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Combinatorial patterns of gene expression
changes contribute to variable expressivity
of the developmental delay-associated
16p12.1 deletion
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Abstract

Background: Recent studies have suggested that individual variants do not sufficiently explain the variable
expressivity of phenotypes observed in complex disorders. For example, the 16p12.1 deletion is associated with
developmental delay and neuropsychiatric features in affected individuals, but is inherited in > 90% of cases from a
mildly-affected parent. While children with the deletion are more likely to carry additional “second-hit" variants than
their parents, the mechanisms for how these variants contribute to phenotypic variability are unknown.

Methods: We performed detailed clinical assessments, whole-genome sequencing, and RNA sequencing of
lymphoblastoid cell lines for 32 individuals in five large families with multiple members carrying the 16p12.1
deletion. We identified contributions of the 16p12.1 deletion and “second-hit” variants towards a range of
expression changes in deletion carriers and their family members, including differential expression, outlier
expression, alternative splicing, allele-specific expression, and expression quantitative trait loci analyses.

Results: We found that the deletion dysregulates multiple autism and brain development genes such as FOXPI,
ANK3, and MEF2. Carrier children also showed an average of 5323 gene expression changes compared with one or
both parents, which matched with 33/39 observed developmental phenotypes. We identified significant
enrichments for 13/25 classes of “second-hit” variants in genes with expression changes, where 4/25 variant classes
were only enriched when inherited from the noncarrier parent, including loss-of-function SNVs and large
duplications. In 11 instances, including for ZEB2 and SYNJI, gene expression was synergistically altered by both the
deletion and inherited “second-hits” in carrier children. Finally, brain-specific interaction network analysis showed
strong connectivity between genes carrying “second-hits” and genes with transcriptome alterations in deletion
carriers.
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Conclusions: Our results suggest a potential mechanism for how “second-hit” variants modulate expressivity of
complex disorders such as the 16p12.1 deletion through transcriptomic perturbation of gene networks important
for early development. Our work further shows that family-based assessments of transcriptome data are highly
relevant towards understanding the genetic mechanisms associated with complex disorders.

Keywords: Copy-number variant, RNA sequencing, Complex disorders, Whole-genome sequencing, Inherited

variants, Developmental disorders

Background

Complex disorders, such as autism, intellectual disabil-
ity/developmental delay (ID/DD), epilepsy, and schizo-
phrenia, have been attributed to rare copy-number
variants (CNVs), or deletions and duplications encom-
passing multiple genes, as well as individual rare single-
nucleotide variants (SNVs) and the combined effects of
common variants [1-6]. Despite advances in high-
throughput sequencing methods and quantitative assess-
ments of large cohorts, individual variants implicated for
these disorders do not sufficiently explain the variable
expressivity and pleiotropy of clinical features often ob-
served in affected individuals [7-9]. An example is the
520-kbp deletion at chromosome 16p12.1 (OMIM:
136570), which was originally described in children with
developmental delay [10, 11] but was subsequently
found to confer increased risk for schizophrenia [12],
epilepsy [13], and cognitive defects in control popula-
tions [14]. Unlike syndromic CNVs such as Smith-
Magenis syndrome that primarily occur de novo [15],
the 16p12.1 deletion is inherited in over 90% of affected
children from carrier parents who manifest subclinical
or mild cognitive and neuropsychiatric features [10, 16].
In fact, we recently found that children with the deletion
were more likely to carry an additional burden of rare
CNVs [11] and deleterious variants in genes intolerant
to variation [16] elsewhere in the genome compared to
their carrier parents. These rare variants in the genetic
background, which we define as “second-hit” variants
[15], also correlate with the phenotypic presentation of
affected children [16], making the deletion an ideal
model for assessing the combined effects of multiple var-
iants towards variable clinical outcomes.

While dissecting the pathogenicity of complex disor-
ders has been challenging, cohort and family-based stud-
ies that integrate multiple variants with different effect
sizes or functional outcomes have provided insights into
how the genetic architecture contributes to changes in
penetrance, severity, and complexity of phenotypes [17,
18]. In particular, analysis of gene expression patterns in
human cells allows for dissecting the direct and indirect
effects of genomic variants towards biological functions
in complex disorders. For example, Merla and colleagues
assessed gene expression in skin fibroblasts and lympho-
blastoid cell lines (LCLs) from individuals with the

7q11.23 deletion, associated with Williams syndrome,
and found that several genes adjacent to the deletion re-
gion were also downregulated compared to controls
[19]. Similarly, expression changes due to the autism-
associated 16p11.2 deletion correlated with changes in
head circumference phenotypes [20] and converged on
several neurodevelopmental pathways, including synaptic
function and chromatin modification [21]. Other studies
have used expression data to identify pathogenic variants
potentially missed by genome sequencing studies [22—
24]. For example, Frésard and colleagues identified novel
causal variants for 6/80 individuals with rare undiag-
nosed diseases through paired analysis of whole-blood
transcriptomes and genomes [22]. Additionally, several
recent studies have used family-based approaches to
study the effects of rare inherited variants towards gene
expression. For example, Pala and colleagues found that
rare inherited variants in both coding and non-coding
regions increased the likelihood of gene expression
changes among 61 families in the bottlenecked Sardinia
population, indicating the importance of such variants
towards disease risk [25]. While these studies have
shown the utility of assessing transcriptomic conse-
quences of individual causal variants, they were focused
on either control populations or relatively invariable dis-
orders, and did not examine the simultaneous effects of
multiple variants with different effect sizes towards
changes in gene expression within major biological
pathways.

Here, we integrated whole-genome sequencing and
transcriptome data of LCLs from 32 individuals in five
large 16p12.1 deletion families who manifested variable
phenotypes, in order to investigate how the combined
effects of the deletion and “second-hits” perturb tran-
scriptional networks and biological functions. We found
that the 16p12.1 deletion disrupts expression of genes
involved in neuronal and developmental functions, such
as signal transduction and cell proliferation, as well as
genes preferentially expressed in the fetal and adult
brain. We further identified significant contributions of
several classes of rare “second-hit” coding and non-
coding variants towards changes in gene expression
among carrier children compared with their parents, es-
pecially when the variants were inherited from the non-
carrier parent. In fact, we found 11 instances of genes in
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carrier children whose expression was synergistically al-
tered by the combined effects of the 16p12.1 deletion
and “second-hit” variants inherited from the noncarrier
parent. Although a relatively small sample size precluded
global analyses between these expression changes and
developmental phenotypes, we found that specific ex-
pression changes contributed towards distinct clinical
features of affected children through disruption of bio-
logical functions related to neurodevelopment. Our re-
sults suggest that the 16p12.1 deletion and “second-hit”
variants jointly disrupt the developmental transcriptome
through shared pathways to contribute towards develop-
mental phenotypes, emphasizing the importance of
family-based  transcriptome studies for complex
disorders.

