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Introduction
Amplicon-based sequencing methods have allowed researchers to dissect the composition of  the bacterial 
microbiota in a broad range of  environmental and biological samples and have widened our knowledge 
of  host-microbe interactions in health and disease (1). More recently, microbiota research has expanded 
beyond the bacterial kingdom to encompass fungi, archaea, and viruses. The recognized target for fungal 
taxonomic profiling is the internal transcribed spacer (ITS) region of  the ribosomal DNA (rDNA) (2). Due 
to sequencing length limitations, only 1 of  the 2 subregions ITS1 or ITS2 is commonly used. We have pre-
viously shown the potential of  an ITS1-based approach to identify the intestinal origin of  Candida blood-
stream infections (3). Here, we demonstrate that customization of  this ITS1-based platform can improve 
the accuracy of  fungal species representation.

Currently, most amplicon-based microbiota profiling methods rely on sequencing using an Illumina 
platform. Starting with the raw Illumina sequences, a pipeline for amplicon analysis includes multiple 
steps: demultiplexing (which is optional), primer removal, quality filtering, denoising or operational 
taxonomic unit (OTU) picking, and taxonomic annotation.

Distinguishing biological variation from sequencing errors is one of  the most important features of  any 
amplicon pipeline. Historically, this has been done by grouping sequences that are similar by an arbitrary 
threshold (commonly 97%) into 1 OTU. OTU-based methods are still used widely in the recent mycobiota 
literature (4–6). By design, this approach precludes the discrimination of  sequence variants with less than 
3% dissimilarity. By increasing the similarity threshold, a higher amount of  false OTUs (pseudo-OTUs)  
will be called that are due to sequencing error and not to biological variation. To counter these limitations, 
algorithms that infer exact sequencing variants (amplicon sequencing variants [ASV]) by accounting for 

Identification and analysis of fungal communities commonly rely on internal transcribed spacer–
based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal 
constituents since methodologies have been adapted from analyses of bacterial communities. 
To achieve high-resolution inference of fungal constituents, we customized a DADA2-based 
pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 
sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection 
were identified as key variables determining the accuracy of sample inference. Due to species-
specific differences in sequencing quality, default filtering settings removed most reads that 
originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning 
the quality filtering process, we achieved an improved representation of the fungal communities. 
By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of 
S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on 
the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic 
annotation compared with the naive Bayesian classifier implemented in DADA2. These steps 
optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level 
assignment of community members.
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sequencing quality scores have been developed. Of  these, DADA2 is most widely used (7, 8). Alternatives 
to DADA2 include Deblur (9) as well as UNOISE3, the most recent update of  the UNOISE algorithm (10).

The development of  these pipelines provides the technical requirements to discriminate sequencing 
variants in ITS data sets with high resolution. However, individual components of  bioinformatic pipelines 
for microbiome data analysis have been developed for and validated with bacterial 16S rDNA sequences. 
When applying these tools to fungal ITS data sets, additional complexities (specific to ITS) must be taken 
into account. First, in contrast to the near-uniform length of  16S amplicons across bacterial species, the 
length of  ITS amplicons varies substantially, between 150 and over 500 nucleotides, in different fungal 
species. The difference in ITS amplicon length leads to a varying degree of  overlap between forward and 
reverse reads (11). While the high variability in ITS sequence and length complicates the bioinformatic 
processing of  fungal amplicon data sets, it also enables a high resolution in differentiating distinct fungal 
taxa (2). Second, fungal taxonomic annotation is complicated further by a rapidly evolving taxonomy with 
major reclassifications of  medically relevant fungal taxa in the last few years (12). The choice of  the data-
base for taxonomic annotation needs to reflect this process. UNITE is a commonly used database for fungal 
annotation specific to the ITS region (13). Recently, the NCBI has started curating a specific ITS reference 
sequence database, as well (14). Alternatively, non–ITS-specific databases such as NCBI NT (https://www.
ncbi.nlm.nih.gov/nucleotide/) can be used as a reference for taxonomic classification.

Here, we show that DADA2, the most frequently used ASV-construction tool, effectively discriminated 
ITS1 amplicons within a mock community of  fungal species that were commonly identified in the human 
intestinal mycobiota. We further optimized the output of  a DADA2-based fungal pipeline by customizing 
the steps from quality filtering to taxonomic annotation and applied it to patient samples.

