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SUMMARY

Digital cytometry aims to identify different cell types in the tumor microenviron-
ment, with the current focus on immune cells. Yet, identifying how changes in tu-
mor cell phenotype, such as the epithelial-mesenchymal transition, influence the
immune contexture is emerging as an important question. To extend digital cy-
tometry, we developed an unsupervised feature extraction and selection strat-
egy to capture functional plasticity tailored to breast cancer and melanoma sepa-
rately. Specifically, principal component analysis coupled with resampling helped
develop gene expression-based state metrics that characterize differentiation
within an epithelial to mesenchymal-like state space and independently correlate
with metastatic potential. First developed using cell lines, the orthogonal state
metrics were refined to exclude the contributions of normal fibroblasts and pro-
vide tissue-level state estimates using bulk tissue RNA-seq measures. The result-
ing metrics for differentiation state aim to inform a more holistic view of how the
malignant cell phenotype influences the immune contexture within the tumor
microenvironment.

INTRODUCTION

Tissues are composed of a diverse set of different cell types that help maintain homeostasis. Oncogen-

esis is associated with a shift in the cellular composition of a tissue that can be revealed with

increasing confidence through direct measurement, such as single-cell RNA sequencing (scRNA-

seq), or using digital methods to deconvolute bulk tissue samples (Newman et al., 2019). Given the

correlation with response to immunotherapies, the current focus has been on quantifying immune

cell types present within the tumor microenvironment (Thorsson et al., 2018; Tirosh et al., 2016). There

is also an increasing appreciation for characterizing the heterogeneity among malignant cells that may

arise in the same anatomical location (Shannan et al., 2016; Koren and Bentires-Alj, 2015). Given our

interest in understanding functional heterogeneity of malignant cells that originate within a particular

anatomical organ rather than uncertainty in etiology, we will focus on breast cancer and melanoma as

Li et al. show that melanoma and breast cancer cell lines seem to cluster most uniformly, whereas

other cell lines defined by anatomical origin seem to have a more heterogeneous composition (Li

et al., 2017).

Although the tumor cells that arise in the skin and breast seem to be most similar, patient treatment

strategies and outcomes can be diverse. Initial treatment strategies are guided by specific molecular alter-

ations that can be targeted by drugs: aromatase inhibitors for ER-positive breast cancer, anti-HER2 anti-

bodies for HER2-positive breast cancer, or small molecule inhibitors for BRAF V600E-positive or C-KIT-pos-

itive melanoma (Taghian et al., 2019; Sosman, 2019). Luckily, these two cancers are diagnosed in greater

than 60% of patients while the malignant cells are confined to the organ of origin (Siegel et al., 2019). How-

ever, dissemination of primary tumors to vital organs like liver, brain, and lungs is a key limiter for

patient survival in breast cancer and melanoma. Specifically, the 5-year survival rate for patients with local-

ized disease versus distant metastases drops from 98% to 23% and from 99% to 27% for melanoma and

breast cancer, respectively (American Cancer Society, 2019). In contrast, patient survival for tumors that

originate in vital organs is limited by the degree to which malignant cells locally disrupt organ function.

Thus, the importance of distal dissemination in determining patient outcomes can vary based on the tissue

of origin.
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The distal dissemination and growth of malignant cells—metastasis—is a complex process thought to

involve dynamic re-engagement of biological processes used during development that enable migrating

cells to form tissues. For carcinomas, initiating metastasis is thought to occur through a process called the

epithelial-mesenchymal transition (EMT). EMT is the functional consequence of engaging a genetic regu-

latory network (GRN) that downregulates the expression of genes associated with an epithelial phenotype

and upregulates genes associated with a mesenchymal phenotype. Breast carcinoma primarily originates

from either luminal epithelial cells or basal myoepithelial cells within the mammary gland (Zhang et al.,

2017). In contrast to breast cancer, melanoma arises from the oncogenic transformation of melanocytes,

which follow a different developmental trajectory along the neural crest than epithelial cells and also in-

volves a process similar to EMT (Regad, 2013). Although much of cell specification is imprinted epigenet-

ically via DNAmethylation and histone modifications, significant functional changes, such as modifications

in cell state due to EMT, may occur within these epigenetic constraints. To characterize cell state based on

gene expression, supervised methods have been predominantly used for developing gene signatures that

characterize the EMT. Although effective, supervised methods can perform poorly if the strategy is based

on misinformation, such as sample misclassification or prior biases as to the number of cell states or

defining genes. Although used less frequently, unsupervised methods for feature extraction and selection

are advantageous as they can be data driven (Taguchi, 2017). Here, our objective was to use an unsuper-

vised strategy to develop a gene signature capturing this functional plasticity that is tailored to the specific

cellular context of breast cancer and melanoma individually, as an illustrative example.

RESULTS

RNA Sequencing Provides an Estimate of Protein Abundance

As extracting metrics to quantify cellular state using bioinformatic approaches depends on the quantity

and quality of the underlying information, combining repositories of microarray- and RNA-sequencing

(RNA-seq)-based transcriptomic profiling of tissue samples could provide a rich trove of data to mine.

We first asked whether assaying the same genes using different transcriptomics profiling platforms pro-

vides the same information. To do this, we compared gene expression levels assayed by either Agilent mi-

croarray or by Illumina RNA-seq for the same samples (Figure 1). Expression values obtained by RNA-seq

are in units of transcripts per million (TPM), whereas the Agilent microarray results are in terms of intensity

units. Using samples obtained as part of the breast cancer arm of the TCGA, we focused on genes that have

been associated with host immunity, as these genes are likely to span a broad dynamic range within these

samples. As the TCGA samples are obtained from homogenized bulk samples of tumor and matched

normal breast tissue, expression of these genes could be from the malignant cells, like GATA3 expression

by breast cancer cells, or from immune cell infiltrates, like the potential expression of IL4 and IL5 by infil-

trating T helper type 2 cells.

Generally, comparing the same row across the two panels illustrates the poor correspondence between

transcript abundance assayed using Agilent microarrays and read counts (TPM) obtained by RNA-seq. A

subset of genes, like HLA-DRA andHLA-DPA1, exhibit both highmicroarray intensity units and read counts,

whereas other genes, like TBX21 and FASLG, exhibit high microarray intensity units but have low read

counts. In addition, the dynamic range observed among these samples is different depending on the plat-

form used, as illustrated in the heatmap by TBX21 and IL17F. Using Illumina RNA-seq, TBX21 is constrained

to the low end of the color spectrum (dark to royal blue), whereas the dynamic range spans the middle to

upper end of the color spectrum (green to red) when assayed using Agilent microarray. Similarly, IL17F tran-

scripts were not detected by RNA-seq in 87% of the samples but the Agilent microarray shows a rather high

average intensity with variation among the samples. The difference in average intensities among genes and

in variance among samples assayed by these two platforms suggest that the information provided by these

two platforms is not entirely the same. The poor correspondence between Agilent two-channel microarray

and RNA-seq data has been attributed to differences in ratio (Agilent two-channel microarray) versus non-

ratio (RNA-seq) representations of transcript abundance by the platforms (Guo et al., 2013).

