibular efferents target the
vestibular periphery, and do not make synaptic contacts with
neurons within the vestibular nuclei (reviewed in Holt et al.,
2011). As such the vestibular efferent system can only modulate
the afferent input to vestibular nucleus neurons by inducing

significant changes in afferent responses (e.g., in contrast to the
presynaptic control observed in dorsal root ganglion). Thus,
subsequent studies in mammals have provided insight into
the responses of vestibular efferent neurons by recording from
individual vestibular afferents.
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Recordings made from semicircular canal afferents during
have high velocity rotations have further demonstrated that the
efferent vestibular circuitry is functional in mammals. These
studies used a sophisticated experimental design in which
the conventional semicircular canal afferent responses to head
rotation were first minimized by positioning the head in the null
plane for the superior semicircular canal (Plotnik et al., 2002,
2005; Sadeghi et al., 2009). With the head in this null orientation,
sustained steps of high constant-velocity rotation (> 300

◦

/s)
were then passively applied. In response, superior semicircular
canal afferents displayed excitatory responses for both rotation
directions—termed a type III response. The vestibular source
of the efferent-mediated responses was then conformed by
plugging the horizontal and posterior canals (Sadeghi et al.,
2009). Importantly, these type III responses markedly contrast
with the characteristic type I responses of afferents evoked
by natural head rotations, for which rotations in the opposite
directions lead to excitatory vs. inhibitory responses (Figure 1D).
Furthermore, type III responses evoked in irregular afferents
were an order of magnitude greater than those evoked in their
regular counterparts (Figure 1D). Moreover, this high velocity
rotation in the null plane (Figure 1D), similar to microsimulation
of group-e neurons (Figure 1D) evoked responses in irregular
afferents with comparable dynamics, which notably included a
slow response component with a long time constant of 5–20 s
(Goldberg and Fernandez, 1980; Sadeghi et al., 2009). Thus,
artificial activation of the vestibular efferent system via both
microstimulation and sustained high velocity rotation appears
to predominately alter coding in irregular afferents and, in turn,
the time course of this activation is relatively long relative to
the head movements experienced during natural self-motion
(Carriot et al., 2014, 2017).

Synaptic Physiology of the Mammalian
Vestibular Efferent System: Implications
for Function
Acetylcholine (ACh) is the main neurotransmitter at the
vestibular efferent synapses across vertebrate classes (reviewed
in Goldberg et al., 2012). Furthermore, pharmacology of the
vestibular efferent synapses has additional complexity. First, the
neuroactive peptide calcitonin gene-related peptide (CGRP) is
widely present in the vestibular efferent neurons of mammals,
fish and amphibians (Sewell and Starr, 1991; Highstein, 1992;
Eybalin, 1993; Bailey and Sewell, 2000) and is co-expressed
by vestibular efferent neurons and peripheral efferent terminals
(Ohno et al., 1991; Luebke et al., 2014). Second, additional
substances are commonly co-expressed in cholinergic neurons,
including, adenosine 5′-triphosphate (ATP), dopamine (DA),
GABA, and neuronal nitric oxide synthase (nNOS) have also
been reported within vestibular efferent neuron terminals of the
vestibular end organs (reviewed in Mathews et al., 2017).

Recent experiments in mammals (Schneider et al., 2021) have
shown that muscarinic and nicotinic AChR antagonists block the
slow and fast component of the excitatory responses induced
in afferents by efferent microstimulation (i.e., Figure 1C).
Furthermore, because the expression of CGRP accompanies

development of the vestibular efferent system, it has been
proposed that the vestibular efferent system plays a slow
modulatory role in shaping the functional connectivity/efficacy
of the peripheral organs during maturation (Holt et al.,
2011). Consistent with this idea, CGRP null mice demonstrate
a substantial reduction in the efficacy of their vestibulo-
ocular refex (Luebke et al., 2014). Interestingly, as noted
above, electrical microsimulation of mammalian vestibular
efferent neurons generates an increase in vestibular afferent
activity (see review, Holt et al., 2011). In contrast, electrical
microstimulation of the auditory efferent system suppresses
auditory afferent nerve activity. Given that ACh is the primary
neurotransmitter released by auditory and vestibular efferent
neurons and hyperpolarizes the hair cells in both sensory
systems, the difference in excitation vs. inhibition of vestibular
vs. auditory afferents initially difficult to reconcile. However,
recent studies have established the synaptic mechanisms by which
efferent-mediated hyperpolarization vestibular hair cells leads to
excitation of vestibular afferent activity in mammals (reviewed
in Poppi et al., 2020).

