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Although much literature has been devoted to portal dosimetry with the Varian
amorphous silicon (aSi) portal imager, the majority of the described methods are
not routinely adopted because implementation procedures are cumbersome and not
within easy reach of most radiotherapy centers. To make improved portal dosimetry
solutions more generally available, we have investigated the possibility of con-
verting optimized configurations into ready-to-use standardized datasets. Firstly,
for all commonly used photon energies (6, 10, 15, 18, and 20 MV), basic beam
data acquired on 20 aSi panels were used to assess the interpanel reproducibility.
Secondly, a standardized portal dose image prediction (PDIP) algorithm configura-
tion was created for every energy, using a three-step process to optimize the aSi
dose response function and profile correction files for the dosimetric calibration of
the imager panel. An approximate correction of the backscatter of the Exact arm
was also incorporated. Thirdly, a set of validation fields was assembled to assess
the accuracy of the standardized configuration. Variations in the basic beam data
measured on different aSi panels very rarely exceeded 2% (2 mm) and are of the
same order of magnitude as variations between different Clinacs when measuring
in reference conditions in water. All studied aSi panels can hence be regarded as
nearly identical. Standardized datasets were successfully created and implemented.
The test package proved useful in highlighting possible problems and illustrating
remaining limitations, but also in demonstrating the good overall results (95%
pass rate for 3%,3 mm) that can be obtained. The dosimetric behavior of all tested
aSi panels was found to be nearly identical for all tested energies. The approach
of using standardized datasets was then successfully tested through the creation
and evaluation of PDIP preconfigured datasets that can be used within the Varian
portal dosimetry solution.

PACS number: 87.55.km, 87.55.Qr, 87.56.N_
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. INTRODUCTION

With the rise of intensity-modulated treatment techniques — be they static gantry IMRT or
VMAT — came the need for thorough, yet efficient, patient QA. The portal imager is a much
appreciated measurement device for routine use because of its prompt setup, its easy data
acquisition, and its high resolution. An extensive literature overview on the research devoted
to the portal imaging panels for radiotherapy dosimetry was written by Van Elmpt et al.()
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Although different portal imaging devices exist, a commonly used model, and the one discussed
in this study, is the Varian amorphous silicon (aSi) panel. In order to be able to perform portal
dosimetry pretreatment patient QA, one needs to have both a measured and expected dosimetric
image. This is not as straightforward as one might hope because the aSi panels are far from
water-equivalent. Numerous studies have shown that they display a dosimetric response that
is quite different from the behavior observed in a water phantom, even when measuring at the
same depth.-?

Different commercial solutions are available to attend to this issue. Some try to convert the
measured aSi image to dose to water at a certain depth and subsequently compare it to the dose
calculated by the TPS in a water-equivalent phantom.® An important advantage of this approach
lies in the fact that the algorithm used for the patient dose calculation is also used for the portal
dose image calculation (albeit in simplified phantom conditions and at only one depth). As a
drawback, the aSi dosimetric image needs to be processed considerably in order to be converted
into dose to water. The use of a direct, rather than indirect, aSi detection system could provide
an elegant answer to this problem,®) but such solutions are not commercially available yet and
have the major drawback that they lead to poor image quality.(1%!) Other approaches leave the
measurement untouched, but rely on a separate beam model to derive the expected portal dose
image.(®12"19) The Varian portal dosimetry follows this approach: it does not use the patient
dose calculation algorithm but relies on the portal dose image prediction (PDIP) algorithm to
calculate the expected aSi dose image based on the theoretical TPS photon intensity matrix, the
main collimator positions, and the total monitor units (MUs). It is a highly efficient solution
and very sensitive to error detection in the actual fluence calculation or MLC delivery.

Unfortunately, when implementing the algorithm according to the official procedure, results
can be suboptimal, giving rise to false error reports, as documented by, for example, Vinall
et al.!®) The main reason for this is not the prediction algorithm itself, but the chosen method
for the dosimetric calibration of the imager panel — more precisely, the profile correction
used during the calibration of the imager panel. The dosimetric calibration of the imager panel
consists of the acquisition of a ‘dark” and ‘flood’ field. The dark field serves to correct for the
background signal when no radiation is present. The flood field is a very approximate method
to correct for variations in pixel sensitivities by simply normalizing the response of all pixels to
a large (typically 40 x 30 cm?) open field acquisition. This correction was originally developed
for imaging purposes only, for which it is of no importance that it washes out all variations
(off-axis beam intensity, field penumbra, or spectrum related) in the beam at off-axis distance.
For dosimetric purposes, however, this calibration method is not sufficient as it will result in
a perfectly flat dosimetric image of a 40 x 30 cm? open field, even in the penumbra region. To
rectify this, a profile correction file can be provided during the subsequent dosimetric calibra-
tion. Although the original PDIP algorithm was developed using a 2D profile correction based
on a film measurement at 8 mm depth(® (using the same field size as used during the flood-field
calibration), this approach was never implemented in the official release as film measurements
are too cumbersome to be universally applied in a reliable way. The commercially adopted
approach — using the diagonal profile of a 40 x 40 cm? field measured in a water phantom at
d,.. instead — may be more reproducible and yields adequate results in the central part of the
detector panel. But it is considerably less accurate outside of this central area as the diagonal
profile is not acquired at the same water-equivalent depth and the penumbra of the delivered
rectangular flood field is not correctly accounted for. Deviations between measured and pre-
dicted dose reach 2% at 10 cm off-axis for 6 MV and increase further towards the edges of the
detector panel.(10)