We next asked whether the assayed transcript abundance corresponds to protein abundance. First, we

compared RNA-seq counts reported for cell lines associated with the Cancer Cell Line Encyclopedia

(CCLE) with protein abundance for the same cell lines measured using Reverse Phase Protein Array

(RPPA). We filtered the respective datasets to those cell lines that were reported in both datasets and

for genes where there was a positive correlation coefficient greater than 0.36 between read counts in

TPM and normalized RPPA values. From the initial datasets, 288 cell lines and 99 genes were retained

ll
OPEN ACCESS

2 iScience 23, 101080, May 22, 2020

iScience
Article



for analysis after filtering. Next, we determined whether the pairs of mRNA and protein measurements

share a common value for steady-state transcript abundance that corresponds to steady-state protein

abundance measured above background. To do this, we applied a protein expression model to each

gene measured across the cell lines where protein abundance was assumed to be a saturable function

of transcript abundance (Figure 2A). Using the fitted curve, the threshold of transcript abundance for de-

tecting a change in protein abundance 2.5% above background was back calculated. Example datasets

and the corresponding curve fits for the genes CLDN7, AXL, JAG1, and CDH1 are shown in Figure 2B. Inter-

estingly, the median value in the distribution of calculated threshold values was around 1 TPM (1.47, Fig-

ure 2C). We repeated this analysis for transcript abundance assayed by Affymetrix U133+2 microarray, a

single-channel approach, using robust multi-array average (RMA)-normalized expression values, where

149 genes were retained for analysis after filtering. Qualitatively, data obtained using the single-channel

platform (Affymetrix) exhibited better correspondence with RPPA values than data obtained using Agi-

lent’s two-channel platform. However, the distribution in calculated threshold values were more broadly

distributed compared with the RNA-seq results (see red line in Figure 2C, F-test p value = 6.92 3 10�7).

These results imply that the transcript abundance assayed by RNA-seq provides a higher-quality estimate

of protein abundance, that is the signal-to-noise ratio is improved, compared with data obtained using a

single-channel microarray platform. Moreover, simple strategies for combining data acquired using

different platforms, such as centering across genes, or applying gene signatures cross-platform to interpret

new samples warrants caution.

Collectively, the common threshold value observed using RNA-seq data has two implications. First, there

are some genes that have a high sensitivity of detection using microarrays such that the observed changes

may not be functionally important. From Figure 1, it seems that IL17F, TBX21, FASLG, KLRD1, IFNG, CCL17,

and IL10 are but a few examples (i.e., high Agilent microarray intensity but very low read counts) in that da-

taset. Without knowing the detection sensitivity by microarray, traditional approaches using a Z score

metric may give equal weight to changes in gene expression driven by a biological signal as to changes

dominated by random noise. Second, the threshold value provides a rationale for filtering genes that

A B

Figure 1. Comparison of Gene Expression within the Same Samples Assayed using RNA Sequencing and Oligonucleotide Microarray

Heatmaps for the expression of a subset of genes in the breast cancer arm of the TCGA study assayed using Illumina RNA-seq (A) and using Agilent

microarray (B). Color bar shown at the bottom of the heatmaps indicates samples obtained from tumor tissue (black) versus matched normal tissue (yellow).

The genes and samples are similarly ordered in both panels. Values were log2 normalized.
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are likely to have a low information content when developing gene signatures for phenotypes that are not

well defined.

Gene Expression Patterns in Breast Cancer Cells Are Captured by a Single Component

Given the variety of breast cancer subtypes reported in the literature,wenext askedhowmanydifferentGRNsare

atwork inbreast cancer.GRNsassociatedwithdevelopment commonly contain transcription factors that interact

via positive feedback such that the target genes are either co-expressed or expressed in a mutually exclusive

fashion (Alon, 2007). Given the interest in functional responses, we are focusing on patterns of gene expression

in response to signal processingby theGRNs rather than trying to identify their topology. Inmotivating this study,

wemade four assumptions. First, we assumed that oncogenicmutations alter the peripheral control of GRN but

donot alter the corenetwork topology, where signals processedby aGRNchange cell phenotypebyengaginga

unique gene expression pattern. Second, malignant cells derived from a particular anatomically defined cancer

represent thediverseways thathijacking theseGRNscanprovideafitness advantage tomalignant cellswithin the

tumormicroenvironment. Third, culturable tumor cell lines represent a samplingof theseways inwhichGRNs are

hijacked in a particular anatomical location. Fourth, the process of isolating thesemalignant cells from tumor tis-

sue to generate culturable cell lines does not bias this view. It follows then that the number of differentGRNs can

be identified by analyzing the transcriptional patterns of genes likely to participate inGRNs among an ensemble

of tumor cells lines that share a common tissue of origin. We focused our attention on 780 genes that have been

previously associated with the EMT and related gene sets in MSigDB v4.0. (Sarrio et al., 2008; Carretero et al.,

2010; Alonso et al., 2007; Cheng et al., 2012; Tan et al., 2014; Kaiser et al., 2016; Deng et al., 2019, 2020) and

analyzed the expression of these genes among 57 breast cancer cell lines included in the CCLE database as as-

sayedby RNA-sequsing a feature extraction/feature selectionworkflow summarized inFigure 3. To identify coor-

dinately expressed genes, we used principal component analysis (PCA), a linear statistical approach for unsuper-

vised feature extraction and selection that enables the unbiased discovery of clusters of genes that exhibit

coherent patterns of expression (i.e., features) that are independent of other gene clusters (Jolliffe and Cadima,

2016). The relative magnitude of the resulting gene expression patterns can be inferred from the eigenvalues,

A B

C

Figure 2. RPPA Measurements Were Used to Determine a Threshold for Biologically Significant Changes in Gene

Expression

(A and B) The model for protein dependence on gene expression (A) where representative data (black circles) and model

fits (dotted black line) are shown for CLDN7, AXL, JAG1, and CDH1 (B).

(C) The distribution in threshold values calculated for all genes assayed by RNA-seq (black curve, n = 99) and by Affymetrix

microarray (red curve, n = 149) meeting the inclusion criteria. Transcript abundance units for RNA-seq corresponds to

TPM and intensity units (I.U.) for Affymetrix microarray. In (B), the vertical red dotted line indicates the threshold value and

the melanoma and breast cancer cell lines are highlighted by red and blue circles.
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which represent theextentof thedata’s covariance capturedbya specificprincipal component. To facilitate com-

parisons amongdatasets, we represent the eigenvalues as the percent of total sumover all of the eigenvalues or,

simply, percent variance, which is shown in Figure 4. Specifically, PC1 and PC2 captured 66% and 14%of the vari-

ance, respectively. Additional principal components each captured less than 3% of the variance.

One of the challenges with PCA is that no clear rules exist to determine how many principal components to

consider, such as a gap statistic in clustering (Tibshirani et al., 2001). To select an appropriate number of

PCs (i.e., features), we established a threshold for determining significance relative to a null distribution.

Figure 3. Data Workflow for Identifying Epithelial/Differentiated versus Mesenchymal/De-differentiated State

Metrics

Workflow contains three decision points: unsupervised feature extraction (FE)/feature selection (FS) based on PCA, a

binary fibroblast filter, and a consistency filter based on Ridge logistic regression of annotated samples.
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Specifically, we applied the same PCA to a synthetic noise dataset generated from the original data by

randomly resampling with replacement the collection of gene expression values and assigning the values

to particular gene-cell line combinations. The resulting set of eigenvalues represent the values that could

be obtained by random chance if the underlying dataset has no information, which are shown as the dotted

red line in Figure 4A. In comparison with the null distribution, only the first two PCs were above the

threshold. The variance captured by the remaining PCs were below the null PCA distribution suggesting

that any potential biological interpretations of these additional PCs could also be explained by random

chance. Therefore, we focused on the first two PCs.

