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Abstract: 
Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of 
phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of 
constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has 
led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In 
this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied 
hierarchical clustering on two domains of organisms—eukaryotes and prokaryotes. Our preliminary results have shown the 
effectiveness of using the interacting pathways in revealing evolutionary relationships. 
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Background:  
A phylogenetic tree is a graphic representation of the 
evolutionary relationships of species, and the phylogenetic 
distances among the species reflect the closeness of 
evolutionary relationships. Traditional construction of 
phylogenetic trees was mainly based on physical similarities 
and differences. However, the way of the measurement has 
been changed due to the generation of huge amounts of 
biological data. For instance, high-throughput sequencing 
technologies have generated genome sequences in several 
thousand organisms. A genomic sequence is basically a string 
of four different kinds of nucleotides (A, C, G and T), with the 
length from hundreds of thousands to millions. It has been 
widely accepted that the genomic sequences are highly similar 
for evolutionary closed organisms, but not similar for 
evolutionary distant organisms. Therefore, genomic sequences 
have been widely used for building phylogenetic trees [1-3]. 
 
The construction of phylogenetic trees using genomic sequences 
does have some issues. The genomic sequences are usually 
long, thus comparing genomic sequences across species for 

building phylogenetic trees is computationally expensive. On 
the other hand, living organisms in a small niche frequently 
exchange their genetic materials each other, also known as 
horizontal gene transfer, making it harder to determine 
evolutionary relationships based on genomic sequences only. 
Furthermore, current genomic sequence similarity 
measurement cannot truly reveal evolutionary relationships 
across the species. Thus, it is necessary to use other data and 
methods to reveal true relationships [4]. 
 
In parallel to the high-throughput genome sequencing 
technologies, high-throughput metabolic data have also been 
generated in the past decade. The study of using of metabolic 
data for biological studies is also known as Metabolomics. The 
metabolic data from organisms are very informative since they 
can reveal internal metabolism mechanisms. Theoretically, 
evolutionary distant species should have different metabolic 
activities and patterns, while closely related species should 
have similar metabolic patterns. Therefore, it is desirable to use 
metabolic data for phylogenetic exploration, or complement the 
gene-based phylogenetic exploration to some degree. 
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Metabolic data have been mined and annotated, and 
corresponding metabolic related databases have been built for 
scientific communities. For example, KEGG [5] is one of 
databases hosts the Network of Interacting Pathways (NIPs). 
NIP is a useful resource for phylogenetic distance analysis. The 
quantitative annotations of metabolic reaction pathways can 
facilitate for identifying phylogenetic distances [6]. 
 
As we know, metabolic reaction pathways can be represented 
as directed or undirected graphs. The nodes in graphs can 
either be represented as metabolites that are linked by the 
enzymes, or be represented as enzymes linked by metabolites. 
Thus, using the information encoded in the graphs can reveal 
evolutionary relationships across the species. 
 
We can compute phylogenetic distances using actual node 
information such as enzymes or metabolites in the graphs. 
Some issues [6] of using this approach include: (a) the existence 
of so-called ubiquitous metabolites. For instance, water, can 
involve functionally far metabolites together without real 
biological meaningful representatives; (b) Structures of such 
networks are highly delicate to inappropriate citation; (c) The 
induction of some enzymes in a set of reactions may not be the 
ones which are really involved in those referenced species. 
 

 
Figure 1: Flow Chart of Our Approach. 
 
Methodology:  
In this paper, we aim to reveal phylogenetic distances across the 
species using structural information, rather than detailed node 
information in the graphs. We use the data of metabolic 
reactions, which are represented as a directed network of 
interacting pathways (NIPs), and from KEGG Metabolic 
Relation Network (Directed) Data Set [7]. In the relation 
network, enzymes and genes are represented as nodes, while 
the substrate and product compounds are represented as edges. 
The related structural information from the graphs was used for 
computing phylogenetic distances. By utilizing this higher 

functional approach—metabolic networks, we anticipate 
revealing phylogenetic relationships across the species. 
 
Description of data set: 
We collected the processed dataset for KEGG Metabolic 
Relation Networks from UCI machine learning repository [7]. 
This dataset has 53,414 instances in total, each of which 
represents the derived structural information of a metabolic 
reaction of any species. The structural information is 
characterized by 24 features. The features types include integer, 
real and text. The detailed description of all 24 features for 
graph structures is listed in Table 1 (see supplementary 
material).  
 