Methods

Cohort description and recruitment

We obtained clinical data and whole-blood samples from
32 individuals in five families with the 16p12.1 deletion.
Among the recruited individuals were 10 children with
the deletion (“carrier children”), six sets of carrier and
noncarrier parents (including one family with two pairs
of parents), three sets of carrier and noncarrier grand-
parents, and four noncarrier siblings (Additional file 1:
Fig. S1; Additional file 2: Table S1). Families with the
16p12.1 deletion, located throughout the USA, were re-
cruited by the Girirajan lab for this study through online
patient support groups for the 16p12.1 deletion, in ac-
cordance with protocols approved by the Pennsylvania
State University Institutional Review Board. Affected
children and family members were previously identified
as carriers of the deletion through clinical diagnostic
tests, which we confirmed using SNP microarray analysis
[16]. After providing informed consent, study partici-
pants submitted clinical information and primary care
providers submitted peripheral blood samples for DNA
and B-lymphocyte extraction to the Girirajan lab.

Clinical phenotype analysis

We collected phenotypic information from the five fam-
ilies using two standardized clinical questionnaires: one
assessing developmental phenotypes in children, and the
other assessing psychiatric features in adults. These data
represent comprehensive medical history of affected
children and their family members, including neuro-
psychiatric and developmental features (including cogni-
tive,  behavioral, and  psychiatric  diagnoses),
anthropomorphic measures, abnormalities across mul-
tiple organ systems (nervous, craniofacial, musculoskel-
etal, cardiac, hearing/vision, digestive, and urinary
systems), and family history of medical or psychiatric
disorders. Family members first submitted completed
checklists eliciting major phenotypes and medical
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history, which were then integrated with detailed med-
ical records for each person. A follow-up phone inter-
view was then conducted with family members to fill in
any missing information on the clinical questionnaire.
Using this method, we assessed clinical data on 31/32 in-
dividuals in the cohort. Summarized clinical features for
children and adults in this study are listed in Additional
file 2: Tables S2-S3. We note that all families had self-
reported European or Caucasian ancestry. Based on the
curated phenotypic data, we calculated quantitative
scores for children using a modified de Vries scoring ru-
bric, as described previously [16], which represents the
diversity and severity of phenotypic features in affected
children [26]. We similarly summed the number of
neuropsychiatric features to generate phenotypic scores
in adults. Phenotypic scores for all individuals in the co-
hort are listed in Additional file 2: Tables S2-S3.

DNA extraction, whole-genome sequencing, and variant
identification

We identified 25 classes of rare deleterious variants from
whole-genome sequencing (WGS) and SNP microarray
for each of the 32 family members in our cohort. The 25
rare variant classes identified in this study are displayed
in Additional file 1: Fig. S2 and listed in Additional file
2: Table S4. Genomic DNA was extracted from periph-
eral blood using QIAamp DNA Blood Maxi extraction
kit (Qiagen, Hilden, Germany) and treated with RNAse.
DNA levels were then quantified using Quant-iT™ Pico-
Green™ dsDNA assay methods (Thermo Fisher Scien-
tificc, Waltham, MA, USA), and sample integrity was
assessed in agarose gel. After constructing Illumina Tru-
Seq DNA PCR-free libraries (San Diego, CA, USA),
whole-genome sequencing was performed on each sam-
ple by Macrogen Labs (Rockville, MD, USA) using an
[lumina HiSeq X sequencer to obtain an average cover-
age of 34.5x. Raw sequencing data were processed for
quality control using Trimmomatic [27] with leading: 5,
trailing: 5, and slidingwindow: 4:20 parameters, aligned
to the human hgl9 reference genome using BWA
v.0.7.13 [28], and sorted and indexed using Samtools
v.1.9 [29]. Raw sequencing data and sets of identified
variants for all individuals in our cohort have been de-
posited in the dbGaP repository [30].

The GATK Best Practices pipeline v.3.8 (Haplotype-
Caller) and v.4.0.11 (GenotypeGVCFs) [31] was used to
identify SNVs and small indels from WGS data. In short,
duplicate reads were marked and removed using Picard-
Tools, and after calibration of base-pair quality scores,
GATK HaplotypeCaller was used to identify variants in
each sample. Variant calls were then pooled for joint
genotyping and calibration of variant quality scores.
Custom-built pipelines using Annovar v.2016Feb01 [32]
applied a total of 430 annotation classes for variant
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function, population frequency, conservation, genomic
region, and predicted pathogenicity. Variants were fil-
tered based on the following quality metrics [33]: QUAL
> 50, read depth > 8, allele balance between 0.25 and
0.75 (or > 0.9 for homozygous variants), and quality
depth (QUAL/reads with alternate allele) < 1.5. Rare var-
iants were defined as variants with frequency < 0.001 in
the gnomAD v.2.1.1 genome database [34], and present
in < 10 samples in our in-house WGS cohort of 125
families (335 individuals) with rare CNVs, in order to re-
move technical artifacts that may be missed by gnomAD.
We finally classified rare SNVs and small indels for
downstream analysis as follows: rare missense and loss-
of-function (LOF, including frameshift and stopgain)
variants within protein-coding regions, as well as vari-
ants in the 5" and 3’ untranslated region (UTR) or
within 1 kbp of the transcription start (TSS) or end sites
(upstream and downstream), were classified based on
their RefSeq-defined genomic locations in Annovar
(Additional file 1: Fig. S2). Splice-site variants were iden-
tified based on MutationTaster annotations [35] for
disease-causing (“D”) or disease-causing automatic (“A”)
variants. Rare non-coding regulatory variants within 50
kbp of TSS for protein-coding genes were classified ac-
cording to ChromHMM chromatin state segmentation
data for GM12878 lymphoblastoid cells [36], available
from the ENCODE Project, into promoters (chromo-
some states 1-3), enhancers (states 4-7), or silencers
(state 12). With the exception of loss-of-function and
splice-site variants, all coding and non-coding variants
were filtered for CADD Phred-like pathogenicity scores
> 10 [37]. Inheritance patterns of these variants were de-
termined using in-house pipelines.

Copy-number variants and structural variants were
identified using a combination of WGS data for all sam-
ples and SNP microarray data for 25/32 samples, previ-
ously described in [16]. Microarray experiments were
performed at either the HudsonAlpha Institute for Bio-
technology (Huntsville, AL, USA; Illumina Omni 2.5 Ex-
ome 8 vl; n = 18), Yale Center for Genome Analysis
(New Haven, CT, USA; Illumina OmniExpress 24 v.1.1;
n = 5), or the Department of Genome Sciences at the
University of Washington (Seattle, WA, USA; Illumina
OmniExpress 24 v.1.1; n = 2). Microarray-derived CNV
calls for each sample were generated using PennCNV
v.1.0.3 [38] and were filtered for > 50 kbp in length and
> 5 target probes. CNVs and SVs were also detected
from aligned WGS data using a combination of four
pipelines: CNVNator v.0.4.1 [39] (bin size of 200),
DELLY v.0.8.2 [40], LUMPY-sv v.0.2.13 with Smoove
v.0.2.5 [41], and Manta v.1.6.0 [42]. In both WGS and
microarray-derived datasets, adjacent CNVs were
merged if they overlapped or had a gap < 20% of CNV
length and < 50 kbp. We then integrated the CNV and
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SV calls from each of the datasets as follows: For smaller
CNVs and SVs < 50 kbp, any duplication or deletion
called by at least two of the four WGS-based callers
were considered for downstream analysis, with the mini-
mum intersected regions defining the new breakpoints.
For larger CNVs and SVs > 50 kbp, the union of
CNVNator and PennCNV calls were considered for
downstream analysis. Integrated calls were based on 50%
reciprocal overlap among the callers. As our SV call set
had a low overlap with SV call sets from control popula-
tions, likely due to different SV calling methods used in
the control cohorts [43, 44], integrated variants were fil-
tered for presence in < 10 individuals in our in-house
WGS cohort, as determined by 50% reciprocal overlap.
Finally, RefSeq gene-coding regions spanned by SVs
were categorized as follows: encapsulating variants
which span the entire gene, interstitial variants that are
contained within a gene, and 5" and 3" UTR variants
that overhang the gene on either end (Additional file 1:
Fig. S2). Inheritance patterns of CNV and SV calls were
determined if calls in the child and parent had > 50% re-
ciprocal overlap.

