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Abstract

Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese
exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled
manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted
magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal
administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient
rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard
accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of
motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine
concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were
reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-
induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory
manganese uptake during iron deficiency appears to be a programmed ‘‘rescue response’’ with beneficial influence on
motor impairment due to low iron status.
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Introduction

Divalent metal transporter-1 (DMT1) mediates uptake of

manganese across the olfactory epithelium into the brain [1]. It is

also the major transporter for iron absorption in the duodenum [2,3].

During iron deficiency, the transporter’s expression becomes up-

regulated in both olfactory and intestinal epithelia [1,2,4]. Thus, up-

regulation of DMT1 in iron-deficient rats is associated with increased

olfactory manganese uptake [1]. The physiological significance of

iron-responsive manganese transport to the brain has not been

explored. Enhanced manganese delivery to the brain promoted by

iron deficiency could have a toxic impact by modifying neurological

complications of poor iron status. Iron-deficient animals are

hypoactive [5,6], and decreased physical activity and impaired

skeletal motor activity are thought to be due to altered dopaminergic

function [5,7–11]. Manganese toxicity is also known to cause motor

deficits, and locura manganica or ‘‘manganese madness’’ is associated

with bradykinesia, rigidity, tremor and dystonia [12].

We speculated that impaired motor activity due to iron

deficiency might be negatively influenced by olfactory manganese

exposure due to iron-responsive uptake of the metal across the air-

brain-barrier. We therefore determined the distribution of

intranasally-instilled manganese in the brain of control and iron

deficient rats using magnetic resonance imaging (MRI) and

examined the functional interactions between manganese expo-

sure and iron deficiency, both of which can impair motor function.

Unexpectedly, the impaired motor function of iron-deficient rats

was corrected by olfactory manganese instillation. These effects

were associated with manganese-induced changes in dopamine

receptors and transporters that suggest altered post-synaptic

signaling compensates for motor impairments due to iron

deficiency. Iron-responsive manganese assimilation in the brain

serves as a ‘‘rescue response’’.

Results

Manganese instillation of iron-deficient rats
Iron deficiency was induced in weanling Sprague-Dawley rats

fed an iron-deficient diet (5 mg iron/kg) for 4 weeks. Physiological

and hematological parameters were evaluated at 7 weeks as shown

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33533



in Table 1. Compared to age-matched rats fed control chow

(220 mg iron/kg), rats fed the iron-deficient diet weighed 11% less

(220 vs 248 g; P,0.05) although brain weight was similar between

both groups. Hematocrit values were significantly reduced (23.9 vs

44.1%; P,0.05) and non-heme iron levels in liver and serum were

lower (8.2 vs 43.2 mg/g and 0.28 vs 1.34 mg/mL, respectively;

P,0.05).

Two manganese dosing regimens were studied with the

maximum soluble amount (10 mg MnCl2/kg) instilled either 3

times across one week or 6 times across 3 weeks (total doses of

30 mg/kg or 60 mg/kg). Separately matched control and iron-

deficient diet cohorts were intranasally-instilled with vehicle alone

(distilled water). Intranasal instillation did not change body or

brain weight (Table 1). Hematological parameters were also

unaffected, although a slightly reduced hematocrit value was noted

in iron-deficient rats administered 60 mg MnCl2/kg compared to

water-instilled iron-deficient rats (Table 1).

Effect of iron deficiency on brain accumulation of
intranasally-instilled manganese

Magnetic resonance imaging was performed on isoflurane-

anesthetized rats using a 4.7T MR device to assess signal for brain

manganese on T1-weighted images. Fig. 1 presents the T1-

weighted images in axial sections for control and iron-deficient rats

intranasally-instilled with water or 30 mg MnCl2/kg two days

following the last instillation. Greater signal intensity in the brain,

particularly the olfactory bulb and the basal ganglia, was observed

in manganese-instilled rats compared with water-instilled controls,

confirming the signal is associated with the metal’s accumulation.

