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ABSTRACT

Objective: The population representativeness of a clinical study is influenced by how real-world patients qualify

for the study. We analyze the representativeness of eligible patients for multiple type 2 diabetes trials and the

relationship between representativeness and other trial characteristics.

Methods: Sixty-nine study traits available in the electronic health record data for 2034 patients with type 2 dia-

betes were used to profile the target patients for type 2 diabetes trials. A set of 1691 type 2 diabetes trials was

identified from ClinicalTrials.gov, and their population representativeness was calculated using the published

Generalizability Index of Study Traits 2.0 metric. The relationships between population representativeness and

number of traits and between trial duration and trial metadata were statistically analyzed. A focused analysis

with only phase 2 and 3 interventional trials was also conducted.

Results: A total of 869 of 1691 trials (51.4%) and 412 of 776 phase 2 and 3 interventional trials (53.1%) had a

population representativeness of <5%. The overall representativeness was significantly correlated with the

representativeness of the Hba1c criterion. The greater the number of criteria or the shorter the trial, the less the

representativeness. Among the trial metadata, phase, recruitment status, and start year were found to have a

statistically significant effect on population representativeness. For phase 2 and 3 interventional trials, only start

year was significantly associated with representativeness.

Conclusions: Our study quantified the representativeness of multiple type 2 diabetes trials. The common low

representativeness of type 2 diabetes trials could be attributed to specific study design requirements of trials or

safety concerns. Rather than criticizing the low representativeness, we contribute a method for increasing the

transparency of the representativeness of clinical trials.
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INTRODUCTION

Randomized controlled trials are the gold standard for generating

medical evidence. Each trial has a set of eligibility criteria that

defines a study population. Patients who satisfy these criteria are

deemed eligible for the study. The representativeness of the eligible

patients (referred to collectively as the study population)1–3 influen-

ces the applicability and generalizability of the study results. Under-

represented population subgroups may suffer from unexpected

postmarketing adverse events when the study interventions are ap-

plied to them.4,5
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One approach to estimate the population representativeness of a

study is to measure what percentage of real-world patients are eligi-

ble for the study.6 Eligibility criteria of clinical studies have been

criticized for being restrictive and complex and lacking clarity.7,8

However, resources to assist clinical investigators with optimizing

the representativeness of eligibility criteria design are very scarce.

Reuse of eligibility criteria from previous trials is a common prac-

tice.9 Alternatives include empirical knowledge, which can be gained

through iterative trial and error and applied to new study designs or

through frequent ad hoc protocol amendments to adjust recruitment

needs.10 Proactive data-driven decision aids for optimizing eligibility

criteria design are unavailable but much needed.11

Previous studies have demonstrated9,12 that the lack of popula-

tion representativeness is not restricted to individual studies, but is

also observed generally within the research community, eg, among

multiple studies across various disease domains. Studies have per-

formed collective assessments of clinical trial population representa-

tiveness using single (or a small set of) traits. For example, Somerson

et al.13 demonstrated a lack of racial diversity in a set of 158 ortho-

pedic clinical trials. In particular, African American and Hispanic

populations were shown to be underrepresented. Schoenmaker

et al.14 showed that dementia trial patients are older than real-world

dementia patients. Hoertel et al.15 showed that over half of the bipo-

lar disorder patients from a nationally representative sample of

43 093 patients would fail at least one eligibility criterion in 87 bipo-

lar depression and acute mania trials.

We previously designed the Generalizability Index of Study

Traits (GIST) metric to measure the a priori representativeness of el-

igibility criteria of related trials,6 and extended GIST to GIST 2.0.16

The GIST 2.0 methodology differs from GIST and other representa-

tiveness metrics, such as propensity scores,17,18 due to its explicit

modeling of trait dependencies. We previously used GIST to com-

pute the collective population representativeness of multiple related

type 2 diabetes clinical studies using multiple study traits.2 In this

paper, we used GIST 2.0 to quantify the representativeness of the el-

igibility criteria of individual type 2 diabetes mellitus trials down-

loaded from ClinicalTrials.gov and studied the relationships

between population representativeness and other trial characteris-

tics, such as duration, phase, and so on.