Short tandem repeats (STRs) were called from aligned
WGS data with GangSTR v.2.4 [45], using the GangSTR
hg19 reference file v.13.1. The calls were filtered and an-
alyzed using three tools from the STR analysis toolkit
TRTools [46]. First, dumpSTR was used to filter for
quality of calls using the following parameters: read
depth > 20, read depth < 1000, QUAL > 0.9, spanbound
only (calls that are spanned by reads), and filter bad con-
fidence intervals (filtered calls whose maximum likeli-
hood estimates were not within the confidence interval).
The reads were then merged with mergeSTR, and basic
statistics were calculated using statSTR. In addition to
the dumpSTR filters, we applied the following filters to
our call set: > 95% of samples called for the STR loca-
tion, variance at location > 0, and overlap of the STR lo-
cation with a RefSeq-defined protein-coding gene. STR
expansions were defined as any call for which the devi-
ation of the repeat length was greater than the mean
length plus three standard deviations among all individ-
uals in our cohort. Finally, STR variants were catego-
rized according to their genomic location, including
exonic, intronic, 5" or 3' UTR, upstream, and down-
stream (Additional file 1: Fig. S2). Inheritance patterns
of STRs were determined by matching the number of re-
peats in the child to their parents.

Generation of lymphoblastoid cell lines and RNA
sequencing

Peripheral blood samples for all 32 individuals in our co-
hort were submitted to the Coriell Institute for Medical
Research (Camden, NJ, USA) for generation of lympho-
blastoid cell lines through Epstein-Barr virus
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transformation of B lymphocytes (Additional file 2:
Table S5). After receiving the LCL samples, cells were
grown at 5% CO, and a concentration of 1x 106 cells/
mL under L-glutamine-supplemented RPMI 1640
medium (11875-119, Thermo Fisher Scientific) contain-
ing 15% fetal bovine serum (35-010-CV, Corning Life
Sciences, Tewksbury, MA, USA) and Cytiva HyClone™
Penicillin  Streptomycin solution (SV30010, Thermo
Fisher Scientific). Total RNA was isolated from three
biological replicates of P6-P7 cells per sample using TRI-
zol Reagent (Thermo Fisher Scientific) and PureLink
RNA Mini Kit (12183018A, Thermo Fisher Scientific),
and subsequently treated with DNA-free DNA Removal
Kit (AM1906, Thermo Fisher Scientific). RNA integrity
number scores (RIN) were assessed using Agilent Bioa-
nalyzer 2100 (Additional file 1: Fig. S3A), and replicates
with RIN scores > 8.5 were sequenced. Paired-end 50 bp
libraries for each replicate were generated using Illumina
TruSeq Stranded mRNA kit and were sequenced using
[llumina NovaSeq at the Penn State College of Medicine
Genome Sciences Facility (Hershey, PA, USA). Two se-
quencing runs of 48 replicates were performed, with the
biological replicates of each sample split among the two
runs to mitigate batch effects, to generate a total of 43.5
million reads/replicate. Raw sequencing data and quanti-
fied expression values for all LCL samples have been de-
posited in the dbGaP repository [30].

Quantification of gene expression and coverage of
disease genes

Sequenced RNA reads were filtered using Trimmomatic
v.0.36 [27] to remove reads <30 bp long. Following the
GTEx Consortium RNA-seq pipeline [47], the filtered
reads were aligned to the human genome (GENCODE
v.19) using STAR v.2.4.2a [48], and sorted and indexed
using Samtools v.1.9 [29]. Duplicates reads were marked
with PicardTools v.2.9.0. We assessed the quality of the
aligned reads with transcript integrity scores [49], which
moderately correlated (r = 0.38, p = 1.0 x 10™*, Pearson
correlation) with the RIN scores for each sample (Add-
itional file 1: Fig. S3A). Isoform counts for GENCODE
19 genes were quantified using RSEM v.1.2.22 [50]. A
collapsed gene coordinate GTF file was generated using
the GENCODE 19 gene coordinates and the GTEX col-
lapse_annotation script. Gene-level counts and tran-
scripts per million read (TPM) values were quantified
using RNASeQC v.1.1.8 [51], using strict mode and the
collapsed gene coordinates.

After filtering for transcripts where all three replicates
of at least one sample showed > 0.2 TPM, we obtained a
total of 24,340 expressed transcripts across our cohort,
representing 43.3% of all GENCODE transcripts. We
further compared our set of expressed LCL genes to dis-
ease gene databases [52—-56] and genes expressed in the
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adult brain from GTEx consortium RNA-seq data [47].
We defined expressed genes in GTEx tissues if they
showed > 0.5 TPM in 80% of samples for a particular tis-
sue. The expressed LCL genes covered > 70% of each of
these gene sets, including 83% of genes expressed in
GTEx brain tissues (Additional file 1: Fig. S4A-B). These
data are in concordance with gene expression data from
GTEXx, where gene expression values in LCLs and brain
tissues showed an average Spearman correlation of 0.84
(Additional file 1: Fig. S4C). These findings indicate that
our LCL data would be able to identify changes in ex-
pression patterns for most genes related to neurodeve-
lopmental disease.

Differential expression and outlier expression analysis
We performed differential expression analysis between
all 16p12.1 deletion carriers and noncarriers, as well as
between parents and offspring across the five families,
using edgeR [57] v.3.30.0 on gene-level counts to create
generalized linear models and perform quasi-likelihood
F-tests with Benjamini-Hochberg correction. For testing
differences between all deletion carriers (# = 19) and
noncarriers (n = 13), we included family as a covariate in
the linear model, used default filtering for low-expressed
genes, and removed genes with sex-specific differences
in GTEx LCL samples as well as genes on the X and Y
chromosomes (due to unequal sex ratios in deletion car-
riers and noncarriers). To control for expression outliers,
we iteratively identified sets of differentially expressed
genes, defined using an FDR < 0.05 threshold (Benja-
mini-Hochberg correction), between deletion carriers
and noncarriers after removing one sample at a time.
We then took the intersection of the resulting 32 sets of
differentially expressed genes, and obtained a total of
1569 transcripts differentially expressed in the deletion
carriers (Additional file 3: Data S1). We also performed
differential expression analysis using PQLseq v.1.2 to ac-
count for gene expression similarity due to relatedness
[58]. We first generated input files from unfiltered WGS
SNV data using PLINK v.1.9 [59], and used GEMMA
v.0.98.3, which calculates kinship between two individ-
uals based on genotype similarity [60], to generate a kin-
ship matrix for our cohort. This matrix was used as
input for PQLseq along with gene-level counts from
RNA-seq data, after removing the same sex-specific
genes as for the edgeR analysis.