Instead of using the official diagonal profile, Bailey et al.'”) use a one-dimensional beam
profile correction that is extracted from the prediction of a 40 x 40 cm? open field, considerably
improving the off-axis agreement between measured and calculated images. Vinall et al.('>
take it one step further and introduce a two-dimensional profile correction matrix, generated
from the image prediction of a 40 X 30 cm? rectangular open field (i.e., the field size used
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during flood-field calibration). In addition to the suboptimal profile correction, the presence of
inhomogeneously backscattered dose from the imager arm during the flood-field calibration
is disregarded in the commercial solution. The impact of the backscatter of the EPID arm has
been reported in literature and is known to cause local deviations of up to 2%—3%, depending
on the used clinical field size and beam energy. Some studies have added a lead shielding to the
back of the imager panel to provide a more uniform backscatter.(18-20 The research groups of
Rowshanfarzad et al.?) and Greer et al.>?) have published a number of studies and a possible
solution to the backscatter issue They have performed off-arm measurements to better quantify
the backscatter contribution and to obtain a backscatter-free, flood-field image. By adding a
backscattered dose prediction (using a backscatter kernel) to an existing EPID dose prediction
model, they aim to model the backscatter in the predicted image. This EPID dose prediction
model was based on the energy fluence model in the Pinnacle TPS. Within the Eclipse (Varian
Medical Systems) environment, it is currently not possible to add an inhomogeneous backscatter
component to the predicted images. As an alternative to physically removing the cassette from its
arm, Vinall et al.('> deduce the impact of the backscatter that was present during the flood-field
calibration from the asymmetries observed in a series of subsequent open field measurements.
They then include the estimated backscatter into their above-mentioned 2D profile correction
matrix, after which it is applied to all future dosimetric image acquisitions. Both approaches
offer a simplified, field size independent solution that improves results for small-to-moderate
field sizes at the cost of large field accuracy. A more sophisticated field size-specific backscatter
correction algorithm was proposed by Berry et al.*3)

In spite of the fact that solutions for the field profile and backscatter corrections have been
developed and tested, they often require considerable measurements and numerous image
manipulations and/or transformations and are, therefore, too cumbersome to implement in most
radiotherapy departments. The goal of this work is to make standardized preconfigured datasets,
including the improvements reported by Vinall et al., for the different photon energies and aSi
imager panels available on the Varian Clinac and to subject the developed datasets to multicentric
testing. We have opted for the solution published by Vinall et al.('>) because it combines both
a 2D profile correction with an (albeit approximate) backscatter correction and has the major
advantage that, once configured, it can be used entirely within the Eclipse environment without
the need for further image transfer and/or additional image processing.

II. MATERIALS AND METHODS

A. Intercomparison of the dosimetric characteristics of various aSi panels

The use of a preconfigured portal dosimetry package can only be justified for aSi panels that
display near-identical dosimetric behavior. This is, therefore, a mandatory prerequisite to be
investigated first. To study the interpanel variations, data gathered on 20 different aSi panels
(Varian Medical Systems, Palo Alto, CA) for the most commonly used beam energies were
compared (10 panels for 6 MV, five panels for 10, 15, 18, and 20 MV each). All these panels
were mounted on Exact arms on Varian dual energy Clinacs (Clinac 21EX, 23EX, 2300IX,
2100C/D). The age of the panels varied from brand new to a few years of service in clinical
routine. Frame readout was performed with the IAS3 image acquisition system in full (aS1000)
or halfresolution (aS500), depending on the available licenses. The dosimetric characteristics of
the Clinacs (output factors, depth dose, and beam profile measurements) were also intercompared
to avoid misinterpretation of possible variations in the aSi measurements that should really be
attributed to the Clinac instead. The variability of different aSi panels is assessed through field
size dependence, dose linearity measurements, characteristics of the backscatter of the Exact
arm, and the aSi detector response function.
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For the panel intercomparison, the portal imagers were calibrated in dosimetric acquisition
mode at isocenter according to the official portal dosimetry calibration procedure, applying a
dark and flood-field (by means of a 40 x 32 cm? field irradiation) correction, an absolute cali-
bration with a 10 x 10 cm? field, defining 100 MU to correspond to 1 aSi calibrated unit (CU),
and a beam profile correction. However, instead of using the diagonal profiles measured in a
water phantom at d , we applied the same, perfectly flat profile correction to all panels to
allow easy intercomparison, temporarily removing the impact of possible differences in beam
profiles between different machines.

A.1 Field size dependence
Output factors were acquired with the imager panel at isocenter for field sizes ranging from
2 X2 to 40 x 30 cm?.

A.2 Linearity

The linearity of the detector response as a function of monitor units was investigated by
delivering a 10 x 10 cm? field with MU ranging from 10 to 1000. The linearity was investi-
gated for all energies, for clinical dose rates from 100 to 600 MU/min, and for both acquisition
resolution modes.