Our study aims to address the following 5 research questions: (1)

How representative are the study eligibility criteria of individual type

2 diabetes trials as measured by GIST 2.0? (2) How does the number

of criteria included for GIST 2.0 calculation affect the study’s popula-

tion representativeness? (3) Which eligibility criterion has a relatively

larger effect on a trial’s population representativeness? (4) How does

the duration of a trial relate to its population representativeness? (5)

How is a clinical trial’s population representativeness related to study

metadata such as study phase, intervention type, etc.? The answers to

these questions can potentially inform future methods for optimizing

the design of eligibility criteria.11

METHODS

Glossary
The following terms are used frequently in this paper.

1. Trait: observable patient characteristics (eg, diagnoses, labora-

tory tests). In a clinical trial, each eligibility criterion is a rule on

one or more traits (eg, glucose >126 mg/dL, no prior stroke).

The corresponding traits are therefore referred to as eligibility

traits.

2. Target population: the subset of all patients to whom the study

results are applicable.

3. Study population: the subset of patients within the target popu-

lation who satisfy all eligibility criteria of the trial.

Before calculating population representativeness, we performed

3 preprocessing steps: selection of trials, selection of traits, and defi-

nition of the target population, as shown in Figure 1.

Trial and trait selection
In this study, we considered the trials testing hypotheses on one con-

dition, type 2 diabetes mellitus. The rationale was to compare the

population representativeness across all the trials with the same tar-

get population, ie, patients with type 2 diabetes mellitus (the defini-

tion of which is described in the next section). Trials investigating

multiple conditions (eg, type 2 diabetes with chronic kidney disease)

were excluded, as they may have smaller target populations. At the

point of the study (March 2016), there were 220 842 trials listed in

ClinicalTrials.gov, 4576 of which had type 2 diabetes mellitus as a

condition. After excluding 1736 trials with multiple conditions,

2840 trials with type 2 diabetes as the sole condition were retained.

The eligibility criteria of these trials were parsed using a published

parser, Eligibility Criteria Extraction and Representation (EliXR).19

This software recognizes Unified Medical Language System (UMLS)

concepts in the free text of eligibility criteria.

A frequency table was generated for the UMLS concept identifiers

and further consolidated to account for synonyms (eg, “cancer” and

“malignant tumors”) and concepts with multiple identifiers (eg, 2

UMLS identifiers for “pregnancy” are C3484365 and C3539106).

Only the concepts (hereafter referred to as traits) with>120 occurrences

were included for representativeness analysis. Traits that were unavail-

able in electronic health records (EHRs), such as informed consent and

participation in other clinical trials, were excluded from analysis.

Quantitative traits that were prevalent in <5% of patients in the

EHR (eg, C-peptide) were also excluded. The remaining quantitative

traits were parsed using Valx20 to extract the upper and lower limits

of each trait. We eventually selected 69 traits available in EHRs that

are frequently used in type 2 diabetes trials, as listed in Table 1.

The 1763 trials that included criteria for at least 2 distinctive

traits were included for further analysis. All numerical traits were

manually reviewed after automated parsing to detect parsing errors.

The 2 most common error types were missing values for both upper

and lower limits, and lower limits higher than upper limits. A total

of 72 trials had such errors and were excluded from our trial list.

Subsequently, we included 1691 trials for analysis.

We also conducted a focused analysis that included only phase 2

and 3 interventional trials. Trials of phase 0 and 1 are primarily

meant for dose-ranging and safety evaluations, often on healthy vol-

unteers. This can result in their eligibility criteria being less restric-

tive. Phase 4 and observational trials are meant for long-term

effects. Hence, phase 2 and 3 interventional trials are the ones that

determine the effectiveness of an intervention on patients.