We next performed family-based analysis on 13 separ-
ate trios identified across the five families (nine carrier
children compared to parents and four carrier parents
compared to grandparents), which are listed in Add-
itional file 2: Table S1. For example, we separately ana-
lyzed two trios in family GL_001 (Additional file 1: Fig.
S1). For comparison, we analyzed an additional four
trios with noncarrier children compared to carrier and
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noncarrier parents (Additional file 1: Fig. S5C). For each
trio, we first used an edgeR workflow without covariates
to identify differentially expressed genes between the off-
spring and carrier parent (|logFC| > 0.5, FDR < 0.05,
Benjamini-Hochberg correction), and separately assessed
expression changes between the offspring and noncarrier
parent. Genes with low expression (expressed in < 25%
of all replicates) and sex-specific genes were removed
from edgeR analysis. We then overlapped the two sets of
differentially expressed genes to classify expression
changes by family-specific patterns as follows: “unique”
if the gene was differentially expressed in the offspring
compared with both parents; “shared with the carrier
parent” if the gene was only differentially expressed
compared with the noncarrier parent; and “shared with
the noncarrier parent” if the gene was only differentially
expressed compared with the carrier parent (Additional
file 1: Fig. S5A).

To identify genes with outlier expression in our co-
hort, we calculated z-scores of gene expression values
for each individual for 14,212 protein-coding genes
expressed in the LCL samples. We normalized the ex-
pression values in each person by calculating the median
TPM expression across the three replicates for each
gene, transformed the values using log,(x + 1), and cal-
culated z-scores for each log-transformed TPM com-
pared with all samples in our cohort. As principal
component analysis showed clustering of samples by
family (Additional file 1: Fig. S6A), we used PEER v.1.0
[61] to correct the z-scores using one PEER principal
component (Additional file 1: Fig. S6B). After correction,
we further assessed for clustering of samples and repli-
cates, and found strong Spearman correlations among
replicates derived from the same sample (Additional file
1: Fig. S3B). We defined outlier genes as any gene with
|z-score| > 2 (Additional file 1: Fig. S6C), in line with re-
cent studies utilizing outlier expression values [22].

Enrichment analysis for biological function, brain
expression, and disease relevance

Enrichment analysis for sets of differentially expressed
genes was performed using goseq v.3.12 [62], which tests
for overrepresentation of gene categories in RNA-seq
data. Goseq controls for selection bias in RNA-seq data-
sets by modeling the distribution of transcript lengths of
differentially expressed genes. We assessed for enriched
biological processes using the Gene Ontology database
[63], as well as genes expressed in specific adult brain
tissues from GTEx [47] and developing brain tissues
from the BrainSpan Atlas [64]. We defined preferentially
expressed genes in GTEx and BrainSpan tissues as ex-
pression > 2 standard deviations higher than the median
expression across all tissues for that gene. We further
assessed for enrichment of differentially expressed gene
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sets for candidate neurodevelopmental disease genes
(DBD Gene Database) [52], as well as specific gene sets
for autism (SFARI Gene database) [53], intellectual dis-
ability (DDD and DDG2P databases) [55, 56], and
schizophrenia [54]. Finally, we annotated sets of genes
with altered expression for two common measures of in-
tolerance to variation, RVIS [65] and pLI [66], and used
genes considered to be intolerant to variation (RVIS <
20th percentile or pLI score > 0.9) for downstream ana-
lysis. All gene sets used for enrichment analyses were fil-
tered for genes with transcripts that are expressed in our
LCL samples (> 0.2 TPM in all three replicates of at least
one sample).

PAGE and WGCNA analysis in deletion carriers and
noncarriers

We performed parametric analysis of gene set enrich-
ment (PAGE) on genes that were differentially
expressed between carriers and noncarriers of the
16p12.1 deletion [67]. PAGE is a gene set analysis
method that considers the direction of the expression
log fold change to discover sets of genes that are
enriched among up- or downregulated genes. For this
analysis, we included the log fold change of 26,861
transcripts that were not filtered out by edgeR’s de-
fault filtering of low-expressed transcripts. We
searched for significant up- or downregulation of
genes within terms from the Gene Ontology database
[63], using two-tailed z-tests with Benjamini-
Hochberg correction.

We further performed weighted gene correlation
network analysis (WGCNA) to identify modules of
genes that were co-expressed among samples in our
cohort [68]. We used the R package tximport [69] to
import RSEM-derived gene expression counts, filtered
genes for > 10 counts/replicate in at least one sample,
and used DESeq2 [70] to generate variance-stabilized
expression counts for each gene. To detect co-
expression patterns specific to deletion carriers, we
used ComBat [71] within sva v.3.12 to perform batch
correction with family as a covariate. We detected 35
co-expression modules in our samples using WGCNA
v.1.69 [68], with the following parameters: power
threshold = 8, signed hybrid network, unsigned topo-
logical overlap matrix, bi-weight mid-correlation,
module size = 30-30,000, and merge cut height =
0.25. Two modules showed strong sex-specific gene
expression and were excluded from further analysis.
The average gene expression values in each module
were compared between carriers and noncarriers
using two-tailed ¢ tests, and genes in each of these
modules were tested for enrichment of Gene Ontol-
ogy terms using goseq.
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Integration of gene expression and genomic variant data
We calculated the effect size of different classes of rare
“second-hit” variants towards gene expression changes,
stratified by sample type and family-specific patterns.
We compared 25 classes of rare variants identified from
WGS data (Additional file 1: Fig. S2; Additional file 2:
Table S4) towards differentially expressed genes in fam-
ily trios as well as outlier expression genes in all individ-
uals. For all comparisons, we calculated odds ratios and
95% confidence intervals for each variant class towards
changes in expression using Fisher’s exact and Wald
tests, respectively; uncorrected p values and Benjamini-
Hochberg-corrected FDR values were reported for each
comparison (Additional file 4: Data S2). We note that
we considered each variant class independently, so that
dysregulated genes with multiple types of disrupting var-
iants were counted within multiple variant classes. For
the differential expression analysis, we first assessed vari-
ants in the 13 trios with carrier offspring for genes with
differential expression (Additional file 2: Table S1), and
then determined the effects of variants in carrier chil-
dren (n = 9 trios) inherited from carrier or noncarrier
parents towards expression changes shared with the
same parent. For the outlier expression analysis, we first
assessed variants for outlier expression genes in all indi-
viduals. We then stratified these data by sample type
(carrier child, carrier parent, and noncarrier parent), and
compared variants in carrier children that were inherited
from their carrier or noncarrier parent. To identify syn-
ergistic effects between the 16p12.1 deletion and “sec-
ond-hit” variants, we identified a subset of genes with
outlier expression in deletion carriers that were also dif-
ferentially expressed in the global comparison of carriers
and noncarriers, and then identified those genes which
also had “second-hit” variants inherited from the non-
carrier parent.