Cross-over of manganese from the right nostril (instillation site) to

the left hemisphere was more pronounced in iron-deficient rats,

with greater accumulation appearing in posterior regions including

the striatum (Fig. 1, arrowheads).

To directly compare the distribution of manganese in the brain

between control and iron-deficient rats, the signal intensity on the

T1-weighted images was corrected for the endogenous signal

intensity of the respective water-instilled diet group and normal-

ized to brain weight (Fig. 2). Signal intensity due to manganese in

the axial sections of the brain tissue was significantly enhanced in

an anterior-to-posterior fashion (Fig. 2A). Iron-deficient rats

displayed increased signal in specific brain regions including

prefrontal cortex, globus pallidus, and hippocampus. Although

regions closer to the nasal instillation site (i.e., olfactory bulb and

tract) showed a similar trend, the difference in signal was not

statistically significant (Fig. 2B). The combined signal intensity

calculated after integrating signal across all MRI sections

(1561 mm) of the whole brain was doubled in iron-deficient rats

instilled with either 30 or 60 mg MnCl2/kg (Fig. 2C, 3.36 vs 1.67

or 2.55 vs 1.16 intensity ratios, respectively; P,0.05). The fact that

signal intensity did not increase at the higher dose suggests a

saturation effect on olfactory uptake and/or accumulation of

metal. It should be noted that administered doses were based on

body weight, and intensity ratios may actually under-estimate the

true difference between control and iron-deficient brain manga-

nese accumulation, since brain weights were similar between the

two groups. The fact that manganese is eliminated very slowly

from the rat brain with a half-life .50 days [13,14], suggests that

elevated levels of manganese in iron-deficient rats result from

enhanced olfactory uptake rather than from reduced clearance

from the brain. However, other possible explanations of these data

include the fact that the MRI signal intensity may become

saturated such that higher Mn concentrations cannot be

distinguished. Alternatively, neurotoxic effects of Mn on the

transport process itself may interfere.

Effect of iron deficiency and olfactory manganese
instillation on motor coordination

To examine functional interactions between iron deficiency and

manganese exposure, a motor coordination study was carried out

using a standard rotarod device. Control and iron-deficient rats

were instilled with 60 mg MnCl2/kg or vehicle over 3 weeks as

Table 1. Physiological and hematological characteristics of rats treated with olfactory manganese under iron deficiency.

Control Iron-deficient

MnCl2 (mg/kg) 0 (N) 30 (N) 60 (N) 0 (N) 30 (N) 60 (N)

Body weight {, g 248 6 6 (9) 238 6 8 (9) 239 6 4 (4) 220 6 6 (10) 198 6 7 (9) 201 6 3 (4)

Brain weight, g 1.87 6 0.08 (5) 1.82 6 0.06 (5) 1.94 6 0.03 (4) 1.80 6 0.03 (7) 1.81 6 0.04 (5) 1.82 6 0.01 (4)

Hematocrit {,1, % 44.1 6 1.1 (9) 40.8 6 0.8 (9) 45.8 6 1.6 (4) 23.9 6 1.3 (10) 24.1 6 0.6 (9) 20.9 6 0.9 (4)

Liver non-heme iron
{, mg/g liver

43.2 6 2.2 (4) 44.5 6 6.4 (3) 44.0 6 4.6 (4) 8.2 6 0.3 (4) 8.3 6 1.4 (3) 7.2 6 0.9 (4)

Serum iron {, mg/mL 1.34 6 0.16 (4) ND 1.37 6 0.12 (4) 0.28 6 0.07 (4) ND 0.36 6 0.11 (4)

Data are presented as the mean 6 SEM and were analyzed by two-way ANOVA; ND, not determined;
{P,0.05, effect of iron deficiency;
1P,0.05, effect of interaction between MnCl2 and iron deficiency.
doi:10.1371/journal.pone.0033533.t001