Results
Preparation of  a mock community ITS1 data set. To assess the performance of  DADA2 in denoising fungal 
ITS1 amplicons, we prepared a mock fungal community data set (Figure 1A). We extracted DNA from 
pure cultures of  Aspergillus fischeri, Aspergillus fumigatus, Candida albicans, Candida glabrata, Candida metapsi-
losis, Malassezia sympodialis, Meyerozyma caribbica, Meyerozyma guilliermondii, Saccharomyces cerevisiae, and 2 
strains of  Candida parapsilosis (Supplemental Table 1; supplemental material available online with this arti-
cle; https://doi.org/10.1172/jci.insight.151663DS1).

These species and strains were chosen, based on (a) their medical relevance, (b) their difference in ITS 
amplicon length (Figure 1B), and (c) the high similarity of  ITS1 sequences between some of  the species 
included in the mock community (Figure 1C). The ITS1 amplicons of  the 2 C. parapsilosis strains differed by 
a single nucleotide, the amplicons of  A. fischeri and A. fumigatus differed by 2 nucleotides, and the amplicons 
of  M. caribbica and M. guilliermondii differed by 3 nucleotides (Figure 1D). The S. cerevisiae strain included 
in the mock community has an intragenomically heterogeneous ITS1, and the 2 resulting sequencing vari-
ants have 2 nucleotide differences. All the highlighted differences between highly similar amplicon pairs 
represented less than 1% of  the total ITS1 amplicon length and, thus, were below the 97% similarity thresh-
old that is commonly chosen for OTU construction.

After DNA extraction, we calculated and normalized the DNA abundance of  each input fungal species 
via quantitative PCR (qPCR; balanced) and created extreme conditions (extreme 1 and extreme 2) for the 2 
species pairs with highly similar ITS1 amplicons (Meyerozyma and Aspergillus) by diluting one of  the species 
50-fold. We performed an ITS1 amplicon PCR, followed by sequencing on an Illumina MiSeq platform 
using PE300 settings.

Denoising with DADA2 allows high-resolution discrimination of  fungal ITS1 amplicon data sets. DADA2 dis-
criminated between individual constituents that differ by a single nucleotide in ITS1 amplicons. In contrast, 
an OTU-approach (i.e., UPARSE in this example) with a commonly used 97% similarity threshold cannot 
discriminate these amplicon sequences (Figure 2A). We also confirmed that DADA2 differentiated these 
species in cases in which one species or strain was highly dominant over another species or strain with a 
highly similar ITS1 region. DADA2 was able to detect M. guilliermondii and M. caribbica, as well as A. fumi-
gatus and A. fischeri reads in these extreme conditions. In contrast, an OTU-based approach only resolved 
the sequence of  the amplicon variant with the most reads, since the nucleotide differences in these reads did 
not pass the 3% dissimilarity threshold to qualify as a distinct OTU (Figure 2A).

Species-specific bias in ITS1-based amplicon pipelines. To assess the sequencing quality of  raw reads, we 
developed an R script (https://github.com/thierroll/dada2_custom_fungal/tree/JCI_insight; branch, 
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JCI_insight; commit ID, 380b22dea0596a0c5c09217fbe339a4dbaeae397) that links raw reads to the final 
ASV assignment. Intriguingly, the read quality differed markedly depending on the fungal species that gave 
rise to an amplicon (Figure 2B and Supplemental Figure 1). Specifically, reads that originated from the 2 
Aspergillus species, but also, to a lesser extent, those that originated from S. cerevisiae, C. glabrata, and M. 
sympodialis showed a more rapid trail-off  of  the Phred base quality score (15) toward the 3′ end compared 
with amplicon sequences that originated from other Candida and Meyerozyma species. This translated to a 
high number of  expected errors per read (Table 1). These species-specific quality issues did not reflect on 
the overall quality measures of  the sequencing run (Supplemental Table 2).

In the DADA2 workflow, filtering is accomplished by the filterAndTrim function and modulated by 2 
filtering variables: truncation based on quality scores (truncQ) and maximum expected error (maxEE). In 
the manuscript that introduced the concept of  maxEE, the authors suggested a value of  1, corresponding 
to no expected error (16). In the DADA2 package, the default value for both truncQ and maxEE is 2. Indi-
vidual reads are truncated at the first nucleotide base with a Phred quality score lower than truncQ. After 
truncation, all reads with an equal or higher number of  expected errors than the maxEE value are removed.