Data processing: 
The flow chart of our approach is outlined in (Figure 1), and the 
detailed description of each step is presented as follows:  
 
(a) Partition pathway feature: For each instance of the dataset, 
the first attribute consists of two parts. In order to cluster every 
species, and calculate the distances based on pathway’s 
variation, the pathway feature must be split into species 
identifier and pathway identifier. For example, aac00010 is one 
from the original dataset file, representing the metabolic 
reaction of Glycolysis Gluconeogenesis (00010) for the species of 
Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 
(aac). We broke it into aac and 00010. 
 
(b) Select target species: The original dataset covered 788 
species (including eukaryotes and prokaryotes), and 117 
pathways Table 2 (see supplementary material) shows the first 
ten pathway IDs and names. Due to the fact that not all species 
have all 117 pathways, we want to select those species that have 
at least minimum number of pathways for our study. To do so, 
we constructed a zero-one matrix which is based on species and 
pathways. Based on the zero-one matrix, we set a threshold of 
pathways’ number so that we pick the species with large 
number of related pathways. 
 
(c) Refine the target instances: Even if we pick those species 
with high number of pathways, we cannot guarantee that any 
two species have the same pathways. In most cases, the 
pathways in these species could be overlapped. For instance, 
species #1 may contain pathways #10, #20 and #30, while 
species #2 may contain pathways #10, #20 and #40. Most of 
selected species will miss some pathways out of 117 pathways, 
which is problematic when such data are applied in distance 
calculation in next step. To resolve this problem, we filled those 
missing pathways using the average values of existing 
pathways. 
 
(d) Calculate Euclidean distances: Generally, the input for the 
clustering algorithms is the similarity or distance matrix 
between entities in the data. There are various distance (or 
similarity) metrics, and they all produce broadly similar results 
[8]. In this study, we have chosen the most commonly used 
distance metric, Euclidean distance (For formula see 
supplementary material). 
 
Clustering algorithm: 
Clustering is an unsupervised learning algorithm that finds the 
hidden structure in the unlabeled data. In this study, we used 
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the hierarchical clustering, which is based on the core idea of 
objects being more related to nearby objects than to objects 
farther away. We choose Cluster 3.0 [9] to cluster our processed 
data. The results were visualized by Java TreeView [10]. 
 

 
Figure 2: Phylogenetic Tree of Eukaryotes. 
 
Discussion: 
In order to test the effectiveness of our approach, we separated 
the original dataset into subgroups, one group for the 
eukaryotic species, and other group for the prokaryotic species. 
Thus, we produced two distance matrices, one for eukaryotic 
organisms, and the other for the prokaryotic organisms. For the 
eukaryotic organisms, we set the threshold of 80 for the 
minimum number of pathways for each species, and we 
selected 23 species, and a distance matrix of 23 × 23 was 
produced. For the prokaryotic organisms, we set the threshold 
of 90 for the minimum number of pathways for each species, 
and we selected 30 species, and a distance matrix of 30 × 30 was 
produced. 
 
We have applied Cluster 3.0 on these two groups of datasets, 
and used Java TreeView to generate the dendrograms (or 
phylogenetic trees) for each of the dataset. Figure 2 & 3 show 
the dendrograms of eukaryotic species and prokaryotic species 
respectively, with the lengths of the branches reflecting the 
distances between species. Therefore, the shorter the branches, 
the evolutionarily closer the species are, and the longer the 
branches, the evolutionarily more distant the species are. 
 
From the phylogenetic tree in (Figure 2), we can find some 
interesting results. For instance, we can see the closest species 
with human beings is Mus musculus, so-called house mouse. To 
understand why these two species stay close, we did literature 
search about the closeness of these two species. We found that 
almost all genes in the mouse were also present in humans. 
Actually, researchers have reported that approximately 99% of 

mouse genes have counterparts in humans [11]. Therefore, it is 
not such a surprise that the phylogenetic distance between mice 
and humans, In Figure 2, we can also see that the two plant 
species, Arabidoposis thaliana, and Oryza sativa japonica (also 
known as Japanese rice) stay close in the dendrogram, which is 
consistent with our expectations. Figure 3 shows the 
dendrogram of 30 prokaryotic organisms. Like the tree for the 
eukaryotes, most of phylogenetically close species stay very 
close. For instance, two Escherichia coli (O1 39:H28 E24377A, and 
O9 HS) are very close in the tree, two Bradyrhizobium (sp. BTAi1 
and sp. ORS 278) are in the same branch. The dendrogram 
result for the prokaryotes also strongly indicates the 
effectiveness of our approach. 
 