As variance in read counts is proportional to abundance, gene projections along the PC1 axis were proportional

to the average read counts of the corresponding gene among the samples. Measured transcript abundance is

proportional to the basal gene expression associated with cell specification and technical artifacts associated

with RNA-seq. Genes that were expressed above the 1-TPM threshold in more than 5% of the cell lines were re-

tained for further analysis. For the breast cancer cell lines, this eliminated 26genes frompotential inclusion in the

state metrics. Next, we focused on the projection of retained genes along principal components 2 and 3. The

projections were annotated with horizontal and vertical dotted lines that enclose 95% of the projections from

the null distribution. Although the majority of the genes were distributed around the origin, a subset of genes

were projected along the extreme of the PC2 axis (outside of the dotted horizontal lines) and had no significant

projection along the PC3 axis (inside of the dotted vertical lines). The list of genes associatedwith either the high

PC2/null PC3or the lowPC2/null PC3groupsare listed inTable S1and contained143 and81genes, respectively.

Of note, all of the genes excludedbasedon the 1-TPM thresholdwereprojectedwithin the null PC2distribution.

As the projection of Vimentin (VIM, red dot in Figure 4C) and E-cadherin (CDH1, blue dot in Figure 4C) was pro-

totypical for these two groups of genes, the high PC2/null PC3 genes were annotated as a mesenchymal signa-

ture (i.e., a de-differentiated state) and the lowPC2/null PC3groupwereannotatedasanepithelial signature (i.e.,

a terminally differentiated state). In contrast to supervised approaches that use Vimentin and E-cadherin as the

basis to identify associatedgenes (e.g., Tan et al., 2014; Rokavec et al., 2017), the approach usedhere is unsuper-

vised whereby the association of Vimentin and E-cadherin with these two opposite groups of genes emerges

naturally from the data.

The Epithelial and Mesenchymal State Measures Stratify Intrinsic Subtypes of Breast Cancer

and Metastatic Potential

Using these two sets of genes, we developed a state metric to quantify the extent of a gene expression

signature associated with epithelial differentiation andmesenchymal de-differentiation using a normalized

sum over all of the genes associated with a signature. Although the PCA results suggest that these two sets

of genes are inversely related, the metrics were designed to represent each state independently such that

A B C

Figure 4. Two Opposing Gene Signatures Were Identified among the Cohort of Breast Cancer Cell Lines

(A) Scree plot of the percentage of variance explained by each principal component, where the dotted line corresponds to variance explained by the null

principal components.

(B) Projection of the genes along PC1 and PC2 axes, where the font color corresponds to the mean read counts among cell lines (blue-yellow-red

corresponds to high-medium-low read counts).

(C) Projection of the genes along PC2 and PC3 axes, where the dotted lines enclose 95% of the null PCA distribution along the corresponding axis.
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cells that exhibit a pure phenotype would have values of 1 and 0 associated with their respective state met-

rics and cells with mixed phenotypes could potentially have values of 1 for both state metrics. Next, we

calculated the state metric values for all of the breast cancer cell lines, where their projections in state space

are shown in Figure 5. Interestingly, the breast cancer cell lines largely followed a linear reciprocal relation-

ship between epithelial (E) and mesenchymal (M) states (dotted line in Figure 5) and were segregated by

intrinsic PAM50 subtype (Parker et al., 2009). Although HER2, Luminal A, Luminal B, and Basal subtypes all

have a high E signature, they progressively increased in their M signature. The Claudin Low subset spanned

the greatest range with some expressing a high E andmoderateM signatures (e.g., HCC1569, MDAMB361,

HMEL) and others with a low E and high M signatures (e.g., BT549 and HS578T). Of note, a subset of the

Claudin Low cell lines (e.g., HS742T, HS343T, HS281T, HS606T, and HS274T) with high M and very low E

signatures have been suggested by the CCLE to be fibroblast-like (see Cell_lines_annota-

tions_20181226.txt). Functionally, cells with low E and high M signatures had a high propensity for metas-

tasis, whereas the propensity for metastasis was low in cell lines with high E and low M signatures (Yankas-

kas et al., 2019). This functional annotation also provided an external validation of the state metrics for

breast cancer.

We next assessed the epithelial andmesenchymal statemetrics in breast cancer cells assayed using scRNA-

seq (Chung et al., 2017) (see Figure 5B). Similar to the cell lines, the samples were spread across the epithe-

lial to mesenchymal spectrum roughly ordered by their corresponding intrinsic subtype, where HER2 sub-

type had a high E/low M signature and the basal subtype had the highest M signature without much of a

reduction in their E signature. Overall, the state values were farther below the reciprocal trendline than any

of the cell lines sampled. As gene-level reads by scRNA-seq are frequently missing (i.e., a dropout read)

(Andrews and Hemberg, 2019), we imputed missing values to assess whether the distribution in the E/M

state values were a result of read dropouts (see Figure 5C). Although read imputation shifted the cell state

metrics toward the reciprocal trendline, the heterogeneity among the cell measurements was lost. Overall,

it is unclear whether scRNA-seq measurements can be used to identify biological heterogeneity separately

from heterogeneity introduced by technical limits of the assay.

Although single-cell methods are rapidly emerging as tool to assay human tissue samples, bulk transcrip-

tomic assays of tumor tissue samples, like those acquired as part of the Cancer Genome Atlas (TCGA),

aremore abundant. More samples increase the statistical power for identifying clinical, cellular, and genetic

correlates of the EMT. However, applying the epithelial/mesenchymal state metrics to interpret RNA-seq

assays of bulk tumor tissue samples requires some additional filtering steps as bulk RNA-seqmeasurements

averages over the heterogeneous normal and malignant cell types present within the tissue. In terms of a

gene signature for the EMT, many of the genes commonly associated with acquiringmesenchymal function

are also associated with fibroblasts, a relatively common cell type in epithelial tissues. Thus, an enrichment

of genes associated with the EMT may be explained solely by a shift in the prevalence of fibroblasts within

the tissue sample. Although the functional plasticity of fibroblasts within the tumor microenvironment is of

increasing interest (e.g., Vickman et al., 2020), our goal here was to remove the contribution of normal fibro-

blasts from the state metrics. To deconvolute fibroblast genes from the state metrics, we obtained a list of

2,500 genes that were uniquely associated (Area under receiver operating characteristic curve >0.5) with a

cluster annotated as fibroblasts using scRNA-seq data obtained from a digested normal skin sample ob-

tained from a human female. This cluster contained about one-third of the cell samples measured within

the CD45-negative population of the digested skin sample (see Figure S1). Although the majority of cells

associated with cluster 1 were annotated as fibroblasts, a minor fraction of samples were annotated as

‘‘other.’’ The similarity scores and associated hierarchical clustering dendrogram suggest that the gene

Figure 5. The Different Subsets of Breast Cancer Were Clustered Along a Reciprocal Epithelial to Mesenchymal

State Axes

(A and B) Log2 projections along the epithelial (SME ) and mesenchymal (SMM ) state axes for each breast cancer cell line

included in the CCLE (A) and primary breast cancer cells (B and C). Values for SME and SMM were estimated by bulk RNA-

seq data for cell lines associated with the CCLE and by scRNA-seq data for primary tumor cells (Chung et al., 2017).