A.3 Backscatter of the Exact arm

The tests performed during this study have a double purpose. Firstly, we aim to verify the repro-
ducibility over different imager panels and Exact arms. Secondly, we aim to quantify the effect
for all available energies in order to derive a backscatter correction similar to the one reported
by Vinall et al.(!>) For both purposes, dosimetric images were acquired for a series of static open
fields with X = 40 cm and Y ranging from 2 to 32 cm in steps of 1 cm for every energy. The
magnitude and location of the backscatter can be estimated on the basis of the rectangular field
measurement series, more precisely on asymmetries observed in the longitudinal field profiles.
Without the backscatter, these field profiles would be perfectly symmetric.

A.4 aSi detector response function

The aSi detector response function describes the photon scatter within the detector. Although
the dose spread characteristics of the aSi panel are inherently reflected in the output factor
behavior, an additional test image was acquired and intercompared for the different panels.
The test pattern used for this is based on the same principle as the dynamic pyramid-shaped
test image(® used for the official algorithm configuration: using a fixed main collimator open-
ing, the dose measured in the center of different MLC openings is primarily dependent on the
photon scatter within the aSi material. (The off-axis fluence variation of the treatment beam
is corrected out through the ‘flat’ profile correction.) In contrast to the official configuration
procedure, the test uses a static MLC-defined field rather than dynamic sweeping gap MLC
to minimize the effect of differences in MLC characteristics (dosimetric leaf gap and MLC
transmission) within the irradiated area.

B. The making of standardized configurations

The Eclipse portal dose image prediction (PDIP) algorithm in the current Varian Portal Dosimetry
solution convolves the theoretical TPS photon intensity matrix with a detector response function,
referred to as the aSi single pencil beam kernel. This theoretical photon intensity matrix is the
product of the ‘actual’ fluence and a beam intensity profile; the ‘actual’ fluence is the beam-
open fractional MU matrix as calculated from the MLC leaf motions and the beam intensity
profile takes the off-axis variation of the photon fluence in an open beam into account. The
latter is a simple diagonal profile calculated by the TPS beam configuration software from
basic measurements in water at depth of dose maximum. The absolute level of the predicted
image is achieved by also applying a collimator scatter factor derived from the output factor
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measurements and the calculated phantom scatter factors. For a detailed description of the PDIP
algorithm, we refer to Van Esch et al.(%)

The configuration of the PDIP algorithm requires output factor measurements performed with
the aSi panel, the beam intensity profile and a set of pyramid-shaped test images from which the
algorithm configuration derives the aSi pencil beam kernel as the weighted sum of 9 Gaussian
functions with predefined widths (ranging from 0.8 to 400 mm). The relative weights of the
different Gaussian contributions are optimized during the algorithm configuration.

During the dosimetric calibration of the imager panel, the software calls for a profile correc-
tion file to account for the actual beam profile of the large open rectangular field used during
the flood-field calibration.

For the creation of the standardized configuration we therefore proceeded as follows:

1) Output factor tables. For the output factors, mean output factor tables were generated for
all available energies from the sets of beam data used during the intercomparison of the
different panels.

2) Beam intensity profile. For the beam intensity profile, we first intercompared the intensity
profiles of the different treatment machines used in this study. These were derived from pre-
viously acquired diagonal beam profiles at the depth of dose maximum in a water phantom
by the local physicists (using a variety of water phantoms and detectors, depending on the
local equipment) for the configuration of the Eclipse photon dose calculation algorithm (be
it the analytical anisotropic algorithm (AAA) or the Pencil beam convolution (PBC) photon
dose calculation algorithm). From this dataset, a final, mean intensity profile was extracted
to provide the best possible match with all treatment machines.

3) Beam profile correction. For the creation of the beam profile correction files and the aSi
scatter kernels, we applied the three-step process reported by Vinall et al.(!>)

In a first round, for every energy we converted diagonal beam profile measurements (40 x
40 cm?) atd___into the official 1D profile correction file format. Although this profile cor-
rection procedure is known to result in increasingly large deviations between prediction and
measurement towards the edges of the detector, it provides adequate results in the central part
of the detector plane. As the pyramid-shaped test image is located within this central part,
the use of this official profile correction suffices for an initial algorithm configuration.

In a second step, a 40 x 32 ¢cm? open field portal dose image is calculated by means of
this initial algorithm configuration. The predicted image is converted into a 2D profile cor-
rection — it is resampled to map the imager pixels and reformatted to allow its use in the
current portal dose calibration software.

Thirdly, we have incorporated the backscatter of the Exact arm into this 2D profile correc-
tion image by pixelwise multiplying it with the effect of the backscatter as estimated from
the rectangular open field measurement series.!>) As such, a 2D beam profile correction
matrix is obtained accounting for the true field size during the flood-field calibration and
introducing an approximate backscatter correction.

4) Single pencil beam kernel. Because of the above beam profile correction procedure, the
PDIP single pencil beam kernel was also derived in two steps. An initial kernel was derived
by means of the pyramid-shaped test images acquired with the official profile correction
calibration procedure. Once the 2D profile correction was available, the portal imager was
recalibrated and a new test image was acquired. The PDIP single pencil beam kernel was
then fine-tuned by importing the test image with the improved profile correction into the
PDIP basic beam data and rerunning the algorithm configuration.