Figure 1. Overview of data set. (A) Sample and Sequencing workflow. (B) Length variation in the amplified ITS1 region of strains within the mock com-
munity. The 2 S. cerevisiae ASVs differed by one nucleotide in length. (C) Pairwise Levenshtein distance between the expected ITS1 amplicon sequences 
included in the mock community. (D) Nucleotide differences between expected highly similar ITS1 amplicon sequences.
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Figure 2. Performance of DADA2 on the mock community data set. (A) Strain resolution of DADA2 (ASV) compared with UPARSE (OTU). The bal-
anced community has equal 18S rDNA copy number normalized amounts of DNA per strain. The extreme 1 community include equal 18S rDNA copy 
number normalized amounts of DNA per strain, except for A. fumigatus and M. guilliermondii, which were included at 50-fold dilution. The extreme 
2 community include equal 18S rDNA copy number normalized amounts of DNA per strain, except for A. fischeri and M. caribbica, which were 
included at 50-fold dilution. (B) Representative quality profile of raw reads that were denoised into exact sequence matches to A. fumigatus and C. 
albicans. The line represents the median Phred score at that position, while the shaded area represents the 25th to 75th percentiles. (C) Impact of 
varying truncQ and maxEE on the number of species-specific reads.
 

https://doi.org/10.1172/jci.insight.151663


5

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(1):e151663  https://doi.org/10.1172/jci.insight.151663

We hypothesized that species-specific differences in the read quality might lead to a bias in the quality 
filtering step of  the DADA2 pipeline. To test this hypothesis, we ran 100 permutations of  the 2 filtering 
variables used in the filterAndTrim function, maxEE and truncQ (Figure 2C).

We confirmed that, by using standard filtering values (maxEE = 2 and truncQ = 2), most reads pertain-
ing to Aspergillus species — and, to a lesser extent, reads pertaining to S. cerevisiae, C. glabrata, and M. sym-
podialis — would have been discarded. Increasing maxEE and truncQ values maintained a higher number of  
reads that belonged to these species by up to 3-fold.

To adjust for species-specific quality differences, the parameters for merging forward and reverse 
denoised reads could be an alternative variable to modify. Therefore, we assessed whether customizing 
the mergePairs function provides enough or additional benefit compared with customizing the filtering 
variables. Changing the minimal number of  overlapping nucleotides did not affect the number of  expect-
ed reads that we retrieved, changing the maximum number of  mismatches in the overlapping region from 
0 to 1 only minimally increased the number of  expected reads, and increasing it further had no effect 
(Supplemental Figures 2 and 3).

Effect of  fine-tuned quality filtering variables on ITS1 data set. We assessed the impact of  customizing the 
filtering variables on the overall number of  retained sequences and on the proportion of  expected sequenc-
es. The overall number of  retained reads increased with higher maxEE values and with higher truncQ values 
above a threshold of  6 (Figure 3A). At truncQ values below 6, increasing maxEE up to 6 increased the 
proportion of  expected reads, while a further increase had a detrimental effect (Figure 3B). Based on these 
results, we used a value of  8 for both truncQ and maxEE for further analyses.

With both the customized and default filtering combinations, we retrieved all 12 expected ASVs. The 
number of  nonexpected ASVs (noise) decreased from 46 to 22 in the balanced community when the cus-
tomized filtering values were used. The decrease in nonexpected ASVs was mainly due to ASVs that dif-
fered from the expected sequence by 14 nucleotides or fewer, with the largest reduction seen in ASVs that 
were assigned to M. sympodialis (Figure 3C and Supplemental Table 3). With customized filtering variables 
in place, the overall proportion of  noisy reads remained below 1%.

Effect of  filtering customization on real-world data. We assessed the effect of  customizing the filtering strat-
egy on high-throughput ITS sequencing of  patient fecal samples (Figure 4A). We confirmed that the cus-
tomization enabled us to substantially increase the relative abundance of  reads pertaining to Aspergillus spe-
cies (Sample A–Sample C). By using the standard filtering variables, no Aspergillus reads were detected in 
Sample C. The relative abundance of  reads pertaining to S. cerevisiae were also increased with customized 
filtering (Samples D-F), though to a lesser extent than the Aspergillus reads. For both species, the increase 
in the relative abundance correlated with an increase in the total number of  reads that were retained by the 
customized filtering strategy (Figure 4B). Reads that were discarded by the customized method were evenly 
discarded across the different steps of  the DADA2 pipeline (Supplemental Table 4).