Figure 1. Manganese accumulation in the brain after intranasal
instillation. MnCl2 was instilled into the right nostril of rats three times
on days 1, 4, and 6 (30 mg/kg). Distilled water was used as a vehicle
control. Two days following the last instillation, MR images were taken
from isoflurane-anesthetized rats using a 4.7T MR device to assess
signal intensity on T1-weighted images of axial sections of the brain
with a thickness of 1 mm. Arrowheads indicate the striatum.
doi:10.1371/journal.pone.0033533.g001
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described above, then tested for motor function and Fe x Mn

interactions. Manganese-instilled rats fed the control diet displayed

diminished motor coordination, however, iron-deficient rats

instilled with manganese stayed on the bar longer before falling

and displayed an increase in the maximum speed attained on the

rotarod (Fig. 3, A and B). The effect of Fe x Mn interaction was

significant (P = 0.028) and showed an unexpected reversal of motor

impairment.

Effect of olfactory manganese exposure and iron
deficiency on striatal dopamine levels

To better understand the mechanistic basis for the observed

interactions between manganese exposure and iron deficiency on

motor function, levels of the neurotransmitter dopamine were

determined in the striatum, a brain region associated with motor

control and coordination. Tissue dopamine concentrations in

control and iron-deficient rats were similar and unaffected by

intranasal instillation of 60 mg MnCl2/kg (Fig. 4A). Microdialysis

experiments determined resting extracellular dopamine concentra-

tions did not differ significantly among water-instilled or manga-

nese-instilled control and iron-deficient cohorts (Fig. 4B). While the

fold-change in K+-stimulated dopamine release did not differ

significantly (Fig. 4C), amphetamine-evoked release increased

extracellular dopamine levels 14-fold in control and 18-fold in

iron-deficient rats. Iron-deficient rats instilled with 60 mg MnCl2/

kg had a 24-fold increase in amphetamine-stimulated extracellular

dopamine (Fig. 4D) with a significant Fe x Mn effect (P = 0.047).

Effect of olfactory manganese exposure and iron
deficiency on striatal dopamine transporter and receptor
levels

To determine whether manganese exposure influenced the

expression of dopamine transporters and receptors in the striatum,

Western blot analysis was used to quantify protein levels.

Intranasal manganese instillation reduced dopamine transporter

(DAT) and dopamine receptor D1 (D1R) levels (Fig. 5, A and B)

while dopamine receptor D2 (D2R) levels were increased (Fig. 5C).

These manganese-induced changes were the same in control and

iron-deficient rats.

Discussion

The most relevant route for occupational and environmental

manganese exposure health effects is through inhalation [15].

Characterization of the influence of iron status on olfactory and

pulmonary manganese transport has demonstrated that respirato-

ry manganese uptake reflects iron stores [1,16,17] and that DMT1

is involved in absorption across the olfactory epithelium into the

brain [1]. Here, we studied interactions between systemic iron

status, olfactory manganese uptake, and brain manganese

deposition on neurobehavioral function and dopamine neuro-

transmission in the striatum. Rats fed a low iron diet during the

course of this study had similar brain weights, although iron

deficient rats had lower body weights compared to control rats.

Hematocrit, liver non-heme iron and serum iron values were all

Figure 2. Effects of iron deficiency on manganese accumulation in the brain after intranasal instillation. After intranasal instillation of
MnCl2 (3610 mg/kg for 1 wk or 6610 mg/kg for 3 wks), a signal intensity ratio of brain to the background for each image was calculated and
corrected for endogenous signal intensity of respective diet group and then normalized to brain weight and dose. Manganese distribution in the axial
sections of the brain tissue (A), in specific brain regions (B) and in the whole brain integrating all sections (C) was compared between control and
iron-deficient rats. Empty and closed bars represent water-instilled and MnCl2-instilled rats, respectively. Data were presented as mean 6 SEM (N = 4–
5). * P,0.05 between control and iron-deficient rats determined by two-sample t-test. OB, olfactory bulb; OTR, olfactory tract; OTB, olfactory tubercle;
PFC, prefrontal cortex; CPU, caudate-putamen or striatum; GP, globus pallidus; CTX, cortex; HPC, hippocampus.
doi:10.1371/journal.pone.0033533.g002
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significantly lower in rats fed the iron-deficient diet. The purpose

of our study was to better understand the consequences of

enhanced olfactory manganese absorption under these conditions

of low body iron status.