Although in theory, the above procedure should be iterated until convergence, the fine tuned
kernels do not differ enough from the initial kernels to result in noticeable changes in the shape
of the large open field prediction and no iterations were, therefore, performed in practice.

As such, a standardized configuration package with corresponding 2D profile correction
matrices was generated for all energies.
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C. Multicentric testing of the standardized configurations

The above-generated standardized configurations were tested on-site in seven different radio-
therapy departments (on 12 Clinacs in total). The preconfigured beam data for the PDIP algorithm
were simply imported into the Eclipse treatment planning software, while the portal imager was
calibrated in dosimetric mode using the corresponding 2D profile correction file.

A dedicated set of validation fields was then imported, the actual fluences were recalculated
with the local MLC parameters, and the portal dose images were subsequently predicted,
measured, and analyzed. A selection of ten static fields with varying field sizes (from 3 X 3 to
40 x 30 cm?) verify both the output factor behavior and the correct application of the profile
correction, all delivered with 100 MU to exclude inaccuracies that could arise from linearity
issues. The linearity is separately addressed by delivery of a 10 x 10 cm? field with 20, 50,
100, 200, and 500 MUs.

In addition, a number of dynamic IMRT fields were chosen. Some artificial patterns were
applied to assess the precision of the preconfigured portal dosimetry package under extreme
circumstances. Some clinical IMRT fields (prostate, head and neck, and breast compensator) were
also included to look into more clinically relevant cases. Depending on the available licenses,
large IMRT fields with multiple MLC carriage positions were either split into two individual
IMRT fields or treated as a single large IMRT field for which the main collimators and MLC
carriage move during an automatic beam hold. In the former case, the two separate images of
the split IMRT field were combined into a single composite image prior to evaluation.

Similar to the IMRT PDIP validation, test plans for RapidArc (Varian Medical Systems)
portal dosimetry included RA fields generated on artificial structures (a central and off-axis
cylinder®¥), as well as two clinical cases (prostate, head and neck). No correction algorithm
for the imager sag as a function of gantry angle was applied, as this is not possible when using
the integrated image acquisition mode (for which no separate image information is stored as
a function of gantry angle).

lll. RESULTS
A. Intercomparison of the dosimetric characteristics of various Varian aSi panels

A.1 Field size dependence

As can be seen from Fig. 1, output factors measured on different aSi panels are identical within
1% for almost all clinically used field sizes and for all energies. The figure displays the mean
output factors, and the error bars indicate the maximum observed deviation from the mean
value. Standard deviations are too small to be displayed on the graph as they range between
0.11% and 0.27% for the different datasets. Differences of maximum 2% are only measured for
field sizes beyond 30 x 30 cm? or below 3 X 3 cm?. The observed differences are of the same
order of magnitude as the output factor variations between different Clinacs when measuring
in reference conditions in water. (The near-identical behavior of output factors among differ-
ent Clinacs is to be expected due to the almost identical design of the Clinac heads, and has
been confirmed in literature®). It can therefore be concluded that, with respect to field size
dependence, all studied aSi panels can be regarded as nearly identical.
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FiG. 1. Output factors measurements averaged over all tested aSi panels. Error bars indicate the maximum observed
deviation from the mean value.

A.2 Beam intensity profile

From the intensity profile evaluation, we also observe that intermachine comparisons entirely
pass gamma criteria of 2%,2 mm, as is again to be expected from the identical Clinac
head design.

A.3 Linearity

The aSi acquisition mode on the IAS3 acquisition system exhibits deviations from a perfectly
linear dose response. Figure 2 displays deviations up to 10% from the theoretically expected
value for dose acquisitions of 10 MU, whereas dosimetric images of 1000 MU can be off by
1% to 2%. All deviations are relative to the 100 MU deliveries, as these represent the reference
conditions for the absolute dosimetric calibration of the acquisition mode. Figure 2 displays
the deviation per dose rate, averaged over all panels. The observed deviations are not perfectly
reproducible between all aSi panels, but do show a very similar tendency; error bars indicate the
maximum deviation from the average value. For all panels and all energies the largest deviations
are observed for images encompassing only a small amount of frame acquisitions (i.e., lowest
MU and highest dose rate). For the more clinically relevant MU (between 50 and 500 MU)
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F1G. 2. The mean ratio of the measured to theoretically expected integrated dose value in calibrated units (CU) as a function
of MU for a 10 x 10 cm? field. Results of the linearity tests are shown for different dose rates for low (6 MV) and high
(18 MV) energy. All dose rates were calibrated to yield 1 CU per 100 MU. Error bars indicate the maximum observed
deviations from the mean value.

deviations remain within 1% for all dose rates and all energies. Ion chamber measurements in
water show near-perfect linear behavior over the whole range of tested MU, proving that the
observed nonlinearity is related to the image acquisition rather than to the machine performance.
This nonlinearity of the integrated acquisition mode is in contrast to earlier findings, reporting
very linear behavior down to only a few MU.(2% Detailed investigation of the acquisition
mode parameters confirm this; it was found that the current integrated acquisition mode is
missing the partial frame at the very end of the acquisition. After beam-off, apart from finishing
the frame that is in the process of being read out, the acquisition mode should read one more
frame to make sure all deposited dose is included in the final image. Although this additional
frame read-out was programmed in earlier software versions,(®2% in the current version of the
IAS3 software, this appears not to be so anymore, thereby explaining the observed behavior
as a function of total frame acquisitions. In a worst-case scenario, the resulting impact on the
integrated acquisition was estimated to be 0.5 MU.