To exclude an effect based on institution-specific protocols, we analyzed the sequencing quality of  an 
external publicly available ITS1 data set (6) (Figure 4, C and D). Importantly, the authors used different ITS1 

Table 1. Expected errors of species-specific forward and reverse reads

Forward reads Reverse reads
Taxon Median EE Taxon Median EE

A. fumigatus 0.89 A. fumigatus 0.82
A. fischeri 0.86 A. fischeri 0.87
C. albicans 0.06 C. albicans 0.07
C. glabrata 0.37 C. glabrata 0.42

C. metapsilosis 0.08 C. metapsilosis 0.12
C. parapsilosis 0.06 C. parapsilosis 0.11
M. sympodialis 0.23 M. sympodialis 0.14

M. caribbica 0.07 M. caribbica 0.08
M. guilliermondii 0.07 M. guilliermondii 0.08

S. cerevisiae 0.15 S. cerevisiae 0.61

EE, expected errors.
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primers and a different library preparation strategy, resulting in forward reads exclusively in R1 (Illumina first 
mates) and in reverse reads exclusively in R2 (Illumina second mates). We confirmed taxon-specific quality 
differences in this data set, with a faster quality trail-off  for Aspergillus and Saccharomyces reads compared with 
Candida reads. As expected, the reverse reads (R2) had a lower quality than the forward reads (R1) due to the 
library preparation method chosen in this protocol, in which the R1 and R2 adapters were incorporated in 
the forward and reverse ITS1 primers, respectively. Customizing the filtering variables in the DADA2 pipeline 
led to changes in the computed taxonomic constitution of  individual samples. Importantly, due to the longer 
Saccharomyces ITS1 size and the fast quality trail-off, truncating at a Phred score of  8 led to nonoverlapping 
sequences and a complete absence of  Saccharomyces reads. In contrast, modifying only maxEE led to an abso-
lute and relative increase of  Saccharomyces reads and, to some extent, Aspergillus reads. These findings empha-
size the need to individually customize the DADA2 pipeline to institutional ITS1 protocols.

Optimizing ITS1 primers for S. cerevisiae and C. glabrata. Returning to the mock community assembled for 
this study, the number of  reads attributed to C. glabrata and S. cerevisiae were approximately 1 log10 lower 

Figure 3. Effect of customizing filtering variables of mock community data set. (A and B) Number of reads and ration of expected to nonexpect-
ed sequences for different combinations of truncQ and maxEE. (C) Comparison of the Levenshtein distance for all nonexpected sequences to the 
nearest expected ASV reference sequences.
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Figure 4. Effect of customizing fil-
tering values on patient samples. 
(A) Taxonomic composition of fecal 
samples according to the filtering 
strategy used. The arrow shows the 
retention of reads from Aspergillus 
species, which were completely 
discarded by the standard filtering 
strategy. (B) Number of reads 
retained by DADA2 according to 
filtering strategy used. (C) Phred 
quality scores along the R1 and R2 
reads of selected fungal genera, 
generated from ref. 6. (D) Taxonom-
ic composition of representative 
samples from ref. 6 according to the 
filtering strategy used.
 

https://doi.org/10.1172/jci.insight.151663


8

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(1):e151663  https://doi.org/10.1172/jci.insight.151663

than the reads of  other species (Figure 2A), even though we normalized the amount of  input rDNA in the 
balanced sample and adapted the filtering parameters (17). This result is explained in part by sequencing 
bias of  the Illumina platform against the longer ITS1 amplicon of  these 2 species (Figure 1B). Beyond the 
impact of  amplicon length, we hypothesized that a single nucleotide difference in the primer region of  the 
forward primer (ITS1-F) between the reference genome of S. cerevisiae, some C. glabrata strains, and other 
fungal taxa could be responsible for a portion of  the observed species-specific bias (Figure 5A). By using an 
alternative primer with a wobble nucleotide at the diverging position near the 3′ end, the yield of  C. glabrata 
and S. cerevisiae reads increased 7.2-fold in the balanced mock community and 2.0-fold in a community 
maximally enriched in both species (90% of  input DNA; Figure 5B).