Manganese is taken up from the nasal cavity along the olfactory

tract into the brain [1,18–20]. Using T1-weighted MR imaging,

we determined brain manganese distribution after intranasal

instillation of 30 and 60 mg MnCl2/kg body weight. A strong

anterior-to-posterior trend of manganese-associated signal inten-

sity on T1-weighted images was observed. These results generally

agree with earlier studies using radioactive tracer to map uptake

and transport from the olfactory bulb into the brain [1,18,19,21].

It has been proposed that divalent manganese acts as a calcium

ortholog and is taken up into synaptic vesicles that undergo

anterograde transport in a microtubule-dependent (colchicine-

sensitive) manner for its subsequent distribution [22], which

explains relatively low accumulation of manganese in the olfactory

bulb in our study. Iron deficiency has been shown to increase

brain manganese deposition when administered through diet or by

intravenous injection thereby following a pathway across the

Figure 3. Effect of iron deficiency and manganese exposure on motor coordination of the rat. Rats were pair-fed, intranasally instilled
(6610 mg/kg) for 3 wks, and tested on the rotarod device to record the time to falling-off (A) and speed of the rod (B). Empty and closed bars
represent water-instilled and MnCl2-instilled rats, respectively. Data were presented as mean 6 SEM (N = 3–4 per group) and were analyzed using
two-way ANOVA.
doi:10.1371/journal.pone.0033533.g003

Figure 4. Effect of iron deficiency and manganese instillation on dopamine turnover in the striatum. Immediately after rotarod test
(Fig. 3), rats were euthanized and striatal tissues were homogenized to determine the tissue concentrations of dopamine (A; N = 3–4). Rats of
another cohort were anesthetized with urethane and microdialysis was performed to determine the basal dopamine concentration at resting state (B;
N = 6–8) and the fold-change in AUC of dopamine release either after high K+ (30 mM) stimulation (C; N = 6–8) or after amphetamine stimulation
(1 mg/kg, s.c.) in striatal extracellular fluid (D; N = 6–8). Empty and closed bars represent water-instilled and MnCl2-instilled rats, respectively. Data
were presented as mean 6 SEM and were analyzed using two-way ANOVA.
doi:10.1371/journal.pone.0033533.g004
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blood-brain-barrier [23,24]. To our knowledge, the present study

is the first to use MRI to map the olfactory route across the air-

brain-barrier under iron deficiency conditions, and our results

demonstrate that brain manganese is doubled in iron deficient rats

compared to controls after one week of intranasal instillation (total

dose of 30 mg MnCl2/kg). Significantly greater signal intensities

were observed in the prefrontal cortex, caudate putamen, globus

pallidus, cortex and hippocampus. Our previous isotopic tracer

kinetic study demonstrated that brain uptake of manganese after

intranasal instillation was more than 20-fold greater than after

intravenous injection. Combined, these separate lines of evidence

indicate that manganese transport via the air-brain-barrier is by

far more efficient than transfer across the blood-brain-barrier and

is significantly up-regulated as a result of systemic iron deficiency

[1].