A.4 Backscatter of the Exact arm

The impact of the backscatter of the Exact arm during the 40 x 32 ¢cm? flood-field calibration
is clearly visible in the rectangular open field measurements shown in Fig. 3. The flood-field
image contains a maximal backscatter component. As the collimator opening is reduced, so is
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FiG. 3. Longitudinal image profiles showing the impact of the backscatter of the Exact arm on the open field acquisitions
for different field sizes (X =40 cm and Y =4, 6, 10, 14, 20, 24, 28 cm) for low (6 MV) and high (18 MV) energies. The
figure displays data for three randomly selected imager panels (C1, C2, and C3) per energy only, using the same solid
line type for all imagers, as they superimpose beyond distinction. As a visual aid, the symmetric profiles (dashed lines)
were generated by mirroring the half profiles acquired on the lower half of the panel (corresponding to the right half of
the profiles on the graph) where the impact from the inhomogeneous backscatter of the arm is minimal.

the backscatter contribution. This is especially visible in the inplane direction in the ‘upper’
half of the imager panel (i.e., the part that is closest to the gantry) where the arm mount and the
metal support bar provide the largest sources of backscatter. While the backscatter component
reduces with field size, the flood-field image still corrects for maximal backscatter and the final
dose is reported to be lower than it actually is. The ‘lower’ half of the imager panel (i.e., the
part furthest from the gantry) suffers considerably less from the inhomogeneous backscatter
effect of the arm. The symmetric field profiles displayed in the figure are obtained by mirroring
the half profile from the lower part of the imager panel to aid the visualization of the asym-
metry between both sides. The open field measurements of the different panels superimpose to
the point that the different profiles can hardly be distinguished from one another. For clarity,
Fig. 3 shows data for a (random) selection of three imager panels, but the backscatter effect
is nearly identical for all tested Exact arms and imager panels. As previously reported in the
literature,1>-'8-23) it can clearly be observed that the effect is most significant for the lowest
energies, destroying the symmetry of the longitudinal field profiles for fields with Y <~ 25 cm.
Most unfortunately, maximum deviations (~ 3%) are observed for the very commonly used
clinical field dimension Y = 10 to 15 cm.
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A.5 aSi detector response function

In agreement with the near-identical output factor behavior, the very similar scatter characteristics
of the different panels are confirmed by the static MLC test image. Figure 4 shows a selection
of typical horizontal line profiles for a number of imager panels for different energies. Even
between aS500 and aS1000 acquisitions, all differences are insignificant and within the noise
level of the image acquisition. This single field test adds justification to the use of a single aSi
detector response function per energy for all imager panels.
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FiG. 4. Static MLC test image assessing the reproducibility of the photon scatter characteristics of different aSi panels (C1,
C2,C3 (aS1000) and C4 (aS500)). A representative selection of four different datasets is shown per energy. All are displayed
as solid lines as they superpose to the point where they can hardly be distinguished from each other in the graph.

B. Distillation of standardized configurations
From the panel intercomparison results, the mean output factor tables and mean intensity profiles
were selected for use in the standardized configuration sets.

The three-step process for the creation of the aSi pencil beam kernels and the correspond-
ing 2D profile correction files resulted in final kernels for all energies, as shown in Table 1,
and considerably improved the agreement between predicted (solid lines) and measured open
field profiles, as shown in Fig. 5. The increasingly poor agreement towards the edges of the
detector — typically observed when using the official diagonal profile correction (dashed lines)
— exists no longer as a result from the two-dimensional correction approach (dotted lines).
The incorporated backscatter correction considerably improves the symmetry of the longitu-
dinal open field profiles for clinical field dimensions up to 15 cm. As a tradeoff, the backscat-
ter contribution appears in the aSi image acquisition of the larger open fields (introducing a
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TaBLE 1. Relative weights of the different Gaussian contributions for the aSi pencil beam kernels for all energies. The
corresponding Gaussian widths are predefined and listed in the first column.

Gaussian Width oMV 10 MV 15 MV 18 MV 20 MV
0.80 0.4226 0.3854 0.3026 0.2548 0.2840

1.74 0.1828 0.1763 0.2102 0.2047 0.1750

3.78 0.0210 0.0197 0.0890 0.0894 0.0595

8.23 0.0572 0.0498 0.0396 0.0320 0.0404
17.90 0.0446 0.0775 0.0326 0.0653 0.0736
38.90 0.0197 0.0131 0.0444 0.0244 0.0474

84.6 0.0701 0.0685 0.0726 0.0992 0.0874
184.00 0.0889 0.1026 0.0996 0.1157 0.1143
400.00 0.0929 0.1072 0.1084 0.1145 0.1184
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FiG. 5. Open field longitudinal profile (6 MV) comparisons showing the predicted profile (solid line) vs. the measured profile
with the official profile correction (dashed line) and the 2D profile correction including the backscatter (dotted line).

maximum discrepancy of 1% to 3% for Y going from 20 to 30 cm), but overall agreement is
still considerably better than with the official diagonal profile correction.