Extra-Vestibular Sensory Integration in
the Vestibular Periphery: Strategies
Differ Across Vertebrate Classes
The discovery that (i) microstimulation or (ii) sustained high
velocity vestibular stimulation alters the responses of vestibular
afferents indicates that the vestibular efferent system circuitry
remains functional in mammals. This has led to the common
view that the efferent neurons may modulate the activity of
vestibular afferents in more natural conditions as well. However,
it is important to emphasize that electrical and rotational stimuli
used in these two experimental approaches are unnatural and
thus not actually experienced in everyday life. Indeed, it had
proven difficult to find more natural circumstances that lead to
large efferent-mediated responses in the mammalian vestibular
nerve, even in irregular units. Further, it must be recognized
that even the responses sustained high velocity vestibular
are small (≈10 spikes/s) compared with those produced by
conventional afferent stimulation (>200 spikes/s) to the same
stimuli (Sadeghi et al., 2007). To date, no study has directly
characterized the responses of mammalian vestibular efferent
neurons during natural stimulation. Instead, prior experiments
have only reported the responses of vestibular efferents in lower
vertebrate classes, namely fish and amphibians. Studies in these
lower vertebrates have established that individual vestibular
efferents respond to extra-vestibular sensory stimulation, thus
providing a substrate for the integration of vestibular and extra-
vestibular inputs at the level of the vestibular periphery.

In particular, vestibular efferent neurons in fish and
amphibians respond to somatosensory inputs produced by
passively manipulating the limbs and applying pressure to the
skin (goldfish: Hartmann and Klinke, 1980; toadfish: Highstein
and Baker, 1985; frog: Schmidt, 1963; salamander: Schmidt,
1965). Additionally, there are reports that vestibular efferents
can be driven by a visual or auditory stimulation in these two
classes of vertebrate (visual—goldfish: Schmidt et al., 1972;
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Hartmann and Klinke, 1980; frog: Caston and Bricout-Berthout,
1982; auditory—toadfish: Highstein and Baker, 1985; frog:
Bricout-Berthout and Caston, 1982). The above findings in fish
and amphibians raise two fundamental questions. First, how
do the vestibular and extra-vestibular sensory signals carried by
vestibular efferent neurons modify the responses of the vestibular
afferents that they target in fish and amphibians? Second, is
this strategy conserved across all vertebrate classes—including
mammals?

Indeed, with respect to the first question, the observation
that activation of the “vestibular system” can produce efferent-
mediated responses in vestibular afferents appears to be
common across vertebrates. However, the sign and magnitude
of this effect does vary. For example, a neurophysiological
study in birds demonstrated heterogeneity in efferent-mediated
afferent responses evoked by stimulation of the horizontal
semicircular canal on the contralateral side (Dickman and
Correia, 1993). Both excitation and inhibition were observed
across individual afferents. In contrast, as reviewed above,

stimulation of the vestibular system in mammals always produces
excitatory efferent-mediated responses in vestibular afferents.
Specifically, high amplitude vestibular stimulation (∼300 deg/s)
evoked an increase in afferent firing rate regardless of movement
direction in both anesthetized chinchilla and alert rhesus monkey
(Figure 1C; Plotnik et al., 2002; Sadeghi et al., 2009). However,
it is notable that these effects were relatively less marked
in alert monkeys.