Because the ratio of signal intensity to brain weight did not

increase with continued dosing from 1 to 3 weeks, the mechanism

responsible for metal absorption and accumulation from the

olfactory pathway appears to be saturable. Increased manganese

accumulation in iron-deficient rats could be explained by greater

olfactory uptake of metal into the brain and/or by increased

number of iron-responsive metal-binding sites. We have previously

shown that olfactory uptake of 54Mn to the brain is enhanced by

low iron status but it is significantly reduced in Belgrade rats with

DMT1 deficiency [1]. It is therefore likely that manganese

distribution mapped by MRI reflects changes in levels of this

transporter in the olfactory epithelium, although it is also possible

that manganese binding sites or other transport pathways

secondary to increased manganese entry across the olfactory

epithelium are enhanced by iron deficiency. Other possibilities

discussed above include neurotoxic effects of manganese on

retrograde transport from the nasal cavity to the brain. Further

studies are warranted to examine manganese binding sites by

radioactive uptake and metal distribution, for example.

Motor impairments due to iron deficiency are well documented

[10] and behavioral effects due to excess dietary manganese have

been reported [25,26]. Both the time on bar before falling and the

maximum speed attained on the rotarod were reduced in control

rats intranasally-instilled with manganese, and both of these

functions were more severely impaired in iron-deficient rats.

However, the observation that intranasal manganese instillation of

iron-deficient rats improved performance with a significant Fe x

Mn interaction (two-way ANOVA, P = 0.028) was unexpected.

This evidence points to a beneficial influence of iron-responsive

manganese uptake to the brain – a ‘‘rescue response’’ triggered

under low iron conditions.

To explore the underlying basis for behavioral Fe x Mn

interactions, dopamine metabolism and signaling in the striatum

was examined. Both high manganese [27] and iron deficiency

[7,8] alter dopamine turnover and metabolism. Under our

experimental conditions, striatal dopamine levels were similar

between control and iron-deficient rats. While some investigations

have shown that tissue dopamine levels are altered by iron

deficiency, differences in age, circadian cycle, extent of iron

depletion, and duration of low iron status between various study

groups have led to inconsistent results [5,7,10,11,28]. Likewise,

chronic manganese exposure to the brain across the blood-brain-

barrier is thought to diminish dopamine levels [29–31], but the

olfactory exposure used in our study did not appear to perturb

dopamine content, possibly because metal accumulation was

lower, manganese deposition was regionally different, and/or the

duration of manganese exposure (1–3 weeks) was less than

previously studied [29–31]. We also studied changes in release

and turnover of extracellular dopamine by microdialysis. It has

been reported that extracellular dopamine is increased in iron-

deficient animals as a consequence of reduced uptake by DAT

[9,11]. Under our study conditions, DAT levels were the same in

control and iron-deficient rats, but protein levels were reduced by

Figure 5. Effect of iron deficiency and manganese instillation on the expression of dopamine transporters and receptors in the
striatum. Rats intranasally instilled with MnCl2 (6610 mg/kg) were euthanized and striatal tissues were collected and homogenized to determine
the expression levels of dopamine transporter (DAT; A), dopamine receptor D1 (D1R; B), and dopamine receptor D2 (D2R; C). Relative intensities of
protein bands normalized to actin were determined using Odyssey software (version 2.1). Empty and closed bars represent water-instilled and MnCl2-
instilled rats, respectively. Data were presented as mean 6 SEM (N = 3–4 per group) and were analyzed using two-way ANOVA.
doi:10.1371/journal.pone.0033533.g005
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olfactory manganese exposure in both groups. Similar effects of

manganese exposure have been reported in studies of chronic

administration by diet [29] or injection [30]. Our study indicates

olfactory administration of manganese can also down-regulate

DAT, possibly in a more acute manner.