Taxonomic annotation for fungal ITS1 amplicon data sets. Multiple combinations of  annotation algorithms 
and reference databases have been developed for taxonomic annotation. To find an optimal combination, 
we compared 3 regularly updated reference databases (UNITE with 3 different versions, NCBI NT, and 
NCBI ITS RefSeq Fungi) and 2 annotation algorithms (RDP and BLAST). DADA2 implements a naive 
Bayes classifier (RDP classifier) in its assignTaxonomy function. The ITS-specific workflow recommends 
using a UNITE database without specifying which database version to use (https://benjjneb.github.io/
dada2/ITS_workflow.html). We tested 3 different versions of  the UNITE database: (a) including singletons 
as reference sequences (UNITE; DOI: 10.15156/BIO/786368), (b) including global and 97% singletons 
(UNITE_s; DOI: 10.15156/BIO/786369), and (c) the full UNITE+INSD (DOI: 10.15156/BIO/786372) 
database. All 3 databases resulted in the correct taxonomic annotation at the genus level. With the default 
bootstrap threshold of  50, correct species-level annotation was not achieved in 4 or 5 of  12 ASVs, depend-
ing on the database used (Figure 6 and Supplemental Table 5). For most of  these annotations, the uncer-
tainty was acknowledged by not calling a species-level taxonomy. However, sequences for M. carribica were 
incorrectly called as M. guilliermondii for UNITE_s and UNITE, and as M. carnophila for UNITE+INSD. 
With the bootstrap threshold set at 80 (suggested for reads longer than 250 nucleotides; ref. 18), the propor-
tion of  species-level annotation would decrease even further. Species-level identification was inconsistent 
between the different versions of  the UNITE database. We set a predefined seed in advance to ensure that 
the naive Bayes classifier algorithm returned reproducible results when rerunning the analyses.

The RDP classifier implemented in the assignTaxonomy function does not allow customization to 
return more than 1 hit. In contrast, the BLAST-based algorithm, as we implemented it, did not return 
a single, most likely hit, but rather a list of  the top potential hits based on E-value or other scores. We 
arranged these ties based on an available species-level designation and on the number of  times a specific 
species-level designation was returned. With this strategy, both the full UNITE+INSD and the NCBI NT 
databases allowed a correct species-level annotation for all query sequences (Figure 6 and Supplemental 
Tables 6 and 7). In contrast, the BLAST-based algorithm was ineffective in returning a correct species-lev-
el annotation with the alternative fungal database NCBI ITS_RefSeq_Fungi (Supplemental Table 8).

We tested these combinations of  algorithm and database on an external data set (mockrobiota com-
munity 9; Mock-9) (19). For these sequences, our BLAST-based algorithm had a similar performance to an 
RDP-based algorithm (Figure 6 and Supplemental Tables 9–11).

Discussion
This study demonstrates that a DADA2-based denoising algorithm distinguishes fungal ITS1 amplicon 
reads that differ by a single nucleotide, as previously demonstrated for bacterial 16S amplicon data sets (7). 
This discriminatory power allows for species-level distinctions for the members in our mock community 
of  medically relevant fungi. This discriminatory power is not achievable by OTU-based approaches due to 
grouping clusters of  sequences with 97% similarity (20). Additionally, independent DADA2 runs yield the 
same ASV classification, allowing comparisons between different studies.

The high resolution provides the possibility to identify intraspecies variability, if  there is a difference in 
the ITS1 amplicon, as shown in the discrimination of  2 C. parapsilosis strains with a single nucleotide poly-
morphism. This fine discriminatory power was harnessed to track individual C. parapsilosis strains across 
different body sites and time to determine the relationship of  intestinal and bloodstream isolates in a patho-
genesis study (3). In S. cerevisiae and certain other species, fungal rDNA is present in multiple copies and 
can contain intragenomic polymorphisms, resulting in the presence of  more than 1 ASV for a given clone 
(21, 22). The optimized DADA2 pipeline can discriminate these polymorphisms and return distinct ASVs 
for a single clonal origin. On the other end of  the spectrum, it is possible that 2 fungal species have an 
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identical ITS1 (23). Thus, it is important to note that fungal ITS1-based ASVs are not a substitute to define 
a specific fungal species. Diversity measures may be overestimated at the fungal ASV level (24). We feel 
these limitations are clearly outweighed by the benefit of  higher taxonomic resolution associated with an 
ASV-based approach compared with an OTU-based approach with a 97% similarity threshold. If  needed, 
analysis at higher taxonomic levels remains possible.