(C) Log2 state projections are compared for primary breast cancer cells as originally reported and with dropout values

imputed using the values averaged over the rest of the sample population, where gray lines connect the original state

values to state values determine after imputation. Symbols were colored based on previously annotated breast cancer

PAM50 subtypes: basal, red; claudin low, yellow; HER2, pink; luminal (A), blue; luminal (B), black. In (A), the metastatic

potential of a subset of cell lines was annotated based on a recent study (Yankaskas et al., 2019): low metastatic potential,

gray circle; high metastatic potential, red circle. The dotted line corresponds to a reciprocal relationship between the

SME and SMM state metrics (i.e., SME = 1 - SMM ).
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expression among cells in cluster 1 are very similar and that the cells included in cluster 1 can be considered

as a uniform population. The interpretation of this is that, given the variability in scRNA-seq data, it is likely

that some true fibroblasts assayed had no reads of COL1A1 or COL1A2. So, some of the cells annotated as

‘‘other’’ in cluster 1 are likely fibroblasts. Using this fibroblast gene list, overlapping genes were removed

from the state metrics and highlighted in yellow in Table S1. All but one of the genes removed were con-

tained within the mesenchymal gene list. In developing the overall approach, removing the contribution

of normal fibroblasts was critical as projections of tissue samples in the EMT space without removing the

contribution of fibroblasts were clustered around values of 1 for both state metrics.

Gene expression assayed from a bulk tissue sample reflects the combined contributions of non-malignant

cells plus the changes induced by oncogenic transformation and reciprocal changes due to de-differenti-

ation amongmalignant cells. Observable changes depend on the relative contributions of each cell source.

As the unsupervised PCA analysis of the cell line data suggested that genes associated with EMT can be

revealed by identifying a reciprocal pattern of gene expression, we performed Ridge logistic regression

using the sample annotation to obtain regression coefficients for the list of EMT genes that passed the

fibroblast filter (n = 151). The regression coefficients were used to filter the list of EMT genes for consistency

with the reciprocal gene signature identified in the CCLE analysis. Genes that passed the consistency filter

were used to define the epithelial and mesenchymal state metrics for bulk tissue samples. Of note, E-cad-

herin (CDH1) was still associated with the epithelial state metric, whereas N-cadherin (CDH2), Wnt-induc-

ible signaling pathway protein 1 (WISP1/CCN4), and matrix metallopeptidase 3 (MMP3) were also retained

in the mesenchymal state metric. The list of genes associated with the corresponding state metrics is given

in Table S2.

Next, we projected the tissue samples obtained as part of the breast cancer arm of the TCGA in EMT space

using the two tissue-based state metrics. Similar to the CCLE analysis, all samples clustered along the

reciprocal SME versus SMM line but exhibited greater dispersion. Samples obtained from normal breast tis-

sue clustered separately from breast cancer samples (Figure 6), with normal breast tissue samples having

the highest values for the epithelial state and lower values, on average, for the mesenchymal state. Among

the different clinical breast cancer subtypes, the median value for SME progressively decreased from

Figure 6. The Samples from Normal Breast Tissue and Breast Cancer Were Clustered Separately Along a

Reciprocal Epithelial to Mesenchymal State Axes

Using EMT genes that passed the gene filter workflow, each sample contained within the breast cancer (BrCa) arm of the

TCGA was projected along the epithelial (SME ) versus mesenchymal (SMM ) state axes using the corresponding bulk RNA-

seq data. Symbols were colored based on normal breast tissue (green) or clinical breast cancer subtype: ER/PR +, blue;

HER2, pink; triple negative (TN), red. The dotted line corresponds to a reciprocal relationship between the SME and SMM

state metrics (i.e., SME = 1 - SMM ).
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HER2+, triple negative (TN: ER-/PR-/HER2-), and ER/PR+ (luminal) subtypes. The mesenchymal projections

were about equal for both TN and ER/PR+ subsets and higher than the HER2+ samples. The higher values

for the HER2+ samples along the SMM axis align with clinical observations. For instance, patients with

HER2+ subtype of breast cancer are at increased risk for developing metastatic lesions compared with

TN and luminal subtypes (Kennecke et al., 2010). The two different state metrics seem to capture gene sig-

natures that help anchor a cell to its designated location within the tissue and that promote active migra-

tion, respectively. In other words, reducing SME corresponds to raising the anchor and increasing SMM cor-

responds to hoisting the sail. In summary, both cell-level and tissue-level EMT state metrics provide an

estimate of metastatic potential and a digital measure of malignant cell differentiation state in the context

of breast cancer.

Gene Expression Patterns in Melanoma Cells Are Also Captured by a Single Component

Using the same feature extraction/feature selection workflow as the breast cancer analysis (Figure 3), we

applied PCA to the expression of EMT-related genes assayed in an ensemble of 56 melanoma cell lines

associated with the CCLE (Figure 7). We focused on the first two principal components, PC1 and PC2,

that captured 80% and 6% of the variance, respectively. Additional principal components each captured

less than 4% of the variance. PC1 captured the variance associated with read abundance, as gene projec-

tions along the PC1 axis were proportional to the average read counts among the samples. Vimentin (VIM)

and fibronectin (FN1) were two of the most highly expressed genes, whereas members of the Wnt family

were some of the genes with low expression (e.g., WNT1, WNT6, WNT8B, WNT3A, WNT8A, WNT9B).

Genes retained for further analysis were expressed above the 1-TPM threshold in more than 5% of the

cell lines, which eliminated 78 genes from potential inclusion in the state metrics. These excluded genes

were also projected within the null PC2 space.

Similar to the analysis of the breast cancer data, we focused on the projection of retained genes along PC2

and PC3 axes. Specifically, we developed state metrics around a subset of genes that were projected along

the extreme of the PC2 axis and had no significant projection along the PC3 axis. The genes associated with

either the high PC2/null PC3 or the low PC2/null PC3 groups are listed in Table S1 and contained 26 and 90

genes, respectively. In contrast to the breast cancer results, the projection of Vimentin (VIM, red dot in Fig-

ure 7C) and E-cadherin (CDH1, blue dot in Figure 7C) was not associated with either of these two groups of

genes. As the high PC2/null PC3 group included MITF, a master regulator of melanocyte differentiation,

and the low PC2/null PC3 group included a number of EMT-related genes (e.g., FN1, TCF4, ZEB1, TWIST2,

andWISP1), these two gene sets were annotated as a terminally differentiated signature (i.e., an epithelial-

like state) and a de-differentiated signature (i.e., a mesenchymal-like state), respectively. We noted that

MITF was projected in the null PC2/null PC3 space in the breast cancer analysis.

A B C

Figure 7. Two Opposing Gene Signatures Were Identified among the Cohort of Melanoma Cell Lines

(A) Scree plot of the percentage of variance explained by each principal component, where the dotted line corresponds to variance explained by the null

principal components.

(B) Projection of the genes along PC1 and PC2 axes, where the font color corresponds to the mean read counts among cell lines (blue-yellow-red

corresponds to high-medium-low read counts).