Consistent with reduced DAT, microdialysis measurements

showed that extracellular resting dopamine was slightly increased

in the manganese-exposed groups and K+-stimulated levels were

higher, but neither of these effects was statistically significant. In

contrast, extracellular dopamine increased in response to amphet-

amine with a significant Fe x Mn interaction (two-way ANOVA,

P = 0.047). Manganese has been shown to modify amphetamine-

induced responses but the precise mechanism is unknown [27]. It

is interesting to speculate that the underlying basis for the observed

pharmacological Fe x Mn interaction could reflect compensatory

changes in iron-deficient rats induced by olfactory manganese

exposure that restored normal activity in the motor tests

performed on this group. In particular, manganese might not

only modulate DAT levels but the metal could influence its

function by direct competition or by other non-competitive

interactions. It has been shown that some DAT inhibitors

negatively affect manganese uptake by striatial tissue [32,33],

and manganese inhibits dopamine uptake by synaptosomes

[32,34].

Alternatively, olfactory manganese exposure may modulate

downstream signaling by altering dopaminergic receptors. There is

evidence indicating iron deficiency disrupts dopaminergic func-

tions by reducing D1R and D2R levels [9,28]. Although we did

not observe statistically significant effects on dopamine receptor

levels due to iron deficiency, olfactory manganese exposure

significantly reduced D1R and increased D2R levels in both

control and iron-deficient rats. These results are in good

agreement with previous findings reported for gestational/

lactational exposures to manganese [35,36]. Overall, this evidence

suggests that olfactory manganese exposure up-regulates post-

synaptic signaling through D2R, which may compensate for loss of

dopaminergic signaling under iron-deficient conditions.

Finally, it should be recognized that multiple pathways could be

involved in the interaction between brain iron deficiency and the

monoaminergic system, and that many metal-containing enzymes

and/or cellular components contribute to this process. It is

conceivable that increased availability of manganese affords the

replacement of iron to rescue the loss of certain iron-dependent

enzymatic or structural functions. For example, both iron and

manganese have been shown to support activity of tyrosine

hydroxylase, the rate-limiting enzyme for dopamine synthesis [37].

In fact, the idea that unoccupied metal binding sites are available

under iron deficiency to bind excess manganese and limit the

metal’s toxicity is compatible with the Fe x Mn interactions

observed in our study.

Our data confirm that both iron and manganese play active

roles in modulating motor function. Contrary to our speculation

that manganese might exacerbate functional losses due to iron

deficiency, our study suggests iron-responsive olfactory manganese

uptake confers a beneficial response to low iron status. Along

similar lines, the protective nature of manganese associated with

iron homeostasis and oxidative stress defense recently has emerged

for bacteria [38] and yeast [39]. The pathways responsible for

iron-responsive olfactory uptake of manganese and the metal’s

impact on dopaminergic function warrant further exploration as a

possible course of therapeutic intervention for conditions wherein

iron deficiency promotes functional deficits (e.g., restless legs

syndrome) or loss of dopaminergic function impacts motor

coordination and control (e.g., Parkinson’s disease).

Materials and Methods

Ethics statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was

approved by the Harvard Medical Area Animal Care and Use

Committee (Animal Experimentation Protocol AEP #03769).

Animals and diets
Weanling Sprague-Dawley rats (Taconic) were fed either control

chow (220 mg iron/kg, PicoLab 5053, PharmaServ) or iron-

deficient diet (5 mg/kg, TD99397, Harlan Teklad) for 4 weeks to

establish control and iron-deficient cohorts [1,16]. Both groups were

fed ad libitum for MRI studies of brain manganese distribution. Iron-

deficient rats were fed ad libitum for behavioral and neurotransmitter

analyses while control rats were pair-fed to match body weight for

these experiments. Rats were intranasally instilled with MnCl2
(Sigma-Aldrich) into the right nostril with thin gel loading tips under

isoflurane anesthesia. Distilled water (vehicle) was used as an

instillation control. Two dosing regimens (1 and 3 weeks) were

studied: 6-wk-old rats were instilled with 10 mg MnCl2/kg three

times at days 1, 4, and 6 (a total of 30 mg/kg), whereas, for three-

week treatment, 4-wk-old rats were instilled with 10 mg MnCl2/kg

twice weekly at days 1, 5, 8, 12, 15, and 19 (a total of 60 mg/kg).