C. Multicentric testing of the standardized configurations

The on-site import of the preconfigured beam data and the corresponding 2D profile correction
file in the test centers proved to be very easy, allowing setup of the complete portal dosimetry
solution in less than one hour. Although the system could in theory then immediately be used
for routine verification of clinical fields, running the predefined set of validation fields proved
to be useful for a number of reasons. The static open fields provide a basic verification and
help detect errors or deviations (either aSi- or linac-related) in the practical implementation
of the standardized configuration package. Possible errors, such as the selection of the wrong
energy during the import in the Eclipse beam data configuration or the selection of the wrong
2D profile correction during the imager calibration, are readily intercepted. In one case, satura-
tion of the aS500 was observed for 6 MV, 600 MU/min dose rate for the largest field sizes at
SID 100 cm. This panel was subsequently excluded from the testing until the saturation issue
could be solved. From the static open fields as shown in Fig. 5, it can also clearly be observed
that the aSi dose measured beneath the main collimators is not well reproduced by the PDIP
algorithm. All further gamma evaluation calculations are, therefore, restricted to within the col-
limator opening. The linearity tests reveal no new data other than the results presented above,
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but serve to raise the user’s awareness regarding the nonlinear behavior in the case of extremely
short or — to a lesser degree — very long image acquisition times.

Variations observed in the agreement between predicted and measured artificial dynamic
IMRT fields could be brought back to a number of parameters.

Firstly, depending on the Eclipse version used in the different departments, variations in
the actual fluence calculations were reflected in the predicted image. One clearly noticeable
example was the evolution of the tongue-and-groove modeling in the dose calculation model.
The impact of this is illustrated in Fig. 6(a), using the dynamic Chair artificial IMRT pattern?)
in a 12 X 24 collimator opening as an example. Whereas the earlier versions did not include
any tongue-and-groove modeling whatsoever, a first and rather coarse model was introduced
in version 8.6 of the leaf motion calculator (LMC), spreading the effect over the whole width
of the leaf rather than introducing a small shift in the penumbra. This gave rise to considerable
oversmoothening of the narrow dose dips that are characteristic for the tongue-and-groove
effect and showed stepwise underestimation of the dose at bordering leafs (indicated by the
arrows for v8.6 in Fig. 6(a)). The resolution of the tongue-and-groove effect was considerably

0.6 [— A ! —
—+ asSi
----- no TnG modeling
--- coarse TnG modeling (v8.6)
— refined TnG modeling (vi0.0)
05 —

04 = =

aSi dose (CU)

b.
—— asi
—— poor MLC parameters

06 —

05 — —

DAJ| | | | | U

-10 5 o ] 10
off-axis pos (cm)

FiG. 6. Calculated and measured profiles extracted from the artificial dynamic Chair IMRT pattern in a 12 x 24 collimator
opening (collimator rotation set to 90°) illustrate the impact of the calculated fluence on the accuracy of the portal dosim-
etry results. Connected symbols (+) represent the measurement, while lines represent predictions with the standardized
PDIP configuration but with (a) subsequent versions of the Eclipse actual fluence calculation software and (b) suboptimal
MLC parameter modeling.
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improved in the more recent versions (v10.0), especially in the case of RapidArc fluence cal-
culations.®* Although the modeling of the tongue-and-groove effect is not the subject of this
study, it is important to note that it affects the precision with which the image predictions are
reproduced by the acquired image.

Poor modeling of the user definable MLC parameters (transmission and dosimetric leaf
separation) also has an impact on the accuracy with which the actual fluence is calculated and,
therefore, affects the overall outcome of the portal dosimetry validation. An example of such a
case is given in Fig. 6(b). It can be seen that inferior agreement is obtained when using values
of 1.3 mm for the dosimetric leaf separation and 1.5% for the overall leaf transmission instead
of the more favorable values used in Fig. 6(a) (1.6 mm and 1.9%, respectively).

Although the RapidArc PDIP validation plans yield good overall pass rates, a systematic
deviation of +1% to 2% could be seen in the measured images when looking in more detail at
the line profiles. The underlying cause for this deviation is the slightly nonlinear behavior of
the portal dose acquisition. Although the RapidArc treatments were delivered with typically
300 MU at a nominal dose rate of 600 MU/min, the total acquisition time is the time required
for the whole arc delivery and is typically in the order of 1.3 minutes for an arc at maximum
gantry speed. Such a treatment time corresponds to the delivery of ~ 800 MU for an open field
at 600 MU/min. The observed systematic deviation is, therefore, in very good agreement with
the results found in the linearity testing. The imager was calibrated to yield 1 CU for 100 MU.
As most of the IMRT fields are delivered with similar MU — sometimes less, sometimes more,
the effect of the nonlinearity appears to be random and is too small to stick out in clinical routine
when using 3%,3 mm (or even 2%,2 mm) acceptance criteria. For RapidArc treatments, the
deviation is still relatively small but quite systematic due to the near-constant treatment delivery
times. When performing the imager absolute dose calibration with 800 MU at 600 MU/min and
setting the corresponding dose to 8 CU (instead of defining 1 CU for 100 MU), the systematic
deviation for RapidArc portal dose acquisitions disappears.