Alternative splicing analysis

To assess alternative splicing events from RNA sequen-
cing data, we used DESeq2 [70] to detect differential ex-
pression of isoforms. After importing isoform-level
expression counts from RSEM using tximport [69], we
filtered for genes with > 2 counts across all samples and
performed pairwise comparisons between carrier off-
spring and their parents in the 13 trios listed in Add-
itional file 2: Table S1, plus the four trios with
noncarrier children for comparisons. We then repeated
the DESeq2 analysis for gene expression counts, and
only included differentially expressed isoforms within
genes that did not show overall differential expression,
to specifically account for isoform changes due to alter-
native splicing. Similar to the family-based differential
expression analysis, we assigned family-specific patterns
to each alternative splicing event observed in offspring
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based on the pairwise comparisons to each parent. We
further compared alternate isoforms identified by
DESeq2 to those in GTEx LCL data [47] to identify
unique isoforms in our cohort. Finally, we integrated
these data with 12 classes of putative splice-site disrupt-
ing variants identified from WGS data and calculated
odds ratios as described above.

Allele-specific expression analysis

We used the phASER v.1.1.1 [72] pipeline to identify
allele-specific expression events in our cohort. We first
used whatshap v.0.18 [73] to perform read-backed and
pedigree-informed phasing of our WGS samples, and
then merged the three replicate BAM files of aligned
RNA-seq reads for each sample together using Samtools.
We then used phASER, which uses phased WGS data to
infer phasing of RNA-seq samples, to phase the RNA-
seq alignments and to count the number of reads per
haplotype block. We ran phASER with the parameters
--mapq 255 and --baseq 10, and used the recommended
blacklist to remove HLA genes. Finally, we quantified
log-fold changes for allelic counts in each protein-
coding gene with > 10 read counts using phASER Gene
AE and identified ASE for genes with FDR > 0.05 using
binomial tests with Benjamini-Hochberg correction. For
each identified ASE event, we examined the overex-
pressed haplotype for presence of a deleterious rare cod-
ing variant identified from WGS, which would
potentially indicate pathogenic effects of the ASE event.
Finally, we determined family-specific patterns of ASE
genes based on the presence of ASE in parents of
offspring.

eQTL discovery and analysis

We used QTLTools v.1.2 [74] to identify eQTLs in our
cohort. Because we had three replicates per participant,
we first calculated the median TPM values for all tran-
scripts in an individual. Genes were filtered for > 0.1 me-
dian TPM in more than 50% of samples. Principal
components for gene expression (from RNA-seq data)
and genotype (from whatshap-phased WGS data) were
then computed using QTLtools. The top three genotype
and the top two gene expression principal components
were used as covariates for the linear model, in addition
to three explicit covariates (family, sex, and carrier sta-
tus). QTLtools cis-permutation tests (z = 1000 repli-
cates) were then used to discover eGenes, or genes
whose expression are significantly correlated with
eQTLs, and associated variants in our samples. We per-
formed multiple-testing correction with the QTLtools
script runFDR_cis.R. Finally, we annotated significant
eQTL variants (FDR < 0.05) associated with protein-
coding genes for presence in GTEx LCL data, genomic
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location, population frequency, and biological functions
using the WGS Annovar-based pipeline [32].

Brain-specific network analysis

We assessed the connectivity patterns of genes with “sec-
ond-hit” variants and changes in expression in the context
of a brain-specific interaction network. The network con-
tains brain-specific pairwise interactions for 14,763 genes
expressed in the brain, of which 11,978 (81.1%) are also
expressed in the LCL samples. This network was previ-
ously built using a Bayesian classifier trained on hundreds
of gene co-expression, protein-protein interaction, and
regulatory-sequence datasets, in order to predict the likeli-
hood of interactions between any two pairs of brain-
expressed genes [75, 76]. To create a network containing
only the highest probability predicted gene interactions,
we extracted all pairs of genes with weighted probabilities
> 2.0, representing the top ~ 0.5% of pairwise interactions
(217,975,718 pairs of genes). We then calculated the
weighted shortest path lengths for all pairs of genes in the
network, using the inverse of the probabilities as weights
for each edge. Finally, we created sub-networks that con-
tained genes with “second-hit” protein-coding variants
(loss-of-function or LOF, missense, splice-site, exonic
STR, or encapsulated deletion or duplication) or expres-
sion changes (differential expression, outlier expression,
alternative splicing, ASE, or eQTL minor allele) for each
carrier offspring from the 13 trios (Additional file 2: Table
S1). For each trio, we calculated the average shortest paths
between all pairs of genes with expression changes and
genes with “second-hit” coding variants, and then com-
pared these distances to average shortest paths calculated
from 100 permuted network replicates, where genes were
randomly reassigned to different nodes in networks with
otherwise identical topology. Network analysis was per-
formed using the NetworkX package in Python [77].

Statistical analysis

All genomic and statistical analyses were conducted
using either Python v.3.7.3, with packages numpy
v.1.16.2 [78], scipy v.1.1.0 [79], and pandas v.1.0.0 [80],
or using R v.3.5.1 (R Foundation for Statistical Comput-
ing, Vienna, Austria). Details of all statistical tests, in-
cluding summary statistics, test statistics, odds ratios,
confidence intervals, p values, and Benjamini-Hochberg-
corrected FDR values, are provided in Additional file 4:
Data S2.

Results

The 16p12.1 deletion leads to pervasive disruption of
genes involved in neurodevelopment

We performed RNA sequencing on LCL samples from
19 deletion carriers and 13 noncarriers from five large
families with multiple affected members (Fig. 1;
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Additional file 1: Fig. S1; Additional file 2: Table S1)
[30], and identified 1569 transcripts that were differen-
tially expressed (FDR < 0.05) in deletion carriers com-
pared with noncarriers (Fig. 2A, B; Additional file 3:
Data S1). Application of additional corrections for re-
latedness among the samples [58] (see “Methods”)
yielded 1044 differentially expressed transcripts, of
which 840 (80.5%) were also identified in the main ana-
lysis (Additional file 1: Fig. S7A; Additional file 3: Data
S1). We first confirmed that each of the seven protein-
coding genes in the deletion region were downregulated
in deletion carriers (Fig. 2C). Interestingly, 13 protein-
coding genes adjacent to the 16p12.1 region (between
chromosomal bands 16p11.2 and 16p12.3) also showed
differential gene expression in carriers, 10 of which were
under-expressed in the deletion carriers. For example,
two genes within the autism-associated 16p11.2 region,
SEZ6L2 and DOC2A, as well as the febrile seizure-
associated gene STXIB [83], were downregulated in car-
riers of the 16p12.1 deletion. As none of the carriers har-
bored an atypical deletion, it is possible that these
adjacent genes could be affected by disruption of regula-
tory elements located within the deletion region. In fact,
three downregulated genes adjacent to the deletion,
DNAH3, OTOA, and NPIPB4, exhibited chromatin inter-
actions with enhancer elements within the deletion re-
gion, detected using published Hi-C data of LCL
samples [81] (Fig. 2C).