 
Figure 3: Phylogenetic Tree of Prokaryotes.  
 
Conclusion: 
In this paper, we have reported our approach that uses the 
information of metabolic reactions to unveil the relation of 
evolution among species. The main contribution of this research 
is to demonstrate that with the usage of clustering, the 
phylogeny of species can be constructed by a higher level 
functional component—metabolomics. While we only relied on 
the structural information from these metabolic reactions, our 
experimental results have shown that our approach is pretty 
accurate in most of cases, strongly indicating that effectiveness 
of our approach. 
  
We do realize that the evolutionary distances for some species 
were not accurately characterized in our study. The 
inaccurateness could be caused by the followings: i) The 
missing data of pathways within some species, where we used 
the average values to fill them up; ii) for each pathway, we 
treated them the same weights in computing the distance of 
phylogeny. We hope more metabolic data will be available to 
fill the gap, and a sophisticated weight schemes for different 
pathway may help improve our approach. 
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Supplementary material: 
 
Methodology: 
Calculate Euclidean distances: 
Generally, the input for the clustering algorithms is the similarity or distance matrix between entities in the data. There are various distance (or 
similarity) metrics, and they all produce broadly similar results [8]. In this study, we have chosen the most commonly used distance metric, 
Euclidean distance. The formula is as follows. 
 

d( , ) =  
 
where p and q are vectors with n number of feature values. In our study, we computed the distance between two species using 117 pathways, with 
each pathway containing 23 features (See Table 1). Thus, the total number of features in our study is 117 × 23 = 2,691. We calculated Euclidean 
distance for selected eukaryotic and prokaryotic species. Table 3 shows the partial 2-dimensional distance matrix for eukaryotes. 
 
Table 1: Feature Description for Our Dataset. 

No. Feature Info. Value Type Range 
1 Pathway  text NULL 
2 Nodes  integer [2, 116] 
3 Edges  integer [1, 606] 
4 Connected components  integer [1, 13] 
5 Network Diameter  integer [1, 30] 
6 Network Radius  integer [1, 2] 
7 Shortest Path  integer [1, 3277] 
8 Characteristic Path Length  real [1, +∞)  
9 Avg.numNeighbours  real [1, +∞)  
10 Isolated Nodes  integer [0, 1] 
11 Number of Self Loops  integer [0, 0] 
12 Multi-edge Node Pair  integer [0, 57] 
13 Neighborhood Connectivity  real [1, +∞)  
14 Outdegree  real [0.5, +∞)  
15 Stress  real [0, +∞)  
16 SelfLoops  integer [0, 0] 
17 PartnerOfMultiEdgedNodePairs  real [0, +∞)  
18 EdgeCount  real  [1, +∞)  
19 BetweennessCentrality  real [0, +∞)  
20 Indegree  real [0.5, +∞)  
21 Eccentricity  real any 
22 ClosenessCentrality  real (0, 1] 
23 AverageShortestPathLength  real any 
24 ClusteringCoefficient  real [0, +∞)  

 
Table 2: A List of Ten Pathway Names. 

Identifier Name 
00010 Glycolysis Gluconeogenesis 
00020 Citrate cycle (TCA cycle) 
00030 Pentose phosphate pathway 
00031 Undocumented 
00040 Pentose and glucuronate interconversions 
00051 Fructose and mannose metabolism 
00052 Galactose metabolism 
00053 Ascorbate and aldarate metabolism 
00061 Fatty acid biosynthesis 
00062 Fatty acid elongation 

 
Table 3: Euclidean Distance Matrix for 10 Eukaryotes Species. The 10 eukaryotic species in this table are afm, ani, aor, ath, bta, cel, cfa, dha, and dme. 

 S#1 S#2 S#3 S#4 S#5 S#6 S#7 S#8 S#9 S#10 
S#1 0          
S#2 770.277 0         
S#3 774.409 242.721 0        
S#4 1070.79 592.15 643.246 0       
S#5 1609.22 1433.93 1456.4 1353.45 0      
S#6 1111.33 767.811 777.271 801.645 1025.74 0     
S#7 1559.44 1785.64 1855.92 2030.91 1984.29 1869.18 0    
S#8 1023.76 885.934 926.689 842.742 1015.88 832.66 1857.57 0   
S#9 8554.11 8581.38 8581.43 8604.97 8147.58 8368.75 8582.12 8381.47 0  
S#10 901.819 763.328 853.568 982.096 1523.79 868.906 1324.21 1067.3 8535.55 0 

 