(C) Projection of the genes along PC2 and PC3 axes, where the dotted lines enclose 95% of the null PCA distribution along the corresponding axis.
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Projections of the melanoma cell lines in differentiation state space were calculated using the two state

metrics (Figure 8). Similar to the breast cancer cell lines, the melanoma cell lines largely followed a linear

reciprocal relationship between terminally differentiated (SMT ) and de-differentiated (SMD ) states (dotted

line in Figure 8). The majority of cell lines exhibited primarily a terminally differentiated signature with some

expression of de-differentiated genes, whereas only a small subset of the cell lines exhibited primarily a de-

differentiated signature. The gene signatures for single melanoma cells were also highly heterogeneous

owing to dropout of gene reads.

Using state metrics refined for use with tissue samples (see Table S2), samples acquired from benign mel-

anocytic nevi and untreated primary melanoma tissue were projected onto the state space. Of note, CEA-

CAM1 and MITF were associated with the differentiated state and no genes were shared with the breast

A

B

Figure 8. Melanoma Cell Lines and Primary Single Melanoma Cells Are Distributed Along Path between Extremes

in Differentiation States

Projections along the terminally differentiated (SMT ) versus de-differentiated (SMD ) state axes for eachmelanoma cell line

included in the CCLE (A) and primary melanoma cells (B). Values for the terminally differentiated and de-differentiated

state metrics were estimated by RNA-seq data for cell lines associated with the CCLE and by scRNA-seq data for primary

melanoma cells. Symbols for primary melanoma cells were colored differently for each patient sample. The dotted line

corresponds to a reciprocal relationship between the SMT and SMD state metrics (i.e., SMT = 1 - SMD ).
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cancer epithelial state metric. The de-differentiated state metric had five genes, WISP1/CCN4, FOXC2,

ITGA5, SERPINE1, and SPOCK1, that were shared with the breast cancer mesenchymal state metric.

Although samples were more narrowly distributed in state space compared with the cell lines (Figure 9),

all of the benign nevi exhibited higher terminally differentiated (SMT ) and tended to have lower de-differ-

entiated values (SMD ). The samples from primary melanoma were color-coded based on the annotated

Breslow’s depth, where higher values were associated with lower terminal differentiation scores. Using Bre-

slow’s depth as a surrogate measure of metastatic potential (Balch et al., 2009), tissue-level EMT state met-

rics provide an estimate of metastatic potential and a digital measure of malignant cell differentiation state

in the context of melanoma. This functional annotation also provided an external validation of the state

metrics for melanoma.

Terminal Differentiation Is Associated with Distinct Gene Signatures, whereas De-

differentiation Seems to Engage Common Gene Regulatory Networks

The separate gene signatures generated for breast cancer cells and melanoma cells using an unsupervised

approach provide an opportunity to identify unique and shared aspects of the genetic regulatory mechanisms

underpinning cell specification, as summarized in Figure 10. In terms of shared aspects, the overlap in the genes

between melanoma and breast cancer metrics were not explained by random chance, as assessed by a Fisher

exact test (p value <2.23 10�16 for SMM=SMD and p value <4.33 10�4 for SME=SMT ). We also found that the

extent of overlap in the mesenchymal state metrics was greater than the overlap in the epithelial state metrics

(odds ratio: 3.211 [95%confidence interval, 1.114–9.254], p value<2.2310�16) asassessedbyanexact hypergeo-

metric test. Considering just the genes that overlap in the state metrics, the Ki values associated with the SMM

metric, althoughgenerally lower, trend similarly to theKi values associatedwith theSMD (seeFigure 10B: slope=

0.927withR2 = 0.841). The Ki values associated with the SME , althoughgenerally higher, seemed to trend differ-

ently than theSMT metrics (slope=1.44withR2 =0.878), although there areonlyeightgenes in common. In addi-

tion,weusedGOnet (Pomaznoyetal., 2018) to identifygeneswith transcription factoractivityusing themolecular

functionGeneOntology term: DNA_binding (GO:0003677). In the breast cancer cell lines, nine transcription fac-

torswereupregulated incellswitha terminallydifferentiatedphenotype, includingGRHL2andOVOL2, thathave

been associatedwith enforcing epithelial differentiation (Cieply et al., 2012). Correspondingly, four transcription

factors were upregulated in melanoma cells, including MITF, which is essential for melanocyte differentiation

(Goding and Arnheiter, 2019). Interestingly, there was no overlap in the genes with transcription factor activity

in the two differentiated cell signatures. In contrast, melanoma and breast cancer cell lines that exhibited a

de-differentiated phenotype shared seven transcription factors, including TWIST2 and ZEB1. De-differentiation

in breast cancer cell lines was also associated with an additional eight transcription factors, including TWIST1

(Yang et al., 2004). Overall, the analysis of these transcription factors is consistent with specificity in phenotype

as a consequence of engaging gene regulatory networks unique to a specialized cell subset, whereas de-differ-

entiation seemed to engage common gene regulatory networks that facilitate the loss of cell specificity.

DISCUSSION

Here we used an unsupervised feature extraction and selection approach based on PCA and resampling to

identify state metrics for the EMT in breast cancer and melanoma individually. Given the importance for

Figure 9. Gene Expression Patterns Associated with

Benign Melanocytic Nevi and Primary Melanoma

Tissue Samples Are Distributed Along Path between

Extremes in Differentiation States

Projections along the terminally differentiated (SMT )

versus de-differentiated (SMD ) state axes for 78 tissue

samples obtained from common acquired melanocytic

nevi (n = 27, green circles) and primary melanoma (n =

51). The primary melanoma samples are colored based

on the Breslow’s depth (blue: 0.1 mm to red: 10+ mm).

The dotted line corresponds to a reciprocal

relationship between the SMT and SMD state metrics

(i.e., SMT = 1 - SMD ).
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identifying patients with tumors likely to metastasize, a number of gene signatures have been developed to

predict the prevalence of tumor cells with an EMT signature (Tan et al., 2014; George et al., 2017; Rokavec

et al., 2017; Koplev et al., 2018; Malta et al., 2018). Supervised approaches are most common (Tan et al.,

2014; George et al., 2017; Rokavec et al., 2017; Koplev et al., 2018; Malta et al., 2018), where samples

are classified a priori. For instance, Koplev et al. (2018) developed gene signatures that average over all

anatomical locations, whereas Levine and coworkers (George et al., 2017; Jia et al., 2019) classify training

samples a priori into one of three cell states: epithelial, mesenchymal, or hybrid E/M. Rokavec et al.

generate features based on co-expression with E-cadherin and Vimentin (Rokavec et al., 2017). Although

effective, supervised methods can perform poorly if the strategy is based on misinformation, such as sam-

ple misclassification or prior biases as to the number of cell states or defining genes. Moreover, developing

metrics to classify the EMT status of tumors purely based on bulk tumor samples without deconvoluting the

contribution of fibroblasts has unclear interpretation (Panchy et al., 2019). We also note that state metrics

developed using microarray technology (e.g., Tan et al., 2014; Koplev et al., 2018) are not likely relevant for

interpreting data based on RNA-seq, given the unclear relation between transcriptome and protein abun-

dance as assayed using microarray technology. Although these methods rarely used, the data-driven na-

ture of unsupervised methods for feature extraction and selection are attractive (Taguchi, 2017). For

instance, Umeyama et al. used an unsupervised approach for feature extraction to identify genes associ-

ated with metastasis (Umeyama et al., 2014). To illustrate this data-driven approach, we have focused on

breast cancer and melanoma separately, where metastatic dissemination to vital organs is a key limiter

of patient survival and the cell-of-origin for these cancers have different developmental trajectories. In sum-

mary, we hope that our developed state metrics find use alongside other digital cytometry tools to better

understand how oncogenic transformation and associated functional plasticity alters the immune contex-

ture within the tumor microenvironment.