We found that differentially expressed genes in dele-
tion carriers were enriched (FDR < 0.05) for multiple
biological functions, including biological adhesion and
cell proliferation regulation for relatedness-corrected
genes, and signal transduction and locomotion for genes
without relatedness correction (Additional file 3: Data
S1). Additionally, we observed an enrichment (FDR =
0.015) for candidate autism genes [53], including FOXP1I,
CUL7, ANK3, and EP300, among the differentially
expressed genes (Fig. 2B; Additional file 3: Data S1).
Parametric Analysis of Gene Set Expression (PAGE)
showed that genes related to neuronal and muscular
growth functions were significantly upregulated in dele-
tion carriers (FDR < 0.05), while genes involved in be-
havioral responses and learning were downregulated
(Additional file 1: Fig. S7B; Additional file 2: Table S6).
Weighted-gene correlation network analysis similarly
identified several modules of genes with significant ex-
pression changes in deletion carriers (p < 0.05, two-
tailed ¢-test), including downregulated genes enriched
for cell signaling and adhesion, and upregulated genes
enriched for neurogenesis, nervous system development,
and MAPK and Notch signaling (Additional file 1: Fig.
S8; Additional file 5: Data S3). Differentially expressed
genes in deletion carriers were further enriched (FDR <
0.05) for genes preferentially expressed in the



Jensen et al. Genome Medicine (2021) 13:163

Page 9 of 21

GL_001 GL_004

| Whole-genome | |
sequencing

16p12.1 deletion
families

comparisons

brain-specific network

7. EOCT
® HENO wew

i RNAsequencing of
' lymphoblastoid cell lines |

Carriers vs. noncarriers Family-specific Outlier expression Other expression Network analysis

Fig. 1 Overview of experimental design. We performed whole-genome sequencing, RNA sequencing, and clinical phenotyping on five large
families (32 total individuals) with the 16p12.1 deletion, indicated with red asterisks in the pedigrees. Children (green) and adults (blue) in the
pedigrees are shaded by phenotypic severity score, with white indicating no clinical features, lighter shades indicating mild features (child de
Vries score of 1-4; adult score of 1-2 features), medium shades indicating moderate features (child de Vries score of 5-8; adult score of 3-4
features), darker shades indicating severe features (child de Vries score of 9-13; adult score of 5-6 features), and grey indicating no phenotypic
data available. Phenotypic severity scores are described in the Methods and are listed for each person in Additional file 2: Tables S2-53. We then
performed multiple analyses to assess the role of the deletion and rare “second-hit” variants towards the observed transcriptomic changes and
developmental phenotypes, including differential expression between carriers and noncarriers of the deletion, differential expression between
parents and carrier offspring in 13 trios from the five families, outlier gene expression among all individuals, identification of additional
transcriptomic alterations such as alternative splicing and allele-specific expression, and gene interaction patterns in the context of a

GL_005 GL_052

ol |

GL_007

12j>2 ' -Alternative splicing |
1 -Allele-specific expr. |
' -Expression QTLs

alterations

hippocampus and basal ganglia of the adult brain [47]
(Additional file 1: Fig. S7C; Additional file 3: Data S1), as
well as in the striatum, thalamus, and frontal cortex dur-
ing late fetal and adolescent/young adulthood timepoints
[64], which are critical transition periods for expression
of neurodevelopmental genes [84-86] (Fig. 2D; Add-
itional file 3: Data S1). Overall, our data suggest that the
16p12.1 deletion leads to pervasive transcriptomic
changes across multiple biological and neuronal pro-
cesses in the developing brain. We note that because
these results are based on expression data from LCL
samples, they should be followed up in neuronal models
to delineate any tissue-specific differences in gene
expression.

Family-specific patterns of gene expression changes
influence developmental phenotypes

We next investigated how gene expression patterns seg-
regated within 13 complete trios with carrier offspring
extracted from the five families, including carrier chil-
dren compared to their parents as well as carrier parents
compared with grandparents (Additional file 2: Table
S1). For each trio, we identified differentially expressed
genes for offspring-carrier parent and offspring-
noncarrier parent pairs (see “Methods”), and found an
average of 5323 total gene expression changes in

offspring compared to their parents (Additional file 2:
Table S7; Additional file 6: Data S4). We then over-
lapped the two sets of differentially expressed genes to
categorize expression changes based on their family-
specific pattern (Additional file 1: Fig. S5A). We found
no significant differences (p = 0.735, two-tailed paired
Mann-Whitney test) in the proportion of differentially
expressed genes in offspring that were shared with either
the carrier (avg. 2223 genes/offspring) or noncarrier par-
ent (avg. 1908 genes/offspring; Fig. 3A). This may sug-
gest that “second-hit” variants from the noncarrier
parent could contribute equally to gene expression
changes, and therefore to disease pathogenicity, as the
combined effects of the deletion and any “second-hit”
variants from the carrier parent, an observation that cor-
responds with our recent findings of increased burden of
“second-hits” transmitted to the child from noncarrier
parents [16] (Additional file 1: Fig. S5B). However, we
also note that this study may be under-powered to de-
tect smaller differences in the proportion of gene expres-
sion changes shared between offspring and their carrier
and noncarrier parents. Interestingly, we also observed
an average of 1192 genes/offspring that were differen-
tially expressed compared with both parents (Fig. 3A),
such as SHANK2, FOXP1, and CACNAID. These ex-
pression changes potentially represent effects of de novo
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variants or combinatorial effects of variants inherited
from both parents, which could explain the increased
phenotypic severity observed in the carrier children.
However, the trends in expression patterns widely varied
across families, which in some cases could be explained
by family history of neuropsychiatric disease (Additional
file 1: Fig. S5C). For example, we found that children
within family GL_004, whose parents were unaffected or
presented with mild depression, had the lowest number
of gene expression changes among any carrier children
in the cohort. Meanwhile, children in families GL_001
and GL_052, whose carrier parents manifested multiple
overt cognitive and neuropsychiatric features, had higher
proportions of expression changes shared with their

carrier parents compared to their noncarrier parents
(Additional file 1: Fig. S5C).

We next assessed the dysregulated biological functions
in each trio (Additional file 1: Fig. S9; Additional file 6:
Data S4) and found that unique or shared differentially
expressed genes in carrier children were enriched for
biological processes (FDR < 0.05) that could be related
to 33 out of 41 (80.5%) developmental phenotypes ob-
served in the affected children (Fig. 3B). For example,
shared gene expression changes for carrier child P1C_01
in family GL_001 were enriched for nervous system de-
velopment, neurotransmitter metabolism, neuron projec-
tion, and synaptic transmission functions, while their
unique expression changes were enriched for genes
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involved in skeletal and muscular development. The
shared changes in neuronal genes could contribute to
the ID/DD and speech delay phenotypes observed in the
child, as both parents also had several psychiatric fea-
tures, while the unique changes in developmental genes
could be related to hypotonia, growth delay, and cranio-
facial features uniquely observed in the child. Overall,
these results suggest that expression changes of
neurodevelopmental-related genes could account for
phenotypic differences among carriers of the 16p12.1
deletion.