However, there are marked differences across species
regarding the influence of “extra-vestibular” sensory input
(i.e., somatosensory, visual, and auditory) on the responses
of vestibular afferents. These differences indicate distinct
strategies among vertebrates (Figure 2). Classic studies in fish
(Figure 2A) demonstrated that somatosensory stimulation
activates individual vestibular afferents (Hartmann and Klinke,
1980; Highstein and Baker, 1985), and that visual stimulation
can evoke directionally sensitive responses (Klinke, 1970).
Likewise, somatosensory and visual stimulation has also been
reported to alter the firing activity of individual vestibular

FIGURE 2 | Extra-vestibular sensory systems (somatosensory, visual, auditory) have been reported to alter peripheral vestibular processing in fish and amphibians
but not in mammals. Studies that directly recorded from the vestibular efferent pathway (red boxes), vs. those that recorded efferent-mediated effects in vestibular
afferents (blue boxes) are shown for studies in fish (A), amphibians (B), and mammals (C). Symbols: up arrows: excitation; down arrows: inhibition; up-down arrows:
both excitation and inhibition.
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afferents in amphibians (Figure 2B; frog: Caston and Bricout-
Berthout, 1982, 1984, respectively). Yet, in this latter vertebrate
class, somatosensory stimulation can both inhibit and excite
afferents, and thus contrasts with what is seen in fish. Likewise,
auditory stimulation can evoke either excitatory or inhibitory
responses in individual afferents in amphibians (Figure 2B;
Bricout-Berthout and Caston, 1982). Thus, in answer to the first
question, it is clear that both the vestibular and extra-vestibular
sensory signals carried by vestibular efferent neurons modify
the responses of the vestibular afferents that they target in fish
and amphibians and that this resultant modulation is generally
excitatory in fish and excitatory or bidirectional in amphibians
(see Figure 2).

This then leads to the second question of whether this
strategy is conserved across all vertebrate classes—including
mammal. The evidence to date indicates that the integration
of vestibular and extra-vestibular sensory signals at the level
of the vestibular periphery is not a strategy that is conserved
across all vertebrate classes—including mammals. Importantly,
and in contrast to the above findings in fish and amphibians,
experiments in rhesus monkeys (Sadeghi et al., 2007; Jamali et al.,
2009; Mackrous et al., 2019) have revealed that afferents are
unresponsive to related to somatosensory/proprioceptive signals
(Figure 2C). Specifically, afferent responses are unresponsive
to proprioceptive stimulation alone, and respond identically to
passive whole body (i.e., vestibular-only stimulation) and passive

FIGURE 3 | Behaviorally-dependent efferent-mediated responses have been reported in fish and amphibians but not in mammals. (A) Left: Inducing a behavioral
escape response in a head fixed toadfish activates vestibular efferent neurons. Middle: Behavioral activation of efferents alters vestibular afferent responses to
passive whole-body rotation in the head-restrained fish. Right: bar plots comparing effects of electrical efferent stimulation on background and rotation-induced firing
of horizontal canal afferents (data replotted from Boyle and Highstein, 1990). (B) Left: Afferent recordings made in a semi-isolated in vitro anaesthetized larval
Xenopus preparation, during passive whole-body rotation. Responses to this passive rotation were compared before and during bouts of fictive swimming induced
via applied electrical stimulation. Middle: The induction of fictive swimming alters vestibular afferent responses. Right: Bar plots compare the effects of fictive
swimming on background and rotation-induced discharges of horizontal canal afferents (data replotted from Chagnaud et al., 2015). (C) Left: Afferent recordings
made in rhesus monkeys during active and comparable passive head motion. Middle: Primate afferent responses are the same during active and comparable
passive head motion (reviewed in Cullen, 2019). Right: Bar plots compare afferents resting rates and sensitivities in these two conditions (Cullen and Minor, 2002).
Note: error bars represent SEM; **P ≤ 0.001 (Wilcoxon signed-rank test).
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head-on-body movements (i.e., vestibular + proprioceptive
stimulation). Likewise, visual stimulation does not alter primate
vestibular afferent activity (Figure 2C). Vestibular afferents are
further unresponsive to full-field visual motion in both cats
(Blanks and Precht, 1978) and rhesus monkeys (Keller, 1976;
Louie and Kimm, 1976; Miles and Braitman, 1980). Thus, to date,
there is no evidence to support the proposal that extra-vestibular
sensory stimulation in mammals can alter the responses of
vestibular afferents.