This dose schedule permitted sufficient distribution of manganese to

the brain but because iron homeostasis is influenced by circadian

rhythm, we instilled manganese in the morning (every 2–3 days).

Timing was limited to short duration exposure to severe iron

deficiency. At the end of the study, rats were euthanized by

isoflurane overdose followed by exsanguination for collection of

blood, liver, and brain tissues to analyze iron status.

MR imaging and analysis
Anesthetized rats were placed in a 4.7T MR device and

immediately imaged for 30–60 min to obtain multi-slice T1-

weighted images covering entire brain in both axial and sagittal

sections 1 mm thick (gapless). The echo time/repetition time used

was 500/11 msec and the field of view was 363 cm2 yielding a

resolution of 120 mm. Signal intensity was measured and

normalized to background signal intensity using ImageJ software

(NIH, version 1.44). The endogenous averaged signal intensity

ratio values of vehicle-treated animals of the respective diet group

were subtracted to determine signal due to instilled manganese

uptake. The manganese signal intensity ratio was finally

normalized to post-mortem brain weight. Manganese distribution

in the brain including specific brain regions (e.g., prefrontal cortex,

globus pallidus, etc), total brain tissue of each section (2-

dimensional), and integration of whole brain sections (3-dimen-

sional) was compared between control and iron-deficient rats.

Rotarod test
Pair-fed rats (3–4 per group) instilled with water or 60 mg

MnCl2/kg as described above were placed on a standard

accelerating rotarod device (Harvard Apparatus). Following 3-

day training sessions at fixed speeds, rats were tested twice on the

rotarod with accelerating speeds from 4 to 40 rpm over 5-min

(maximum time on bar) or until the animals fell off. Time on bar

and speed attained on rotarod before falling were recorded, and

the better score of the two trials was used for analysis.

Microdialysis
Rats (6 to 8 per group) were anesthetized with urethane (1 g/kg,

i.p.) and placed in a stereotaxic apparatus (Stoelting). A mid-

Olfactory Manganese in Iron Deficiency

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33533



sagittal incision was made over the skull, and a small hole was

drilled to allow for implantation of a guide cannula and a

precalibrated 3-mm concentric microdialysis probe (CMA-12

Elite, CMA/Microdialysis) into the right striatum (Bregma:

AP+0.7 mm, LR–2.8, DV–6.8). Following probe implantation,

artificial cerebrospinal fluid (K+ 2.7 mM) was continuously

perfused (2 mL/min) with an infusion pump (Harvard Apparatus)

for 2 hrs to allow for stabilization of injury-mediated release of

neurotransmitters, after which 4 baseline samples (20-min each)

were collected to determine resting levels of dopamine. Samples

were collected for an additional 60–80 min during perfusion of

fluid containing 30 mM K+ or after subcutaneous injection of

1 mg/kg d-amphetamine to stimulate dopamine efflux. Micro-

dialysates were mixed with 5 mL of 0.1 M acetic acid containing

oxalic acid (1.0 mM) and L-cysteine (3.0 mM) to prevent oxidative

degradation of monoamines [40] and stored at 280u until HPLC

analysis. The area under the concentration-time curve (AUC)

analysis was employed to determine d-amphetamine-induced

dopamine release [41].

Analysis of dopamine in microdialysates
The HPLC system consisted of an ESA 542 autosampler (ESA,