Target population definition
We first extracted a random sample of 30 000 patients from the 4.5

million patients in the Columbia University Medical Center Clinical

Data Warehouse. The time frame of EHRs within the Clinical Data

Warehouse ranged from the 1980s to the point of data extraction,

August 2015. A total of 5273 type 2 diabetes mellitus patients were

further identified from this sample as (1) having an International

Classification of Diseases, Ninth Revision (ICD9) code for type 2
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diabetes or (2) satisfying the World Health Organization (WHO) cri-

teria for diabetes, ie, fasting glucose >126 mg/dL or Hba1c >6.5%.21

When phenotyping with the WHO criteria, patients with type 1 dia-

betes ICD9 codes were excluded. This phenotyping method results in

both incident and prevalent cases of type 2 diabetes being selected.

Several previous studies called for the use of phenotyping algorithms

to identify diabetic patients from EHRs.22–24 In particular, Spratt

et al. compared various phenotyping algorithms for type 2 diabetes.

For the ICD9 condition, the sensitivity and specificity were 0.91 and

0.97, respectively. For the Hba1c condition (without the use of fasting

glucose), the corresponding values were 0.69 and 0.99.

For all categorical traits except gender (ie, medications, procedure,

general conditions, and diagnoses), we assigned a positive truth value

to a patient if and only if we found definite evidence of the trait (eg,

ICD9 codes, medication orders) in the patient’s structured EHR data.

Otherwise, we marked negative. For quantitative traits, we calculated

the median of all readings. Predictive mean-matching multiple impu-

tation25 was used to fill in missing quantitative values by using the

method described by Rubin,26 while ensuring that that no trait had

>5% missing values. The target population (with imputed values)

consisted of 2034 diabetes patients.

The GIST 2.0 metric
The previously published GIST 2.0 methodology16 computes a

multiple-trait GIST (mGIST) score for the entire study and one single-

trait GIST (sGIST) score for each eligibility trait. The mGIST score

(when computed using all traits) approximates the fraction of the tar-

get population that would be eligible for the study. When only a sub-

set of the eligibility traits is used for the mGIST calculation, the

calculated score is an approximation to the true mGIST score. Simi-

larly, the sGIST score of a particular eligibility trait approximates the

fraction of the target population that would satisfy the eligibility crite-

rion for that trait. The GIST 2.0 algorithm inputs the EHR data of a

target population and the eligibility criteria, which are used to profile

the study population, and outputs the degree of overlap between the

target population and the study population.

GIST 2.0 accounts for the interdependence between the various

traits with a Gaussian kernel-based regression hypersurface. The fit-

ting of the hypersurface accommodates both quantitative and cate-

gorical variables. The significance of each trait is modeled as an

inverse relation to the stringency of its eligibility criterion. More-

over, GIST 2.0 uses a weighting scheme that minimizes the effects of

outliers. Rigorous mathematical details on GIST 2.0 (with proofs)

Figure 1. Summary of the preprocessing steps: trial selection (top row), trait selection (second row), and definition of target population (third row).

Table 1. List of frequently used study traits in type 2 diabetes trials

Demographic Age Gender

Medications Metformin Glucagon Beta-blockers Sulfonylurea Thiazolidinediones

General

Conditions

Drug abuse Pregnant Alcohol abuse Breastfeeding Substance abuse

Tobacco abuse

Laboratory Hba1c AST HDL Triglycerides Total cholesterol

Bilirubin ALT Fasting glucose Hemoglobin Creatinine

eGFR LDL

Procedures Kidney transplant Surgery Major surgery Weight loss surgery Coronary bypass surgery

Dialysis

Diagnoses Pancreatitis Anemia Type 1 diabetes Pre-diabetes Liver cirrhosis

Neuropathy Angina Gastroparesis Hypertension Pulmonary disease

Hyperglycemia Cancer Renal disease Hypoglycemia Endocrine disease

Heart failure HIV Hepatitis B Arrhythmia Chronic pancreatitis

Cerebral stroke Hepatitis C Thyroid cancer Retinopathy Liver disease

Cardiovascular disease Myocardial infarction Diabetic ketoacidosis Proliferative retinopathy Transient ischemic attack