Apart from the above-mentioned possible deviations, all acquired images easily pass the
commonly used gamma evaluation criteria (pass rate of 95% at 3%,3 mm within the collimator
opening) and most even pass the more strict criteria (98.5% at 3%,3 mm within the collima-
tor opening) as proposed by Vinall et al.(!>) for portal dose evaluation. Figure 7 illustrates this
through a number of test fields (6 MV) and the corresponding gamma evaluation outcome as
calculated within the Varian portal dosimetry software. To better quantify the level of agreement,
we have calculated gamma evaluations for both 3%,3 mm and 2%,2 mm criteria. In addition,
for both sets of criteria, apart from the commonly reported gamma index (i.e., the fraction of
the points for which y< 1), we have also listed the average gamma value, the fraction of points
that only just passed (‘fraction 0.8 <y < 1’) and those that failed by a more considerable amount
(‘“fraction y> 1.2”). Only the artificial IMRT ‘Tiles’ pattern results in a pass rate of 97.6%, not
meeting the more stringent 98.5% criterion. The fraction of acceptable points with a elevated
gamma values (0.8 <7y < 1) is also larger than for the other fields (3.5% instead of the more
commonly observed values below 1%). The ‘Tiles’ pattern is delivered through the use of two
subsequent carriage positions with individual positions of the X collimators each. As a result
of this, a fraction of the composite dose is inevitably measured and calculated beneath the
main collimators. Keeping the above mentioned limitations of the PDIP single pencil beam
algorithm beneath the main collimator in mind, a decrease in the gamma index is therefore to be
expected. Even so, the 95% pass rate is still achieved (even for 2%,2 mm criteria). However, for
the highest energy beams (20 MV) inferior results are sometimes observed for relatively small
and moderately modulated fields. IMRT or RapidArc simple prostate treatments with 20 MV
provide very typical examples, as shown in Fig. 8. The 3%,3 mm gamma evaluation shows a
95.3% gamma index and a 9.9% elevated gamma (0.8 <y< 1) fraction. Using 2%,2 mm criteria,
only 89.3% of the in-field points pass (and 15.1% have an elevated gamma value). These fields
were carefully cross-checked by other methods. Validation by means of the EpiQA (EPIdos,
Bratislava, Slovakia) software revealed similar deviations between the aSi measurement and
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yerfena: 3%, 3mm 2%, 2mm
Artificial IMRT ‘inverse SIB™

fraction y< 1 99.7 % 97.8 %

average y 0.25 0.37

fraction 0.8 <y<1 | 04% 41%

fraction y= 1.2 0.2% 0.7 %

Artificial IMRT Tiles' (Composite image of split field):

fraction y< 1 976 % 954 %
average y 0.34 0.46
fraction 0.8 <y<1 3.5 % 6.7 %
fraction y= 1.2 0.8 % 1.4 %

Clinical IMRT "Head&Neck’:

fraction y< 1 99.9 % 998 %
average y 0.23 0.26
fraction 0.8 <y <1 0.3 % 0.5 %
fraction y= 1.2 0.0% 0.1 %

Artificial RapidArc ‘OffAxis Cylinder’:

fraction y< 1 99.7 % 989 %
average y 021 0.32
fraction 0.8 <y<1 04 % 1.5%
fraction y= 1.2 0.1 % 0.7 %

Clinical RapidArc ‘Head&Neck’:

fraction y< 1 99.8 % 98.6 %
average y 017 0.26
fraction 0.8 < y<1 0.5% 21%
fraction y=> 1.2 0.0 % 0.7 %

FiG. 7. Examples of the PDIP dynamic MLC test package with the left column showing the (predicted) images. Gamma
evaluation results are given for 3%,3 mm and 2%,2 mm criteria, showing the total percentage of points that passed
(i.e., gamma index or ‘fraction y < 1°), the average gamma value, the fraction of points that only just passed (‘fraction
0.8 <y< 1), and those that failed by a more considerable amount (‘fraction y> 1.2"). All calculations were restricted to
the data points within the collimator opening.

the AAA calculation (not shown but very similar to the data displayed in Fig. 8(a)). However,
2D ion chamber array measurements (PTW Seven29, Freiburg, Germany) in solid water for
IMRT fields (measured at isocenter at 5 cm deep) or in the OCTAVIUS phantom (PTW) for
RapidArc fields, showed near-perfect agreement with the AAA dose calculations, as shown
in Fig. 8(b), indicating that both the delivery and the actual fluence calculation in the TPS are
correct. It can therefore be concluded that both the EpiQA dose to water reconstruction and the
PDIP algorithm fail to accurately describe the behavior of the aSi dose distribution for such small
high-energy fields. They both overestimate the outscattering of the dose, resulting in an overly
smoothened calculated dose distribution. The exact cause of this small-field deviation remains
unknown to date and will require further investigation. Similar tendencies can occasionally be
observed for the 18 MV or 15 MV beams, but are much smaller than for the 20 MV treatment
beam and do not often give rise to failed gamma evaluations.
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FiG. 8. Portal dose deviations observed for the high photon energies. (a) Example of typical deviation, occasionally
observed for the highest photon energies (20 MV) for small, not too modulated IMRT fields. The dose in the predicted
image (left image and solid line profile) is more scattered out than the one in the acquired image (right image and dashed
line profile). The black lines in the central gamma evaluation (3%,3 mm) image indicate the positions of the extracted line
profiles. (b) Phantom measurements (at 5 cm depth) of the same field show good agreement between calculated (AAA)
(solid lines) and measured dose (2D ion chamber array) (square symbols).