Thermo Fisher, Waltham, MA), an ESA 582 dual-piston pump, a

Capcell PAK MG C18 column (5061.5 mm, 3 mm particles, ESA),

an ESA Coulochem III detector, with a 5020 guard cell and a

5041 amperometric analytical cell. The guard cell was set at a

potential of +275 mV and the 5041 analytical cell was set to

+220 mV. Data were acquired from the 5041 analytical cell and

analyzed with EZChrom Elite software configured for the

Coulochem III system by ESA. The mobile phase contained

150 mM sodium dihydrogen phosphate monohydrate and

4.76 mM citric acid monohydrate, adjusted to pH 5.6 with

concentrated semiconductor grade sodium hydroxide before

adding 3 mM sodium dodecyl sulfate, 50 mM EDTA, 10%

methanol (v/v) and 15% acetonitrile (v/v), in NANOpure water

prefiltered first through a C18 cartridge (Sep-Pak, Waters, Milford,

MA) then through a 0.2 mm nylon membrane (Millipore,

Burlington, MA). The flow rate was 0.2 mL/min and the column

was kept at 29uC. Calibration was by external standards prepared

in solutions of 0.2 M HClO4, 0.2 mM Na2EDTA and 0.2 mM

ascorbic acid [42]. Concentration/area calibrations were linear

over the concentration ranges found in the microdialysates, with

r2.0.999. The detection limit was approximately 10 pg/mL.

Analysis of dopamine in tissue homogenates
Striatal tissue homogenates were prepared in ice cold 0.2 M

perchloric acid (1:10 w/v) containing ascorbic acid (0.2 mM) and

EDTA (0.2 mM) and centrifuged for 6 min at 15,0006g. An

aliquot of the supernatant was further diluted 1:2 in perchloric

acid solution and centrifuged for an additional 2 min at 15,0006g,

and final supernatant (10 mL) was analyzed using an HPLC system

consisting of an ESA 542 autosampler (ESA), an ESA 580 dual-

piston pump, an ESA MD-150 column (C18, 15063.2 mm, 3 mm

particles, 120 Å pores), an ESA Coulochem II detector (Model

5200), with a 5020 guard cell and a 5011 coulometric analytical

cell. The potentials of the electrochemical cells were EGuardCell

+350 mV, E1 2150 mV and E2 +300 mV, all against a palladium

reference electrode. Data were acquired from E2 and analyzed by

PC/Chrom+ software (H & A Scientific, Greenville, NC). The

mobile phase consisted of 90 mM sodium phosphate monobasic

monohydrate; 50 mM citric acid monohydrate; 1.7 mM 1-

octanesulfonic acid sodium salt hydrate, HPLC grade; 50 mM

disodium ethylenediamine tetraacetate dihydrate; and 10%

acetonitrile (v/v) in water prefiltered as described above. The

flow rate was 0.4 mL/min. Calibration was by external standards

prepared in solutions of the above preservative. Concentration/

area calibrations were linear over the ranges of concentrations

found in the microdialysates, with r2.0.999.

Western blot analysis of dopamine transporters and
receptors

Microdissected striatal regions were homogenized in Tris-NP40

buffer (50 mM Tris-HCl, 150 mM NaCl, 0.5% NP40, pH 7.5)

containing protease inhibitors (Complete Mini, Roche). Samples

(50–100 mg proteins) were electrophoresed on a 10% SDS-

polyacrylamide gel and transferred to polyvinylidene difluoride

membrane (Millipore). After blocking, the membrane was

incubated in goat anti-dopamine transporter (DAT) antibody

(1:100, Santa Cruz), mouse anti-dopamine receptor D2 (D2R)

antibody (1:100, Santa Cruz) or rat anti-dopamine receptor D1

(D1R) antibody (1:100, Sigma). As a control for loading, the

immunoblot was also incubated with mouse anti-actin (1:10,000,

MP Biomedicals). The blots were incubated with IRDye800/680-

conjugated secondary antibody (1:10,000, Li-COR) and scanned

using an Odyssey Infrared Imaging System (Li-COR). Relative

intensities of protein bands normalized to actin were determined

using Odyssey software (version 2.1).

Statistical analyses
Values reported were expressed as means 6 SEM. For two-

group comparison (MRI analysis), two-sample t-test was employed.

To determine interaction effects of iron deficiency and olfactory

Manganese exposure as well as individual main effects, a two-way

ANOVA was performed using Systat 13 (Systat). Differences were

considered significant at P,0.05.
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