Cerebrovascular disease Gestational diabetes Hematological disorder Inflammatory bowel disease Coronary artery disease

Gastrointestinal disease Basal cell skin cancer Peripheral arterial disease

AST: aspartate aminotransferase; ALT: alanine transaminase; HDL: high-density lipoprotein; LDL: low-density lipoprotein; eGFR: estimated glomerular filtra-

tion rate; HIV: human immunodeficiency virus.
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can be found in Sen et al.,16 and a less technical schematic version is

described in Sen et al.5 A brief summary of the methodology is pro-

vided in the Supplementary Appendix.

Statistical analyses
From the trial description in ClinicalTrials.gov, we extracted all

available attributes of the trial. The trial duration was calculated as

the difference between the start date and end date (wherever both of

these were available) and further categorized into 1-year intervals.

Only the trials with end dates before the point of study, March 2016

(ie, confirmed end dates as opposed to prospective end dates), were

considered for the duration analysis. Trials longer than 5 years were

binned into the category “5 or higher.” Statistical differences be-

tween these categories were analyzed with a one-way analysis of

variance (ANOVA).

Among all the study metadata, we analyzed the effects of study

phase, study type, recruitment status, start year, and funding source

on the mGIST scores. Study phases included phases 0 through 4.

Funding agencies included industry, US federal agencies, and others.

Study type was either observational or interventional. Recruitment

status was one of the following: recruiting, active but not recruiting,

completed, enrolling by invitation, not yet recruiting, suspended, ter-

minated, and withdrawn. Since several of these groups had very few

trials, they were aggregated into 2 categories: No further recruitment

– completed, terminated, active but not recruiting, and withdrawn;

and further recruitment possible – recruiting, enrolling by invitation,

not yet enrolling, and suspended. Start years were from 2001 through

2016. Since only 11 trials in 2016 were included at the point of the

study, they were combined with the 2015 trials within the category

“2015 or later.” Due to the smaller number of phase 2 and 3 inter-

ventional trials, the start date effect was categorized in 2-year inter-

vals (ie, 2001–2002, 2003–2004, etc.), and the last 2 categories were

combined to form the single category “2013 or later.”

These effects were statistically analyzed by a 5-way ANOVA

studying all the effects together. Only those trials that had informa-

tion for all 5 effects were included. For recruitment status, an initial

one-way ANOVA studied the effects of subcategories within each

category on population representativeness to ensure that there were

no discrepancies within the categories. To study 2-way interaction

effects, the 5-way ANOVA was repeated after excluding phase 0 tri-

als (due to their low counts). Statistical significance for all tests was

calculated at the 0.05 level.

RESULTS

Although we cannot share proprietary EHR data, demonstrations of

our codes for computing GIST 2.0 scores using synthetic data are

available at Github: https://github.com/anandosen/pop_rep. We or-

ganize our results as answers to the research questions posed above.

How representative are the study populations of

diabetes trials as measured by GIST 2.0?
Figure 2 (A) shows the histogram of the mGIST scores for all 1691

trials and for 776 phase 2 and 3 interventional trials, respectively.

An exponential decay of the scores is visible for both groups. About

a quarter of the trials have mGIST scores <0.01 (414 of 1691 in the

general case and 202 of 776 for phase 2 or 3 interventional trials).

The median scores for the 2 groups were 0.048 and 0.045, respec-

tively, as marked in Figure 2 (B), where the corresponding cumula-

tive distribution functions are shown. The cumulative distribution

function for an mGIST score (on the horizontal axis) is the fraction

of trials that have a lower or equal mGIST score. The median points

lie between 0.04 and 0.05 on the horizontal axis in both cases. In

other words, >50% of the trials (869 of 1691 and 412 of 776, re-

spectively) have representativeness scores <0.05.