Behaviorally/Context Independent
Coding in the Vestibular Periphery of
Mammals
During natural activities, vestibular information is integrated
with motor signals, as well as other sensory signals (including
visual and proprioceptive signals). In this context, a prevailing
hypothesis has been that a key function of the vestibular
efferent system is to alter peripheral motion sensing during
active movements. In this view, the vestibular efferent pathway
transmits motor-related signals to the vestibular periphery that
modulate the responses of receptor cells within the semicircular
canal and otolith sensory organs to effectively extend their head
motion coding range during voluntary behaviors (reviewed in
Goldberg, 2000; Mathews et al., 2017). Indeed, there is evidence
for this proposal from studies of non-mammalian species (fish
and tadpoles). Vestibular afferents in head-restrained toadfish
display an increase in mean firing rate and a reduction in
sensitivity to passive vestibular stimulation when preparing an
escape response, which is thought to make them less likely to
demonstrate inhibitory cut-off and/or saturation (Figure 3A;
Boyle and Highstein, 1990; Rabbitt et al., 1995). Similarly, using a
semi-isolated in vitro anaesthetized larval Xenopus preparation,
showed that motor signals originating in the spinal locomotor
circuitry are conveyed to the vestibular periphery to produce
an overall reduction in afferent sensitivity to passive vestibular
stimulation (Figure 3B; Chagnaud et al., 2015). The results of
these studies have led to the common view that motor efference
copies (i.e., an internal copy of the motor command) used to
generate active behaviors are conveyed by the vestibular efferent
system to the periphery to modulate responses in receptor cells
and vestibular afferent fibers.

However, while studies in non-mammalian species provide
support for the idea that the vestibular efferent system modulates
peripheral sensory processing during active behaviors, this
strategy does not appear to be common among all species. In
particular, there is no direct evidence to date that the vestibular
efferent system modulates afferent responses during active
motion in mammals including primates. In rhesus monkeys,
neither semicircular canal nor otolith afferent responses are
altered during active orienting head movements or the generation
of motor commands that activate the neck musculature
(Figure 3C; Cullen and Minor, 2002; Sadeghi et al., 2007;
Jamali et al., 2009; Mackrous et al., 2019). Furthermore, the
motor pathways that control eye movements also do not
alter the responses of vestibular afferents; the responses of
semicircular canal and otolith afferents are insensitive to saccadic

eye movements, smooth pursuit, and optokinetic nystagmus
(Keller, 1976; Louie and Kimm, 1976; Miles and Braitman,
1980; Cullen and Minor, 2002; Sadeghi et al., 2007; Jamali
et al., 2009). Finally, findings that afferents respond similarly
in anesthetized and alert monkeys (Fernandez and Goldberg,
1971; Keller, 1976; Lisberger and Pavelko, 1986) and that afferent
responses remain unchanged when animals are engaged in
a vestibular heading discrimination task in which monkeys
made saccades to indicate whether their perceived direction
of translation was leftward or rightward relative to straight
ahead (Yu et al., 2015). Thus to date, the evidence available
indicates that the vestibular efferent system does not alter
sensory processing by relaying behaviorally-dependent (e.g.,
motor commands that drive active head or eye movements) or
context-dependent (e.g., alertness, feature attention) signals to
vestibular periphery.