IV. DISCUSSION

The Varian aSi panels tested during this study show nearly identical dosimetric characteristics
for all tested photon energies, providing justification for the development and use of a uni-
versal, optimized portal dose prediction configuration dataset. While the current portal dose
configuration is rather time consuming and error prone, the standardized dataset reduces the
entire portal dosimetry configuration time to a mere 5 minutes in the Eclipse beam configuration
application and another 5 minutes on the Clinac. Additionally, most importantly, it includes
previously developed workarounds to the main issues encountered within the current Varian
portal dosimetry release (i.e., the suboptimal profile correction and backscatter of the retract-
able arm). Although the chosen backscatter correction approach is a simplified one compared
to more accurate, field size-dependent algorithms that have been proposed in the literature,*®
it presents the major advantage that it can be integrated in the existing portal dosimetry solu-
tion without the need for any additional image transfer and processing, thus preserving the
solution’s high efficiency in clinical routine. (The strong spectral dependence of the imager
panel®3-30) is not addressed as its effect is minimal provided the imager panel is always used
in its dosimetric calibration position.) As a third advantage, the use of the preconfigured data
makes the PDIP configuration independent of possible flaws in the actual fluence calculation
of the pyramid-shaped fluence used during the traditional PDIP configuration process. These
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flaws can be either user dependent (e.g., through the use of suboptimal MLC parameters) or
Eclipse version dependent (e.g., through changes in the fluence calculation algorithm). Both
cases have been known to occur, as illustrated through the line profiles in the ‘Chair’ portal
dose images in Fig. 6.

When opting for the preconfigured dataset, it is advisable to also run a set of validation
fields similar to the ones reported in this study. These validation fields will not only check the
correct implementation, they also serve to illustrate the accuracy that can be obtained with it,
as well as the limitations that still exist. Provided the MLC parameters have been adequately
defined, gamma pass rates of 95% of the in-field points meeting 3%,3 mm criteria should be
easily obtained. Most fields will even go beyond a 98.5% pass rate. In routine use, we therefore
request a pass rate of 97% at 3%,3 mm within the collimator opening and a warning when the
average gamma value exceeds 0.5 to help detect systematic deviations in the absolute dose
level. The main limitations that exist are the inferior results for relatively small, moderately
modulated 20 MV fields and the slightly nonlinear behavior of the integral dose acquisition
as a function of acquisition time. When performing the absolute dosimetric imager calibration
by means of 100 MU, the nonlinearity will only have a very small impact (< 1%) on IMRT
field verification as acquisition times scale with MU and the latter are mostly in the range of
50-250 MU/field. RapidArc dosimetric images require a considerably longer acquisition time
and lead to an overestimate of the overall dose level by 1%—2%. As it is an inherent limitation
of the current aSi integrated acquisition mode, it affects other commercial EPID dosimetry
solutions using this imaging mode by an equal amount. Although it needs to be dealt with
through a software modification by the vendor, current deviations are not large and can easily
be corrected for by slightly renormalizing the acquired image or by increasing the MU used
during the absolute calibration procedure to reduce the relative contribution of the missing last
(partial) frame to the total dose. Although no correction for the imager sag could be applied,
in agreement with Bailey et al.!7) we found it not significant enough to have a considerable
impact on our study. Whereas Rowshanfarzard et al. 3! reported improvements in the 3%,3 mm
gamma index from 85.4% to 94.1%, most of the RapidArc fields in our study already show
gamma indices beyond 98.5%.

Finally, although we have taken advantage of the experimental confirmation that all aSi
panels behave in a nearly identical way to obtain standardized datasets for the Varian portal
dosimetry solution, the argumentation would hold equally well for other portal dosimetry
applications, be it pretreatment QA or transit dosimetry (as long as the treatment machines
are also well matched or differences between treatment machines can be taken into account).
One of the reasons why so little of the published material has made it into widespread clinical
use is because of the difficulties encountered in the data acquisition and model configuration/
implementation. Standardized datasets could considerably help overcome these obstacles.

V. CONCLUSIONS

After having shown that all Varian aSi panels display very similar dosimetric behavior, we
have developed a universal set of preconfigured PDIP datasets for the Varian portal dosimetry
solution. As these preconfigured data include improved 2D profile correction files that also
take the backscatter of the Exact arm into account (albeit in a simplified, field-size independent
way), they deal with the most annoying flaws in the current commercial solution. Whereas the
making of an optimized PDIP configuration requires cumbersome data processing beyond the
possibilities of most radiotherapy departments, importing standardized datasets is fast and easy,
facilitating the transfer of optimized solutions into clinical routine. A simple set of validation
fields should then suffice to assess the accuracy of the implementation on site.
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