We used sGIST scores to identify the traits that excluded the

most patients. We present only the case of all trials, as results were

similar for phase 2 and 3 interventional trials. For individual traits,

median sGIST calculations included only those trials where the trait

was a part of the eligibility criteria. Cardiovascular diseases (the en-

tire spectrum as opposed to a particular disease) had the lowest me-

dian sGIST at 0.08. This was followed by beta-blockers and

thiazolidinediones (both median sGISTs �0.16), hypertension

(0.20), and gastrointestinal diseases (0.27). All of these are common

medications or diseases.

In 340 of the 1691 trials, the mGIST score was computed using

all of their study traits. Hence, for these trials, the calculated mGIST

score was equal to the true mGIST score. In the other cases, mGIST

was calculated using a subset of the eligibility traits available in EHRs

and hence was an upper bound16 to the true mGIST score. To evalu-

ate how the fraction of traits used for mGIST calculations affected the

distribution, we regenerated Figure 2 (A) for the cases: (1) trials where

>25% of the traits were used for mGIST calculations; (2) trials where

>50% of the traits were used for mGIST calculations; (3) trials where

>75% of the traits were used for mGIST calculations; and (4) trials

where 100% of the traits were used for mGIST calculations. This

analysis is again presented only for the entire set of 1691 trials, as

results were similar for phase 2 and 3 interventional trials.

To account for the different number of trials in each of these

cases (1352, 905, 516, and 340, respectively), we present the relative

Figure 2. (A) Histogram of the multitrait representativeness scores (mGIST)

for type 2 diabetes trials. (B) The corresponding cumulative distribution func-

tion, with the position of the median marked.
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histogram (or the sample probability density function). In a relative

histogram, the frequency of a particular bin is normalized between 0

and 1 by dividing the total number of trials for that case. Figure 3

presents these relative histograms. As can be seen, the distributions

are very similar. A one-way ANOVA testing the effect of fraction of

traits used for mGIST calculations found no significant differences

between these 4 cases (P�1.0). The medians for these categories

were 0.041, 0.027, 0.014, and 0.013, respectively.

How does the number of traits selected for GIST

calculation affect the study’s population

representativeness?
In the formulation of GIST 2.0, we proved that for a trial, the addi-

tion of an eligibility criterion would lower its mGIST score.16 Hence

we hypothesize that for a collection of trials, the mGIST score would

decay with the number of eligibility traits used for the mGIST calcu-

lation. For the both the 1691 trials and the phase 2 and 3 interven-

tional trials, the trials were grouped by number of eligibility criteria,

and mean mGIST scores (for each of the categories) were calculated.

This is shown in Figure 4. As expected, the mGIST scores decrease

as the number of eligibility criteria increases. The decays are expo-

nential and are confirmed by statistically significant Spearman’s cor-

relation coefficients of �0.98 and �0.96, respectively. In fact, when

trials have >20 eligibility criteria, the mGIST score is close to zero.

Which criterion has a relatively larger effect on a

study’s population representativeness?
We computed the sGIST scores for each trait and identified Hba1c

to have the highest correlation with mGIST. In the general case,

among the 1691 trials, 1324 had eligibility criteria for Hba1c. For

these trials, the Pearson’s correlation coefficient between the Hba1c

sGIST score and the mGIST score was 0.44, with P< .01. This

implies a moderate but statistically significant correlation. Figure 5

shows the relative histograms for the mGIST and the Hba1c sGIST.

While the mGIST has a one-sided peak near zero, the peak for

Hba1c is to its right at 0.3. This is in agreement with the property of

GIST scores, which states that sGIST scores are always higher than

mGIST scores.16 A difference between the curves is that about 15%

of the trials have very high sGISTs (>0.9). These are trials where

Hba1c is used as an exclusion criterion (eg, Hba1c >14%). The

mGIST is rarely this high. For phase 2 and 3 interventional trials

(634 in total), the results were almost identical. The Pearson’s corre-

lation coefficient was again 0.44.