It is noteworthy that the above experiments, which found
no change in in vestibular afferent responses during active
orienting head movements in rhesus monkeys, included head
movements that extended well into the amplitude range
of other common active head movements, including those
generated during locomotion (Carriot et al., 2017). Yet it
is also important to note that these head movements are
generated by the descending pathways to the neck musculature,
rather than by the locomotor circuitry. This then raises
the question of whether locomotion might preferentially
alter the responses of afferents, via the vestibular efferent
system, in mammals. Across species, locomotion provides
us with the ability to explore our world and is critical
for survival. The influential studies in aquatic vertebrates,
described above (i.e., toadfish: Boyle and Highstein, 1990;
larval xenopus: Chagnaud et al., 2015), are widely considered
as support the idea that locomotion alters the responses
of afferents via the vestibular efferent system. Importantly,
however, neither of these studies actually recorded the afferent
activity during voluntary active movement. Instead, the animals
were head restrained and vestibular stimuli were passively
applied. Accordingly, the question of whether the vestibular
efferent pathway modulates peripheral coding of active head
motion during locomotion remains open. We predict that
it will be unlikely that such a strategy is utilized by
higher vertebrates—notably primates. Instead, we speculate that
coding of head motion by the vestibular periphery is context
independent during natural active behaviors. This alternate
strategy allows pathway-selective modulation of relationships
between motor signals and the resultant vestibular feedback
during active behaviors.

FUTURE DIRECTIONS AND
CONCLUSION

The function of the mammalian vestibular efferent system in
everyday life remains poorly understood. The finding that it
can be artificially activated by electrical stimulation and/or high
velocity vestibular stimulation (Figure 1) demonstrates that
its circuitry is intact and operational in mammals, including
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chinchillas and monkeys. However, in contrast to what has
been reported in lower vertebrate classes, the mammalian
vestibular efferent system does not relay inputs from other
sensory modalities to the vestibular periphery (Figure 2).
Instead, the integration of vestibular and extra-vestibular
information occurs only at next stage of processing in the
mammalian vestibular system—specifically, at the level of the
first central neurons within the vestibular nuclei. For example,
VOR pathways integrate gaze commands that suppress the
VOR when the behavioral goal is to voluntarily redirect gaze
(Roy and Cullen, 1998, 2002). Further, vestibulo-spinal and
thalamocortical pathways integrate proprioceptive and voluntary
head movement commands that suppress these pathways during
voluntarily motion relative to space (Roy and Cullen, 2004;
Brooks and Cullen, 2014; Dale and Cullen, 2019). Additionally,
in further contrast to what has been observed in lower vertebrate
classes, the mammalian vestibular efferent system does not
function to prevent overstimulation by the voluntary movements
experienced during everyday behaviors such as active head
movements and locomotion (Figure 3; Cullen and Minor, 2002;
Sadeghi et al., 2007; Jamali et al., 2009).

What then is the physiological role of this system in mammals?
One possibility is that mammalian vestibular efferent system does
not play a role in short-term modulation of afferent coding, but
instead plays a role in modifying sensory encoding over a longer
time course. In this regard, our knowledge of the function role of
the auditory efferent system may provide some clues, given that
the vestibular and auditory systems have a common phylogenetic
origin (reviewed in Fritzsch, 1992). The auditory efferent system
can induce long-term plastic changes in afferent physiology
following cochlear de-efferentation (Liberman, 1990). Thus, one
possibility is that the vestibular efferent system similarly plays a
role in the similar role in the plasticity of the vestibular system
following a similar perturbation, such as the loss of peripheral
vestibular nerve input. Surprisingly, however, an experiment
testing whether the vestibular efferent system plays a role in
rebalancing input from the two labyrinths, after compensation
to lesion of vestibular nerve on one side, found no change in
afferent mean resting rates or sensitivities recorded in the intact
nerve on the other side (i.e., the contralesional nerve; Sadeghi
et al., 2007). Likewise, although the vestibular system shows
remarkable plasticity in response to the altered environmental
requirements induced by the wearing of visual lenses, the head
velocity sensitivity or resting discharge of monkey vestibular
afferents are unchanged following weeks of such visually induced
plasticity (Miles and Braitman, 1980). Interestingly, in the above
compensation study, Sadeghi et al. (2007) did report a small but
significant increase in the proportion of irregular afferents and
a decrease in the proportion of regular afferents. This result fits
with the recent finding that inactivation of vestibular efferent
fibers in mice preferentially influences the firing of irregular
afferents (Raghu et al., 2019), and could provide insight into the
role of the mammalian efferent system.