Limitations of the Study

Given the focus on breast cancer and melanoma as illustrative examples, the state metrics developed for

these two biological contexts may not apply to cancers that originate in other anatomical locations. In

terms of the bioinformatic approach, PCA is a linear approach that is used here for identifying genes

that vary in expression together. Given that regulatory networks that underpin gene expression can give

rise to non-linear behavior, genes that exhibit non-linear dependence with differentiation state are likely

to be excluded from the state metrics. In addition, there may be additional patterns in gene expression

that are biologically significant but fall below the null threshold due to a bias sampling of cell lines. In terms

of limitations of the underlying data used in the study, next-generation RNA-seq of the cell lines included in

the CCLE was performed on RNA isolated from frozen cell pellets using Trizol. We noted that the cells were

cultured according to vendors’ instructions for preservation, which includes adding the cryoprotectant

dimethyl-sulfoxide (DMSO) to the cells prior to freezing. DMSO has also been reported to synchronize cells

A B

Figure 10. A Comparison of the Genes Included in the Different State Metrics across Cancers

(A) Venn diagram illustrating overlap in genes contained in the opposing state metrics for terminally differentiated/

epithelial versus de-differentiated/mesenchymal extracted from breast cancer (blue circle) and melanoma (red circle) cell

lines. The subset of the genes listed below the Venn diagram were annotated with transcription factor GO terms.

(B) A biplot of the Ki values for the overlapping genes in the terminally differentiated/epithelial state metrics (blue circles

and blue linear trendline) and in the de-differentiated/mesenchymal state metrics (orange circles and orange linear

trendline). A 1:1 correspondence is represented by the black dotted line.
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by inducing reversible G1 arrest (Fiore et al., 2002), which might impact transcriptional profiles. Although

some work suggests that DMSO has no impact on the transcriptome (Guillaumet-Adkins et al., 2017), dif-

ferences in whether samples were fresh or frozen when processed could be convoluted with differences in

the state metrics compared between cell line versus tissue samples. Ultimately, the resulting state metrics

should be revisited for consistency as additional transcriptomic datasets are reported and additional EMT-

related genes are identified.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The code used in the analysis can be obtained from the following GitHub repository:

� https://github.com/KlinkeLab/DigitalCytometry_EMT_2020

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101080.
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Table S1. List of genes and corresponding Ki values for state metrics developed separately for breast cancer and melanoma
cell lines based on CCLE gene expression, related to Figures 5, 8, and 10. Genes that overlap with the fibroblast gene list are
highlighted in yellow.

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

AGR2 3.411 SORL1 0.575 ACTA2 3.826 LOX 3.049 ALDH3B2 -4.011 ABCC3 1.406 SERPINB2 4.536
ALDH3B2 -0.162 SPINT1 3.224 ADAM12 1.053 LOXL2 5.029 ARAP2 -2.582 ACTA2 5.421 SERPINE1 6.088
ANXA9 0.842 SPINT2 6.114 AEBP1 0.789 LRRC15 -2.078 B3GAT1 -3.133 ADAM12 3.608 SFRP4 -1.224
AP1M2 3.229 SPRR3 -4.907 AKAP12 1.603 LUM 0.844 CEACAM1 -0.123 ANKRD1 2.131 SPOCK1 5.385
ARHGAP8 1.512 ST14 1.847 AKAP2 3.466 MAP1B 2.602 CKMT1A -3.107 ASPN -2.238 SULF1 3.621
ATP2C2 0.834 TMC6 2.909 AKT3 1.980 MFAP5 0.349 DLL3 0.188 BGN 3.567 TCF4 2.083
BIK -0.165 TMPRSS2 -1.064 ANK2 0.019 MME 1.240 EDNRB 1.235 C1S 4.607 TFPI 3.789
BLNK -1.478 TSPAN1 2.861 ANKRD1 0.750 MMP14 4.173 EN2 -1.807 CDH11 2.617 TGFBI 8.522
BSPRY -0.331 TSPAN15 3.200 ASPN -3.605 MMP2 3.048 ERBB3 3.265 CFH 1.919 THBS2 5.056
C1orf106 0.586 TTC39A 1.869 AXL 2.980 MMP3 -1.962 ESRP1 -0.554 CITED2 5.845 THY1 4.842
C4orf19 -0.034 TUBBP5 -1.711 B2M 10.551 MT2A 8.204 FOXD3 -1.932 CLU 5.813 TNXB 1.628
CBLC -1.002 VAMP8 4.388 BAG2 3.408 MVP 5.543 FXYD3 1.928 COL1A1 6.420 TPM2 7.498
CDH1 3.017 VAV3 1.434 BGN 2.601 MXRA7 5.324 HPGD -1.439 COL3A1 3.977 TWIST2 0.560
CDS1 1.307 WNT3A -4.361 C1S 3.387 MYL9 5.467 LEF1 2.589 COL5A1 4.609 VCAN 5.018
CEACAM6 -0.326 WNT4 -0.875 CALD1 5.718 NID2 2.203 MITF 3.481 COL5A2 4.965 VEGFC 3.187
CGN 1.816 WNT6 -3.454 CCL2 1.674 OLFML2B 0.722 MTUS1 1.819 COL6A1 7.388 WISP1 -0.241
CKMT1A 0.752 CD68 3.956 PAPPA -0.374 MYH14 -0.758 COL6A2 6.933 WNT2 -2.599
CLDN4 4.194 CDH11 1.735 PCOLCE 5.155 TMC6 1.244 COL6A3 3.714 WNT5A 3.375
CLDN7 3.465 CDH2 2.608 PDGFC 3.104 TUBB3 -3.873 COMP -0.745 WNT5B 2.735
CXCR4 -0.294 CFH 0.357 PDGFRA -0.591 TUBBP5 -4.099 CXCL12 1.898 ZEB1 3.080
CYP4B1 -2.556 CHN1 2.675 PDGFRB 0.074 CYP1B1 1.646
DSC2 0.489 CLIC4 6.317 PHLDA1 4.025 DCN 4.524
EDN2 -0.558 COL1A1 6.150 PITX2 -0.011 DES -1.976
EFNA1 3.246 COL3A1 2.372 PLAUR 4.586 EDNRA -1.273
EHF 1.722 COL5A1 3.435 PMP22 3.951 EGFR 2.254
ELF3 3.661 COL5A2 3.181 POSTN 1.271 EPS8L2 2.871
EPCAM 3.937 COL6A1 5.100 PRKCA 2.585 FAP 4.634
EPN3 1.121 COL6A2 4.555 PROCR 2.850 FBN1 5.531
ERBB3 3.212 COL6A3 1.839 PRRX1 0.603 FGF1 2.181
ESRP1 1.473 COMP -2.917 RCN3 3.333 FGF2 3.328
ESRP2 2.192 COPZ2 2.300 RECK 1.623 FHL1 5.185
EVPL 1.066 CTSB 7.845 S100A4 6.338 FN1 11.332
F11R 3.831 CXCL3 -0.458 SACS 2.270 FOXC2 -0.334
FA2H -1.695 CYBRD1 3.311 SDC2 4.282 FST 4.619
FBP1 -0.025 DAB2 2.936 SERPINB2 0.838 FSTL1 7.571
FOXA1 1.528 DCN 0.752 SERPINE1 4.732 GJA1 2.395
FXYD3 3.654 DDR2 1.732 SERPINE2 5.020 GLT8D2 1.638
GRB7 2.017 EDNRA -2.082 SFRP4 -2.690 GREM1 3.809
GRHL2 0.375 EIF5A2 2.134 SH3KBP1 3.958 HGF -1.492
HIST1H4B -3.644 EMP3 4.799 SMARCA1 2.936 IFITM2 6.038
HOXC13 0.820 ENG 3.451 SPARC 6.312 IGFBP3 7.526
ICA1 1.830 ENO1 10.469 SPOCK1 3.297 IL1R1 2.317
IL1RN -1.914 FABP5 5.250 SRPX 1.971 INHBA 3.419
IRF6 1.130 FAP 0.521 SULF1 1.789 ITGA5 6.247
JUP 4.619 FBN1 3.493 TCF4 0.814 ITGBL1 3.675
LAD1 1.392 FERMT2 4.687 TFPI 3.398 KRT14 2.253
LLGL2 3.403 FGF1 -0.276 TGFB1 3.796 KRT7 3.666
MAP7 1.918 FGF2 1.013 TGFB1I1 2.768 LGR5 -2.537
MST1R 1.586 FHL1 2.509 TGFB2 2.218 LOX 4.766
MSX2 0.294 FHL2 5.727 THBS2 0.240 LOXL2 6.880
MYH14 1.305 FN1 7.767 THY1 1.438 LRRC15 0.581
MYO5C 0.668 FOXC2 -2.163 TIMP3 4.142 MALL 0.788
OR7E14P -1.719 FST 1.858 TMEFF1 0.345 MFAP5 2.224
OVOL2 -0.791 FSTL1 5.764 TMEM158 1.339 MMP2 6.450
PAK6 -0.971 FZD7 2.928 TNC 3.700 MXRA5 -1.191
PDGFB 0.847 GAS1 -0.404 TNFAIP3 2.728 MYL9 5.656
POF1B -2.139 GEM 1.912 TNFAIP6 -2.10206 NID2 2.973
PPL 1.697 GFPT2 1.747 TPM2 6.788168 NOTCH3 2.482
PRSS8 1.768 GJA1 1.859 TRPC1 1.200131 NT5E 6.282
PTK6 0.323 GLI2 -1.515 TUBA1A 6.360364 OLFML2B 1.962
RAB25 2.307 GLT8D2 0.756 TUBB3 -4.36173 PAPPA 0.616
S100A14 3.154 GREM1 0.866 TUBB6 7.167798 PDGFC 2.985
SCNN1A 2.039 HGF -1.971 TWIST1 1.57171 PDGFRA 2.568
SEPP1 1.217 HMGA2 1.475 TWIST2 -0.95998 PDGFRB 2.617
SLC37A1 1.599 HTRA1 3.909 VCAN 1.996064 PLAU 2.660