How does the duration of a trial correlate with its

population representativeness?
The effect of duration on population representativeness is shown in

Table 2. A total of 1424 trials had start and end date information,

with the end date before March 2016. The one-way ANOVA with

Figure 3. Relative histogram for multitrait representativeness scores (mGIST)

of type 2 diabetes trials for different fractions of traits used in the representa-

tiveness calculations.

Figure 4. Relationship between number of eligibility traits and mean repre-

sentativeness score based on multiple traits (mGIST).

Figure 5. Relative histogram for multitrait representativeness scores (mGIST)

and single-trait representativeness scores for Hba1c (sGIST) for the 1324 trials

where Hba1c was an eligibility trait.
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duration as the effect resulted in a statistically significant P-value

of .0392. The population representativeness was positively correlated

with the trial duration, as demonstrated by a high Spearman’s correla-

tion coefficient of 0.88. Of the above trials, 659 were phase 2 and 3 in-

terventional trials. For these, the P-value from the one-way ANOVA

was significant at .0481, and the Spearman’s correlation coefficient

was 0.82.

How is a clinical trial’s population representativeness

related to study metadata?
Recall that the 5 effects we studied were study phase, funding

agency, study type, recruitment status, and start year. When all trials

were considered, each phase had a mean mGIST between 0.13 and

0.21. Of the 4 main phases, the mean mGIST decreased from 0.20

to 0.13 from phases 1 to 3 and then increased slightly to 0.15 for

phase 4 (Table 3). The ANOVA showed phase as a statistically sig-

nificant factor for mGIST, with a P-value of .0017. Study type can

be either interventional or observational. Nearly 95% of the studies

were interventional (Table 3). Study type was found not to have a

significant effect on mGIST, as both study types had similar mean

mGISTs. A detailed description of the studies by recruitment status

is also shown in Table 3. The initial one-way ANOVA for subcate-

gories within the 2 categories found no significant intra-category dif-

ferences. The corresponding P-values for the “further recruitment

possible” and “no further recruitment” categories were 0.4964 and

0.6372, respectively. Trials that had further recruitment possible

had a higher mean mGIST. This difference was statistically signifi-

cant, with a P-value of 0.0198. When grouped by funding agency,

industrial funding had the maximum number of trials but also a

lower mGIST score than the other groups (Table 3). However, the

difference in the mGIST scores between different metadata was not

statistically significant. Finally, we tested the effect of start year of a

trial on mGIST. Table 3 also shows the mGIST for every year from

2001 through 2015. The number of trials in each year changed from

21 in 2001 to 179 in 2009. The mGISTs show a somewhat decreas-

ing pattern, as confirmed by a moderate but significant Spearman’s

correlation coefficient of �0.48. Start year turned out to be a signifi-

cant effect on mGIST, as the ANOVA yielded a P-value of 0.0162.

Among the interaction effects, the phase–funding agency and the re-

cruitment status–funding agency pairs were found to be statistically

significant, with P-values of 0.0455 and 0.0366, respectively.

The corresponding summary for the phase 2 and 3 interventional

trials is shown in Table 4. A total of 758 trials having all metadata

information were included in this analysis. As is evident from Table

3, phases 2 and 3 have very similar mean mGISTs, and hence their

representativeness was not statistically different. When grouped by

recruitment status, the “further recruitment possible” category was

reduced to just 87 trials, which led to the loss of statistical signifi-

cance (P-value¼ .20). The start date effect remained statistically sig-

nificant (P-value¼ .0020). The decreasing trend was still observed,

except for the last category. This category contained only 32 trials

due to the exclusion of a large number of phase 4 trials. The effect

of funding agency continued to remain statistically insignificant.