“Second-hit” variants and the 16p12.1 deletion show
synergistic effects towards gene expression

We next investigated whether changes in gene expres-
sion could be attributed to “second-hits”, or rare genetic
modifiers elsewhere in the genome. Rare variants dis-
rupting protein-coding regions and nearby regulatory el-
ements have been previously linked to gene expression
changes in both control populations [25, 87-89] and dis-
ease cohorts, where causal genes may be missed by DNA
sequencing methods [20, 22-24]. We hypothesized that
“second-hits” by themselves or in combination with the
deletion could contribute to the observed gene expres-
sion changes in affected children. We therefore identi-
fied 25 classes of rare gene-disruptive “second-hit”
variants from WGS data for each individual (Additional
file 1: Fig. S2; Additional file 6: Data S4; Additional file
7: Data S5) [30], including SNVs and indels in coding
and non-coding regulatory regions (UTRs, introns, and
putative promoter, enhancer, and silencer elements
within 50 kbp of a gene) with Phred-like CADD scores >

10 [37], and CNVs and short tandem repeats (STRs) that
spanned gene-coding regions. We then calculated the
likelihood that these “second-hit” variants are associated
with changes in expression of a proximal gene, as deter-
mined by either differential expression analysis between
carrier offspring and their parents in the 13 trios, or out-
lier expression analysis among all individuals in the co-
hort [20, 87] (see “Methods”). While family-based
differential expression analysis detects all expression
changes between affected children and their parents
[90], including those due to the downstream effects of
the deletion, outlier analysis more robustly identifies
specific effects of “second-hits” towards larger changes
in expression, including synergistic effects in combin-
ation with the deletion. Overall, we observed an average
of 285 outlier genes (|z-score| > 2) per individual, in-
cluding candidate neurodevelopmental genes [52] such
as CTNNBI1, FOXGI1, DISC1, and ZNF804A (Additional
file 1: Fig. S6; Additional file 2: Table S7; Additional file
8: Data S6). We found that 10.8% of outlier genes (avg.
31/286 per person) and 11.2% of differentially expressed
genes (avg. 310/2774 per carrier offspring) were poten-
tially disrupted by a rare coding or non-coding variant
(Additional file 7: Data S5). Altered expression of genes
without such variants could be due to several factors,
such as common variants, DNA methylation events,
downstream effects of other dysregulated genes, or en-
vironmental factors.

In agreement with previous studies [25, 87], we found
that genes with outlier expression were significantly
enriched after Benjamini-Hochberg correction (FDR <
0.05, Fisher’s exact test) for 5/25 classes of rare variants
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that directly affected gene-coding regions, including encapsulated deletions (Additional file 1: Fig. S10A). We
loss-of-function (LOF), missense, and splice-site SNVs,  further found that outlier genes had higher burdens of
and 5' UTR overhanging and gene-encapsulating dupli-  rare variants in aggregate (p = 1.01 x 1073, one-tailed ¢-
cations (Fig. 4A). Similarly, we found that 10/25 variant test) and for 7/25 individual classes compared with non-
classes were significantly associated with differentially outlier genes (p < 0.05, one-tailed t-test), in particular
expressed genes in carrier offspring for the 13 trios loss-of-function variants (FDR = 1.73 x 10°) and encap-
(FDR < 0.05, Fisher’s exact test), including coding mis-  sulated duplications (FDR = 5.43 x 107°), which passed
sense SNVs, duplications overhanging the 5 UTR, and  multiple-testing correction (Additional file 1: Fig. S11A-
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Fig. 4 Enrichment of “second-hit” variants near genes with outlier expression. A Forest plot shows enrichment (Fisher's exact test, ** = FDR <
0.05, * = uncorrected p < 0.05) of genes with outlier expression in all individuals in the cohort (n = 32) for rare proximal coding and non-coding
variants, including single-nucleotide variants (SNVs) and insertions/deletions (indels) with CADD scores > 10 [37], structural variants (SVs), and
short tandem repeats (STRs). B Forest plot shows classes of “second-hit” variants with significant enrichment (Fisher's exact test, ** = FDR < 0.05, *
= uncorrected p < 0.05) towards genes with outlier expression in carrier children (n = 10), carrier parents (n = 6), or noncarrier parents (n = 6). C
Forest plot shows classes of “second-hit” variants with significant enrichment (Fisher's exact test, ** = FDR < 0.05, * = uncorrected p < 0.05)
towards genes with outlier expression in carrier children (n = 9) that are shared with either carrier or noncarrier parents. All forest plots show log-
odds ratios (dots) and 95% confidence intervals (whiskers). Odds ratios, confidence intervals, p values, and Benjamini-Hochberg corrected FDR
values for comparisons with all classes of “second-hit” variants are listed in Additional file 4: Data S2. D Scatter plot shows expression values
(transcripts per million, or TPM) for EIF2AKT in LCL replicates for all individuals (n = 32). Samples in blue have outlier expression of EIF2AKT (z-score
< —2) and carry a deleterious “second-hit” variant in the 5" UTR of the gene. E Scatter plots show expression values (TPM) of genes with
synergistic effects due to the 16p12.1 deletion and inherited “second-hit” variants. Blue circles indicate expression values for samples from carrier
children and family members with rare “second-hit” variants, orange circles indicate expression values for samples from family members without
the “second-hit” variant, and green circles indicate expression values of samples from other deletion carriers and noncarriers in the cohort. Black
lines denote median gene expression for LCL replicates of each individual used to identify genes with outlier expression in individual