Another possibility is that a primary function of the
mammalian vestibular efferent system is to calibrate pathway
efficacy during development– in a role analogous to that
shown for auditory efferents (Walsh et al., 1998; Lauer and

May, 2011; Mishra, 2020). Indeed, as reviewed above there are
some notable parallels between the synaptic physiology of the
auditory and vestibular efferent pathways. More specifically,
the auditory efferent system comprises the medial (MOC) and
lateral olivocochlear (LOC) systems. The mechanism of synaptic
transmission in the MOC pathway is similar to that in the
vestibular efferent system; activation of both systems results in
acetylcholine releases, which in turn hyperpolarizes receptor cells
in the periphery via activation of α9/α10 nAChRs (Ballestero
et al., 2011). Nevertheless, the vestibular efferent system also
shares a similarity with the LOC system, namely that the
neuroactive peptide calcitonin-gene related peptide (CGRP) acts
at efferent synapses and their targets in both systems (Wackym
et al., 1993; Maison et al., 2003; Ahn et al., 2009; Xiaocheng et al.,
2013). Importantly, the efferent innervation of the cochlea occurs
early in development (reviewed in Simmons, 2002). In particular,
medial efferent neurons mature first and initially project to
the inner hair cell region of the cochlea and then synapse on
outer hair cells, while lateral efferent neurons mature later and
predominately project to the inner hair cell region. Accordingly,
it has been proposed that the early efferent innervation of
the cochlea plays an important role in shaping the functional
connectivity/efficacy of peripheral auditory signaling. Likewise,
the efferent innervation of the vestibular sensory organs occurs
early in development. Maturing type I and type II hair cells
initially receive direct efferent contacts, which in the case of
type I hair cells are displaced during development by the calyx
afferent terminals (Favre and Sans, 1979) to the outer face of
calyx terminal. The use of transgenic mouse models with a
targeted deletion loss of CGRP from birth has revealed impaired
functional efficacy, specifically an attenuation of auditory nerve
responses (Walsh et al., 1998; Lauer and May, 2011) and, as
noted above, also a marked reduction in VOR gain (Luebke et al.,
2014). Thus, disrupting both the auditory LOC and vestibular
efferent pathways from birth causes deficits that are consistent
with the view that both efferent pathways play a vital role in
calibrating pathway efficacy during development. Furthermore,
lesions of the mammalian auditory efferent pathway accelerate
age-related hearing loss (Liberman et al., 2014), and reduces
protection against loud noise exposure (reviewed in Lauer et al.,
2021). Thus, we further speculate that lesions to the mammalian
vestibular efferent pathway in mammals would accelerate age-
related peripheral vestibular impairment (Merchant et al., 2000;
Lopez et al., 2005) and reduce protection against noise-induced
damage (reviewed in Stewart et al., 2020).

SUMMARY

Overall, the evidence available to date contradicts the
common wisdom that the mammalian vestibular efferent
system dynamically modulates sensory coding by the
vestibular periphery during natural behaviors. Specifically,
neurophysiological studies have demonstrated that the
mammalian vestibular efferent system does not play a
significant role in short-term modulation of vestibular afferent
responses. Instead, the evidence to date suggests that the
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mammalian vestibular afferents encode head motion in a context-
independent manner during natural behaviors, refuting an
increasingly popular idea that efferent-mediated modulation of
the vestibular periphery enhances postural and gaze stability
during active behaviors (e.g., Jahn et al., 2000; Dietrich and
Wuehr, 2019; Dietrich et al., 2020). Overall, the available evidence
supports a competing hypothesis, namely that the mammalian
efferent vestibular system predominantly plays a role over a
longer time course, for example in calibrating vestibular pathway
efficacy during neural development and/or protecting peripheral
transmission during aging.
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