DISCUSSION

Implications of the metadata findings
Our study is the first of its kind to replicate findings from the litera-

ture about the lack of representativeness in clinical trial eligibility cri-

teria using EHR data. Our finding also helps researchers and the

public understand why clinical trial recruitment is hard, because only

a small portion of real-world patients are eligible for these trials. The

decrease in population representativeness in recent trials can be attrib-

uted to a larger number of exclusion criteria in trials, possibly due to

stricter safety regulations in recent years. Yao et al.27 describe the

trends in clinical trial patient safety as “having evolved with increased

requirements for risk management plans, risk evaluation and minimi-

zation strategies.” The International Conference on Harmonization

maintains detailed safety guidelines for clinical studies.28 These guide-

lines have been updated regularly since 1995 and have been enforced

as laws in several countries. The decrease in population representa-

tiveness from phase 1 through phase 3 trials can initially seem

Table 2. Summary of duration effect on mGIST score

Trial Duration

(years)

Number of

Trials (all)

Mean

mGIST

Number of Phase 2 and 3

Interventional Trials

Mean

mGIST

0–1 433 0.14 176 0.11

1–2 553 0.13 312 0.11

2–3 231 0.16 103 0.15

3–4 97 0.15 30 0.14

4–5 60 0.16 19 0.21

�5 50 0.21 19 0.19

Table 3. Summary of metadata effects. Each section corresponds

to an effect and is stratified by that effect.

Effect Number of Trials Mean mGIST P-value

Overall 1691 0.149

Phase .0017

Phase 0 11 0.21

Phase 1 160 0.20

Phase 2 253 0.13

Phase 3 525 0.13

Phase 4 373 0.15

Type .1558

Interventional 1607 0.14

Observational 82 0.15

Recruitment Status .0198

Further recruitment possible 335 0.16

No further recruitment 1355 0.14

Funding Agency .8965

Industry 1175 0.14

Federal agency 59 0.15

Other 456 0.16

Start Year .0162

2001 21 0.21

2002 40 0.17

2003 68 0.14

2004 56 0.13

2005 69 0.20

2006 109 0.15

2007 110 0.13

2008 147 0.16

2009 179 0.14

2010 172 0.11

2011 156 0.18

2012 131 0.12

2013 126 0.14

2014 120 0.13

2015 or later 151 0.14

Significant P-values are in bold.
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counterintuitive, as study populations enlarge from phase 1 to phase

3, ie, phase 1 trials typically have <30 patients, while phase 3 trials

can have several thousands.29 However, phase 1 trials are generally

meant for safety evaluations29 and phase 3 trials are meant to have

more stringent eligibility criteria, as all subpopulations deemed

“unsafe” are excluded. Phase 4 trials, which are meant for the wider

community, tend to have less restrictive criteria than phase 3. Statisti-

cal significance was lost in the case of phase 2 and 3 interventional tri-

als. This further confirms that the significant difference due to phase

was coming from phase 1 to 4 trials, as their objectives are different.

This meta-analysis can be an important guide during trial design. By

computing the a priori population representativeness during study de-

sign, designers can make revisions to the criteria or present justifica-

tions for the lack of population representativeness.

Broader implications
The most striking result in our analysis is that over half of the diabe-

tes trials exclude >95% of the target population by design. George30

discussed the general reasons for restrictive eligibility criteria.

Though presented for cancer trials, the reasons apply to multiple

medical conditions generally. The reasons can be scientific or due to

safety concerns. Scientific reasons include restricting the study par-

ticipants to a subset of the target population. For example, the

SPRINT31 study only defines the target population as high-risk hy-

pertension patients (as opposed to all hypertension patients). This

leads to complex eligibility criteria, which are often blamed for low

representativeness.32,33 The risk of adverse events is the primary

safety consideration. Statler et al.34 showed that this consideration

often leads to overly restrictive eligibility criteria, though a direct as-

sociation could not be established. Among other reasons, geographi-

cal constraints (eg, ease of access) can lower representativeness.35

Though we did not include geographic characteristics in this study,

it is well known that study traits are correlated with geographic

location.36

In addition, we found that trials with a greater number of eligi-

bility criteria lead to lower population representativeness. An impli-

cation of this finding is that clinical study recruitment is hard by

design because of the large number of eligibility criteria,33,37 which

automatically reduces the representativeness of the study popula-

tion. The mentioned article37 also shows that the number of eligibil-

ity criteria rose between 2000 and 2012. This offers further evidence

for the temporal decline of representativeness among trials con-

ducted over time.