Due to the decrease in sequencing quality toward the end of  Illumina reads, it is generally recommend-
ed to trim reads at the 3′ end in processing bacterial 16S data (7). With this trimming step, the overall quali-
ty increases, and more reads can pass the quality filter implemented in the pipeline (25). With the variation 
in ITS amplicon length, this approach is not generally recommended for fungal data sets. Besides the pos-
sibility of  trimming reads at a fixed length, the filterAndTrim function of  the DADA2 package incorporates 
the possibility to trim reads at the first position with a Phred score lower than a prespecified threshold. By 
default, this threshold is set to 2. In this study, we showed that increasing this threshold to 8 increased the 
number of  reads that passed the second quality filter step and were denoised correctly.

Quality filtering with the filterAndTrim function was performed by removing reads with a higher expect-
ed error than a specified threshold. Using the number of  expected errors within a read has been shown to 
be a superior filtering strategy to using the overall or average quality of  a read (16). In our data set, we show 
that increasing the threshold leads to a better recovery of  reads that are expected to be present in the sample. 
Since DADA2 relies on the distribution of  sequencing errors, we speculate that including a higher number of  
erroneous reads may increase the reliability of  the error model.

Intriguingly, changing the filtering and trimming parameters affected specific fungal taxa differentially, 
a phenomenon that has not been described widely in the literature. The ITS regions of  different fungal taxa 
vary considerably in sequence, length, and GC content (26), but this is not likely to influence sequencing 
quality. An alternative hypothesis would be that DNA extraction techniques affect the DNA of  different 
fungal taxa in different ways. It is critical to consider the impact on differential read quality in the analysis 
of  ITS data sets to minimize any taxon-specific filtering bias.

It is important to highlight that taxon-specific differences vary with the sequencing strategy and the 
primers used. We demonstrated that changing the parameters of  the DADA2 pipeline leads to markedly dif-
ferent results both in an internal and in an external data set. We therefore advise researchers to individually 

Figure 5. Length-specific biases in fungal ITS1 amplicon sequencing and adaptation of forward primers for better 
recall of S. cerevisiae and C. glabrata.  (A) Single nucleotide difference between the ITS1 forward primer and the 
S. cerevisiae reference genome. (B) Impact on the relative abundance of S. cerevisiae and C. glabrata when using 
a wobble forward primer allowing for the single nucleotide difference between the ITS1 forward primer and the S. 
cerevisiae reference genome.
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customize DADA2 parameters based on institution-specific protocols and mock data sets to ensure a reliable 
taxonomic fungal representation. To ensure reproducibility, we encourage researchers to publish the code 
and relevant pipeline variables together with the results of  the analysis.

Besides quality differences of  sequences obtained from different species, an additional species-specific 
bias can be introduced by the commonly used ITS1 forward primer, as it differs by a single nucleotide 
from the complementary regions for taxa such as S. cerevisiae and C. glabrata. The impact of  this primer 
modification is measurable yet moderate in comparison with other biases, such as variations in amplicon 
length and in rDNA copy numbers between taxa (27). While ITS-based mycobiota analysis will detect dif-
ferent members of  fungal communities in high resolution, it can only approximate their relative abundance. 
However, it remains an extremely valuable tool to classify community members, to assess temporal and 
spatial variations of  the mycobiota, and to monitor exponential expansion of  pathogenic fungal taxa seen 
in specific disease states (3).

Figure 6. Percentage of correct species-level annotation for different algorithm/database combinations.
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Shotgun metagenomics may provide a less biased analysis of  microbial communities. However, in most 
communities, such as the human intestine, the overall abundance of  fungi is low. Without the enrichment 
step inherent to amplicon sequencing, these fungal communities cannot be readily detected in shotgun 
metagenomic data sets at current sequencing depths. In addition, reference databases for shotgun metage-
nomic analyses are either absent or incomplete (28). At the present time, ITS-based amplicon approaches 
remain a cost-efficient standard to profile fungal communities.