IFITM3 7.043 VEGFC 2.485532 POSTN 3.522
IGFBP3 6.549 VIM 7.664345 PRRX1 4.508
ITGA5 4.594 WISP1 -2.69714 PTGS1 0.887
ITGB1 8.822 WNT5A 2.181108 PTRF 7.111
LEPRE1 4.883 WNT5B 1.845579 RCN3 5.553
LGALS1 10.647 ZEB1 0.997605 RHOD 0.830
LHFP 2.476 S100A4 7.575

Dedifferentiated Signature
Melanoma Cell Lines

Mesenchymal SignatureEpithelial Signature Differentiated Signature
Breast Cancer Cell Lines
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Table S2. List of genes and associated Ki values for refined state metrics based on TCGA breast cancer tissue samples and
tissue samples of common acquired melanocytic nevi and primary melanoma, related to Figures 6 and 9. Genes that overlap in
the state metrics between breast cancer and melanoma are highlighted in green.

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

ALDH3B2 5.860 ASPN 5.774 ARAP2 5.322 ACTA2 6.008
C1orf106 1.334 B2M 10.641 CEACAM1 3.142 DES 1.865
C4orf19 1.790 CDH2 1.251 CKMT1A 0.335 FGF1 2.198
CDH1 7.929 CLIC4 7.324 EDNRB 8.655 FOXC2 -4.064
CLDN4 7.355 CTSB 8.506 ERBB3 6.930 HGF 2.130
CLDN7 6.914 EDNRA 4.265 ESRP1 5.179 INHBA 2.599
CYP4B1 2.776 FOXC2 0.656 FXYD3 7.487 ITGA5 4.301
DSC2 4.018 IFITM3 9.645 HPGD 6.732 KRT7 1.376
EHF 5.528 ITGA5 5.290 MITF 7.547 NID2 3.532
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JUP 8.167 SULF1 6.026 TPM2 5.225
MSX2 3.530 TGFB1 5.376 VEGFC 2.026
OR7E14P 2.594 TUBB3 0.189 WISP1 1.830
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PPL 4.865
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Figure S1. Consensus matrix for sample similarity and clustering. The symmetric 1034x1034 
matrix is colored in element(i,j) by similarity in assigning cells i and j to the same cluster when 
the clustering parameters are changed. A similarity score of 0 (blue) indicates that the two cells 
are always assigned to different clusters while a score of 1 (red) indicates that the two cells are 
always assigned to the same cluster. The similarity of the samples are also illustrated by the 
dendrograms shown on the top and side. The top bar indicates whether the cell was annotated
as a fibroblast based on COL1A1 and COL1A2 expression (aqua – fibroblast, pink – other).   
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Fig. S1. Consensus matrix for similarity and clustering of cell samples, related to Figures 6 and 9. The symmetric 1034x1034
matrix is colored in element(i,j) by similarity in assigning cells i and j to the same cluster when the clustering parameters are changed.
A similarity score of 0 (blue) indicates that the two cells are always assigned to different clusters while a score of 1 (red) indicates that
the two cells are always assigned to the same cluster. The similarity of the samples are also illustrated by the dendrograms shown on
the top and side. The top bar indicates whether the cell was annotated as a fibroblast based on COL1A1 and COL1A2 co-expression
(aqua - fibroblast, pink - other).
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Transparent Methods
’Omics Data. Transcriptomics profiling of the same samples using both Agilent microarray and Illumina RNA sequencing for the breast
cancer arm (BRCA) of the Cancer Genome Atlas was downloaded from TCGA data commons. Values for gene expression, expressed
in TPM for RNA-seq and gene-centric RMA-normalized data for Affymetrix U133+2 microarray, for the cell lines contained within the
Cancer Cell Line Encyclopedia were downloaded from the Broad data commons (Website: https://portals.broadinstitute.org/ccle Files:
CCLE_RNAseq_rsem_genes_tpm_20180929.txt accessed 04/04/2019 and CCLE_Expression_Entrez_2012-10-18.res accessed 6/15/2018).
Reverse phase protein array (RPPA) results for the cancer cell lines were obtained from the M.D. Anderson proteomics website (Website:
https://tcpaportal.org/mclp/ File: MCLP-v1.1-Level4.txt accessed 6/15/2018) (Li et al., 2017). Single-cell gene expression (scRNA-seq)
for breast cancer and melanoma cells expressed in TPM were downloaded from the Gene Expression Omnibus (GEO) entries GSE75688
and GSE72056, respectively. 10X Genomics scRNA-seq data for CD45-negative cells digested from a normal human female skin sample
and expressed in counts of gene-level features was downloaded from European Bioinformatics Institute (EMBL-EBI) ArrayExpress entry E-
MTAB-6831. RNA-seq data expressed in counts assayed in samples acquired from benign melanocytic nevi and untreated primary melanoma
tissue and associated annotation were downloaded from GEO entry GSE98394.