We have shown that long-duration trials have higher representa-

tiveness. Long-duration trials typically include a follow-up period

when patients are monitored over several years. There may be signif-

icant loss of contact with patients during this follow-up period.

Bianchi38 suggested adequate and proper enrollment during the re-

cruitment process as one way of overcoming loss of patients during

the follow-up period. Having relatively less-restrictive eligibility

(hence higher representativeness) criteria within safety constraints

can potentially aid in securing adequate enrollment. Moreover, sev-

eral long-duration trials are pragmatic trials whose recruitment goal

is to have participants similar to the patients who would receive the

intervention as part of usual care39 (unlike regular trials, which pro-

vide optimal care). Hence, eligibility criteria are kept to a mini-

mum40 and population representativeness is higher.

LIMITATIONS

Our study has certain limitations. Though we identified trials study-

ing only type 2 diabetes, certain problems remain in isolating these

trials. Some trials state only “type 2 diabetes” in their conditions

field, but they may be studying additional conditions as well. For ex-

ample, the NCT01043029 trial studies kidney disease in addition to

diabetes and requires moderately impaired renal function (eGFR

30–59 ml/min/1.73 m2).41 This trial’s representativeness should ide-

ally be computed with a smaller target population. Similarly, some

trials (eg, NCT02188186) might be studying only severe cases of

type 2 diabetes and should not enroll all diabetes patients.

The use of EHRs to define target populations is a common prac-

tice but can introduce certain biases and inaccuracies. Several studies

have shown significant differences between certain traits9,42 of real-

world patients and patients receiving hospital care reflected in

EHRs. ICD9 codes for within EHRs are primarily meant for billing

purposes, and the process of assigning ICD9 codes can have several

sources of error.43 Further, EHRs often do not record traits impor-

tant for clinical trials. For example, even if not mentioned in the eli-

gibility criteria, informed consent is always required for a clinical

trial. Hence, it is virtually impossible to consider a complete set of

traits in the computation of mGIST. As mentioned above, this

implies that the computed score is actually an upper bound of the

true mGIST score. However, with a median of 0.048 (lowered to

0.013 when all of the traits were considered), this score can still pro-

vide valuable information. An example is a correlation between the

distribution of mGIST and sGIST for Hba1c, which shows that

Hba1c is one of the most important traits in determining the popula-

tion representativeness of diabetes trials. This is in fact true, as

Hba1c is one of the defining traits for type 2 diabetes.21

CONCLUSIONS

More than 50% of type 2 diabetes trials’ eligibility criteria exclude

>95% of type 2 diabetes patients. Study phase, recruitment status,

Table 4. Summary of metadata effects for phase 2 and 3 interven-

tional trials. Each section corresponds to an effect and is stratified

by that effect.

Effect Number of Trials Mean mGIST P-value

Overall 758 0.129

Phase .8034

Phase 2 249 0.13

Phase 3 509 0.13

Recruitment Status .7387

Further recruitment possible 87 0.14

No further recruitment 671 0.13

Funding Agency .1292

Industry 665 0.13

Federal agency 10 0.07

Other 83 0.16

Start Year .0020

2001–2002 42 0.20

2003–2004 88 0.15

2005–2006 116 0.14

2007–2008 138 0.12

2009–2010 213 0.11

2011–2012 129 0.09

2013 or later 32 0.20

Significant P-values are in bold.
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and trial start year significantly affect a trial’s population represen-

tativeness. Further research on clinical trial population representa-

tiveness and the optimal balance between intervention outreach and

patient safety is warranted, which is a complex problem that needs

joint efforts from clinical research designers and practitioners.
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