Correct genus-level assignment was achievable for ITS1 amplicon data sets either via the RDP naive 
Bayesian classifier implemented in DADA2 or via a BLAST-based approach, irrespective of  the reference 
database. However, both approaches had limitations. Slight differences in the version of  the database gave 
rise to inconsistent species-level results using the RDP algorithm.

A BLAST-based approach is limited by the fact that the single best hit is not obligately returned, since 
the algorithm stops after a predefined number of  hits have passed the E-value threshold. The RDP algo-
rithm allows acknowledgment of  uncertainty only in cases in which the bootstrap value falls below a cer-
tain threshold and in which species-level annotation is not called.

In all cases, genus-level annotation was highly accurate irrespective of  the chosen algorithm. In studies 
of  the human mycobiota, species-level annotation is desirable due to differing phenotypic characteristics of  
species within a genus, such as C. albicans and C. parapsilosis (29, 30). Species-level annotation is associated 
with a higher level of  uncertainty than genus-level annotation. To confirm biologically meaningful associa-
tions, it is therefore advisable to confirm taxonomic annotations by culture-based methods.

In this study, we achieved improved levels of  species-level annotation for our community of  medi-
cally relevant fungi with the BLAST-based algorithm than with the RDP algorithm, and a similar per-
formance for an external data set. It is important to state that the RDP classifier has not been designed 
specifically for species-level annotation (31). In addition to the RDP classifier implemented in the assign-
Taxonomy function, DADA2 includes the function assignSpecies, which aims to unambiguously assign 
species by exactly matching sequences to a reference. It has been designed specifically for short-read 16S 
sequences. Of  note, assignSpecies allows for multiple exact hits, but it has not been tested on fungal data 
sets so far. Ultimately, the choice of  algorithm and associated variables is up to the individual research-
er. However, it is important that researchers document and publish this choice to allow for independent 
interpretation and comparability.

The NCBI NT and the full UNITE+INSD performed equally well. The NCBI ITS RefSeq database did 
not result in correct taxonomic annotation at the species level. Of  note, the downloadable UNITE databas-
es are updated once yearly, while NCBI databases and the linked NCBI taxonomy are updated continuous-
ly (14, 32). In the 2020 iteration of  UNITE used for this study, the taxonomy for Candida strains was not 
yet updated to reflect the family/genus denominations (Debaryomycetaceae as the family for C. albicans, C. 
parapsilosis, and C. metapsilosis, and Saccharomycetaceae as family and Nakaseomyces as genus for C. glabrata). 
It is important to use the newest version of  either database to reflect the rapidly changing fungal taxonomy 
or to correct nomenclature manually (12, 14).

In summary, we have established that a DADA2 based pipeline can discriminate ITS1 amplicons with 
single nucleotide resolution as a proof  of  concept using a representative mock community of  medically 
relevant fungi. While ITS-inherent species-specific biases cannot be overcome fully, customization of  a the 
DADA2-based analytic pipeline can lead to more accurate representation of  fungal communities.

Methods
Fungal strains and DNA preparation. We selected 11 different fungal strains from 10 distinct species for 
analysis (Supplemental Table 11). These strains were chosen to reflect a range of  distinct medically rel-
evant fungi and included strains with more than 97% identity in the ITS1 amplicon (A. fumigatus and 
A. fischeri, M. caribbica and M. guilliermondii, and 2 C. parapsilosis strains). Fungal strains were revived 
from glycerol stock and streaked on YPD agar, cultured at 37°C overnight. Then, the strains were inoc-
ulated in YPD liquid medium and cultured overnight at 37°C, shaking at 240 rpm. Fungal cells were 
harvested and washed twice with sterile water. Fungal DNA was extracted with the QIAamp DNA 
mini kit (Qiagen 51306).

Composition of  DNA pools. The 18S copy number per μL of  DNA for each strain was measured by qPCR 
(33). DNA of  all the strains was pooled at equal amount of  18S copy numbers for the balanced community. 
For the extreme 1 community, equal amounts of  DNA were pooled for all strains, except for A. fumigatus 
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and M. guilliermondii, which were both diluted 50-fold. For the extreme 2 community, equal amounts of  
DNA were used for all strains, except for A. fischeri and M. caribbica, which were both diluted 50-fold. Final-
ly, the enriched community was composed of  10% of  the balanced community DNA, 45% of  S. cerevisiae 
DNA, and 45% C. glabrata DNA.