Non-linear regression of protein abundance to mRNA expression. All data was analyzed in R (V3.5.1) using the ’stats’ package
(V3.5.1). For each gene where complementary CCLE transcriptomic and RPPA data exist and for which their correlation coefficient was
above 0.36, the non-linear function,

Yprotein = a + b · XmRNA

XmRNA+ c
, (S1)

was regressed using the nls function to the corresponding protein (Yprotein) and transcript (XmRNA) abundance data. As the RPPA values
are normalized, the parameters a and b represent the background value and maximum detectable increase above background, respectively,
while the parameter c represents the midpoint in transcript abundance within the dynamic range of the assay. A minimum in the summed
squared errors between model-predicted and observed RPPA values were used to determine the optimal values of the model parameters. Using
the optimal values, a threshold was estimated independently for each gene based on the transcript abundance that yields a 2.5% increase in
protein abundance above background. The regression was repeated using both RNA-seq and Affymetrix transcriptomics data.

Statistical analysis for cell-level signatures. Principal component analysis (PCA) was performed on log base 2 transformed TPM val-
ues using the prcomp function in R on the CCLE RNA-seq data, which was filtered to 780 genes previously associated with epithelial-
mesenchymal transition. The collective list of genes were assembled from prior studies (Sarrio et al., 2008; Carretero et al., 2010; Alonso
et al., 2007; Cheng et al., 2012; Tan et al., 2014; Kaiser et al., 2016; Deng et al., 2019, 2020) and additional gene sets from MSigDB V4.0
including: “EPITHELIAL TO MESENCHYMAL TRANSITION" and “REACTOME TGF BETA RECEPTOR SIGNALING IN EMT EP-
ITHELIAL TO MESENCHYMAL TRANSITION". PCA was applied to the genes to extract the features, where the resulting eigenvectors
capture the relative influence of a gene’s expression on a specific principal component and the eigenvalues represent how much information
contained within the dataset is captured by a specific principal component. Drawing upon conventional hypothesis testing where significance
is established by rejecting the null hypothesis that experimental observations could be explained by random chance, we used a resampling
approach to establish a null hypothesis related to the eigenvalues, that is to determine the true rank of the noisy expression matrix. The
resampling approach involved repetitively applying PCA (n = 1000) to a synthetic noise dataset with the same dimensions that was generated
from the original data by randomly resampling with replacement from the collection of gene expression values and assigning the values to
particular gene-cell line combinations. The resulting distribution of eigenvalues and eigenvectors represent the values that could be obtained
by random chance if the underlying dataset has no information (i.e., the null PCA distribution). Principal components with eigenvalues
greater than the null PCA distribution were used to define the principal subspace for subsequent analysis, that is the selection of features.
Similarly, the distribution in the projection of genes within the null PCA space were used to determine whether the projection of a gene along
a particular PC axis was explained by random chance or not by setting thresholds along the PC2 and PC3 axes that enclosed 95% of the null
PCA space. The PC projection of genes relative to the null PCA space was used to refine the extracted features.

A metric was developed to estimate the extent that a cell exhibits a gene signature corresponding to a “Epithelial/Terminally Differentiated"
versus “Mesenchymal/De-differentiated" state. The state metrics (SM ) quantify the cellular state by averaging over a normalized expression
level of each gene in the signature (readsi, expressed in TPM) according to the formula:

SM = 1
ngs

ngs∑
i=1

readsi
readsi+ 2Ki

. (S2)

The genes included in a signature with their corresponding Ki values are listed in Table S1 and ngs corresponds to the number of genes
within a signature. The Ki values were estimated by clustering the log2 expression of each gene into two groups using the k-means method
and the value was set as the mid-point in expression between the two groups.

Statistical analysis for tissue-level signatures. Genes differentially expressed in normal epidermal fibroblasts were obtained by analyz-
ing single-cell RNA-seq data of normal skin obtained using a Genomics 10x platform and a bioinformatics workflow based on the scater
(V1.12.2) and SC3 (V1.12.0) packages in R. Briefly, scRNA-seq data were filtered to retain samples that had less than 50% of the reads in the
top 50 genes and to remove outlier samples based on PCA analysis. Gene-level features were limited to those that were expressed at greater
than 1 count in more than 10 cell samples. Read depth was normalized using a variant of CPM contained within the scran (V1.12.1) package,
which develops a sample-specific normalization factor repetitive sample pooling followed by deconvoluting a sample-specific factor by linear
algebra. Following from Davidson et al. (bioRxiv 467225), fibroblasts were annotated based on co-expression of COL1A1 and COL1A2.
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Samples were clustered and genes differentially associated with each cluster were identified using the SC3 workflow (V1.14.0) using default
parameters (see Figure S1).

Prior to logistic regression analysis, TCGA BRCA data and the benign nevi and melanoma data were filtered to remove sample outliers
and normalized based on housekeeping gene expression (Eisenberg and Levanon, 2013). Using normal versus tumor annotation associated
with the data, ridge logistic regression was performed on log base 2 transformed TPM and median-centered values using the glmnet package
(V2.0-18), which was limited to EMT-related genes identified in the CCLE analysis and not associated with normal fibroblasts. To minimize
overfitting, ridge logistic regression was repeated 500 times using a subsample of the original data set using the genes associated with each
signature separately. In each iteration, the samples were randomly assigned in an 80:20 ratio between training and testing samples. Regression
coefficients were captured for each iteration using a lambda value that minimized the misclassification error of a binomial prediction model
estimated by cross-validation. Accuracy was assessed using the testing samples. Genes were determined to have a consistent expression
pattern if greater than 95% of the distribution in regression coefficients had the correct sign. Similarly to the cell-level analysis, state
metrics were developed for bulk tissue-level RNA-seq measurements to estimate the extent that a tissue sample exhibits a gene signature
corresponding to a “Epithelial/Terminally Differentiated" versus “Mesenchymal/De-differentiated" state. The genes included in a signature
and their corresponding Ki values are listed in Table S2.

Data and Code Availability. The code used in the analysis can be obtained from the following GitHub repository:

• https://github.com/KlinkeLab/DigitalCytometry_EMT_2020

4 | Supplementary Information Klinke et al. | Unsupervised strategy for EMT state metrics

https://github.com/KlinkeLab/DigitalCytometry_EMT_2020

	ISCI101080_proof_v23i5.pdf
	An Unsupervised Strategy for Identifying Epithelial-Mesenchymal Transition State Metrics in Breast Cancer and Melanoma
	Introduction
	Results
	RNA Sequencing Provides an Estimate of Protein Abundance
	Gene Expression Patterns in Breast Cancer Cells Are Captured by a Single Component
	The Epithelial and Mesenchymal State Measures Stratify Intrinsic Subtypes of Breast Cancer and Metastatic Potential
	Gene Expression Patterns in Melanoma Cells Are Also Captured by a Single Component
	Terminal Differentiation Is Associated with Distinct Gene Signatures, whereas De-differentiation Seems to Engage Common Gen ...

	Discussion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