Fecal samples. Fecal samples were drawn from a fecal biorepository of  patients undergoing allogeneic 
hematopoietic cell transplantation at MSKCC (3, 34). We selected fecal samples from different sequencing 
runs that contained reads attributed to Aspergillus. Samples were processed as described previously (3).

Amplicon production and sequencing. We amplified the ITS1 region with the primer set ITS-1-F 
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and 5.8S-1R (5′-GTTCAAAGAYTCGATGATTCAC-3′). 
We also tested an alternative forward primer including a replacement wobble nucleotide (5′-CTTGGT-
CATTTAGAGGAASTAA-3′). The DNA was amplified for 35 cycles (1 × 98°C, 1 × 53°C, and 1× 72°C, 
for 30 seconds each) using Phusion polymerase (F530L), as reported previously (3). The ensuing ampl-
icons were sequenced on an Illumina Miseq platform with paired-end 300 setting after library prepara-
tion. The amplicon and sequencing strategy result in both forward and reverse reads being present in 
the R1 and R2 reads. The raw reads were preprocessed by separating forward and reverse reads based 
on primer presence into 2 different files. Subsequently, primers and (partial) read-ins into the opposite 
primer were removed by using cutadapt (35).

Denoising and OTU clustering. Denoising was performed using the DADA2 package in R (7). No 
fixed length trimming was used. To test different filtering strategies, 100 iterations of  the filterAndTrim 
function with maxEE and truncQ values varying between 1 and 10 each were performed on the pre-
processed reads of  the balanced community with the ITS-1-F/5.8S-1R primer set. Additionally, we 
assessed variations on the minOverlap and maxMismatch variables within the mergepairs function. For all 
other analyses, the ASV object obtained by using maxEE and truncQ of  8 each was used. OTU cluster-
ing was performed via UPARSE by using a customized pipeline based on USEARCH and VSEARCH 
using the suggested value of  maxEE of  1 (36–38) and a 97% similarity threshold.

To assess the effect of  varying filtering variables on an external data set, we downloaded the ITS1 
sequencing data from a study on age-related variations of  the microbiota and mycobiota (6). These reads 
were subsequently processed similarly to sequences from our institution.

Taxonomic annotation. To test the RDP naive Bayes classifier implemented in the assignTaxonomy func-
tion of  DADA2, we downloaded 3 variants of  the UNITE database, version 8.2 (February 2020) (13). 
DADA2 can utilize 2 variants of  the general FASTA release, one that includes singletons as reference 
sequences (DOI: 10.15156/BIO/786368) and another that includes global and 97% singletons (DOI: 
10.15156/BIO/786368). The third variant consists of  the full UNITE+INSD data set (DOI: 10.15156/
BIO/786372). The header of  this data set was reformatted to comply with DADA2 requirements. We used 
the default bootstrap threshold of  50 implemented in the DADA2 assignTaxonomy function and set the seed 
of  R’s random number generator to 100 for all analyses.

To test a BLAST-based approach to taxonomic assignment, the UNITE+INSD data set was converted 
to a BLAST-compatible format, NCBI NT and NCBI RefSeq ITS libraries were downloaded in December 
2020 from the NCBI FTP site (14, 38, 39). We performed a local BLAST search for the expected sequenc-
es with a maximum of  50 target sequences. We calculated the number of  times a specific species-level 
taxonomy was returned per sequence for the NT and the UNITE databases. This was not possible due to 
the nature of  the NCBI ITS database, which includes a unique sequence per species. Additionally, for the 
UNITE database, we sorted the results on whether a species-level annotation was available or not.

To assess the performance of  the taxonomy annotation algorithms on an external data set, we down-
loaded expected sequences of  a fungal mock community (Mock-9) from mock community database mockro-
biota (19). To allow comparability, we trimmed the expected sequences to cover only the region amplified by 
our primers. Since 4 of  the expected sequences did not include the target of  our forward or reverse primers, 
these were removed from the data set.

Analysis. All analyses were performed using R version 4.0.3 (The R Foundation for Statistical Computing).
Data availability. Sequences specific to this project have been uploaded to SRA. Code related to the 

manuscript has been deposited on GitHub: https://github.com/thierroll/dada2_custom_fungal).
Study approval. Patients provided written informed consent for biospecimen collection. The fecal bio-

specimen repository was approved by the MSKCC IRB.
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