deletion carriers
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B). Interestingly, we also found that outlier genes that
were intolerant to variation (pLI score > 0.9 or RVIS
percentile < 20; p < 3.26 x 107 two-tailed t-test) or
preferentially expressed in the brain (p = 0.011) had a
higher burden of nearby rare variants than other outlier
genes (Additional file 1: Fig. S11C). We next assessed
the effect size of “second-hits” towards outlier gene ex-
pression among carriers and noncarriers of the deletion,
and found enrichments of LOF variants (p = 4.96 x 1079
FDR = 6.20 x 107°), 5" UTR overhanging duplications (p
= 0.017; FDR = 0.108), and 5" UTR-disrupting SNVs (p
= 7.37 x 10 FDR = 0.058) towards outlier expression
in carrier children but not in carrier parents (Fig. 4B).
We observed similar findings among differentially
expressed genes, where missense SNVs (FDR = 4.23 x
1079, upstream SNVs (FDR = 7.00 x 107, encapsulated
(FDR = 0.039) and interstitial (FDR = 0.031) deletions,
and 5° UTR overhanging duplications (FDR = 0.045)
were only likely to alter gene expression in carrier chil-
dren (Additional file 1: Fig. S10B). Notably, LOF variants
(p = 1.67 x 107>, FDR = 2.09 x 10™*) and 5" UTR over-
hanging duplications (p = 0.018; FDR = 0.090) were also
enriched for outlier expression in noncarrier parents,
suggesting that these classes of “second-hit” variants
were more likely to be deleterious in carrier children
when inherited from noncarrier parents (Fig. 4B). In fact,
we observed several classes of “second-hit” variants in
carrier children, including 5° UTR overhanging duplica-
tions (p = 1.54 x 107>, FDR = 0.025), gene-encapsulating
(p = 0.025; FDR = 0.125) and 3" UTR overhanging dele-
tions (p = 0.025; FDR = 0.125), and missense (p = 0.023;
FDR = 0.125) and upstream SNVs (p = 0.032; FDR =
0.133), that were enriched for outlier expression when
inherited from the noncarrier parent but not from the
carrier parent (Fig. 4C). Similarly, we found that LOF
variants (FDR = 5.05 x 107°) and SNVs in upstream
(FDR = 6.25 x 107°) and silencer regions (FDR = 7.70 x
10™%) correlated with differential gene expression in car-
rier children only when inherited from the noncarrier
parent (Additional file 1: Fig. S10C). For example, a car-
rier child in family GL_007, who exhibited hypotonia
and muscle weakness, inherited a deleterious variant
from their noncarrier parent in the 5" UTR of EIF2AK,
associated with motor dysfunction [91], that potentially
led to downregulation of that gene (Fig. 4D). Overall,
our findings showed that distinct classes of “second-hit”
variants differentially contribute towards changes in gene
expression when inherited in a complex manner from ei-
ther the carrier or noncarrier parent.

We next investigated whether “second-hit” variants
showed synergistic effects towards expression changes in
genes also dysregulated by the 16pl2.1 deletion. We
found 11 instances of genes, such as ANK3, DOCKIO0,
and SLC26A1, that were differentially expressed in all
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deletion carriers, showed outlier expression in an indi-
vidual deletion carrier, and had a nearby variant (two
coding and nine non-coding) inherited from the noncar-
rier parent (Fig. 4E; Additional file 1: Fig. S12; Additional
file 2: Table S8). For example, two carrier children in
family GL_005 inherited an intronic variant within ZEB2
from their noncarrier parent, whose altered dosage is as-
sociated with Mowat-Wilson syndrome [92, 93]. While
both the 16p12.1 deletion and the “second-hit” variant
individually corresponded with increased ZEB2 expres-
sion, the presence of both variants in the carrier children
resulted in even stronger overexpression of the gene
compared to those with either individual variant (Fig.
4E). Overexpression of ZEB2 could contribute to the
Mowat-Wilson-like features observed in the carrier child
P1C_05, including ID/DD, seizures, hypotonia, and di-
gestive abnormalities. Similarly, a carrier child in GL_
005 inherited a rare variant in a promoter region up-
stream of the mRNA splicing-associated [94] gene SNRN
P27 from their noncarrier parent. SNRNP27 is overex-
pressed in deletion carriers but under-expressed in both
the carrier child and the noncarrier parent, highlighting
a case where a “second-hit” variant reverses an expres-
sion change caused by the deletion (Fig. 4E). Further-
more, a carrier child in GL_004 shared an intronic
variant with two noncarrier relatives in the gene SYNJI,
which is associated with synaptic transmission [95] and
is under-expressed in carriers of the deletion. While
other individuals with the same variant had normal
SYNJ1 expression, the carrier child exhibited under-
expression of the gene compared to both carriers and
noncarriers of the deletion, suggesting that the variant
may alter SYNJI expression only in the presence of the
deletion (Fig. 4E). While it is possible that other variants
elsewhere in the genome could also influence expression
levels of these genes, these examples highlight putative syn-
ergistic effects between the 16p12.1 deletion and “second-
hit” variants towards gene expression, where the “second-
hit” variants may amplify or reduce the effects of the CNV.

A broad range of transcriptomic alterations contribute to
phenotypic variability of the 16p12.1 deletion

To identify a complete spectrum of gene expression al-
terations in each individual, we next evaluated alterna-
tive gene splicing, allele-specific expression (ASE), and
expression quantitative trait loci (eQTL) among individ-
uals in our cohort. We first identified an average of 3267
alternative isoforms present in carrier offspring of the 13
trios compared to their parents (Additional file 2: Table
S7; Additional file 9: Data S7), including for several
neurodevelopmental-associated genes [52] such as
KANSL1, SHANK2, and SYNGAPI. After categorizing
splicing events by family-specific patterns, we found no
differences between splicing events in offspring shared
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with carrier (average = 1307) or noncarrier parents
(average = 1392; p = 0.635, two-tailed paired Mann-
Whitney test), with fewer unique changes in the off-
spring (average = 568; p = 2.44 x 107% Additional file 1:
Fig. S13A). We next found enrichments for alternative
splicing in genes disrupted by “second-hit” splice-site (p
= 7.47 x 107*, Fisher’s exact test; FDR = 2.99 x 107°), in-
tronic (p = 9.91 x 107% FDR = 5.95 x 107®), or missense
SNVs (p = 0.012; FDR = 0.036), interstitial (p = 0.043;
FDR = 0.086) and 3" UTR overhanging deletions (p =
0.024; FDR = 0.058), and intronic STRs (p = 5.75 x
107'% FDR = 6.90 x 10~°) (Additional file 1: Fig. S13B;
Additional file 7: Data S5). We also found that intronic
SNVs were more likely to disrupt splicing in carrier
children if they were inherited from the noncarrier
parent (p = 0.034, FDR = 0.204) than the carrier par-
ent (Fig. 5A), while intronic SNVs (FDR = 6.36 x
1077) and interstitial deletions (FDR = 0.018) were
more likely to lead to alternative splicing when
present in carrier children than in carrier parents
(Additional file 1: Fig. S13C). These results suggest
potential correlations between classes of inherited rare
variants and alternative splicing events, although
changes in isoform expression can only be confidently
attributed to rare variants at or near the splice site.
For example, a deleterious splice-site variant in the
transcriptional activator TADA2A led to an alternate
isoform (TADA2A-003) in multiple family members of
GL_007 that was not observed in GTEx LCL data
[47] (Fig. 5B). TADA2A is a candidate gene within
the schizophrenia-associated 17q12 deletion [96], and
five out of six family members with the splicing vari-
ant have schizophrenia-like clinical features (i.e., hal-
lucinations or delusions), including four deletion
carriers and one noncarrier child.

Next, we identified an average of 285 genes with
ASE per individual in our cohort (Additional file 2:
Table S7; Additional file 10: Data S8), including for
the  neurodevelopmental-associated  genes [52]
DNMT3A, NSUN2, and HDAC8. ASE events in the
13 trios were more likely to uniquely occur in the
offspring than be shared with a parent (p = 2.44 x
107, two-tailed paired Mann-Whitney test), in con-
trast to differential expression and alternative splicing
events (Additional file 1: Fig. S14A). Genes with ASE
have previously been shown to have a higher burden
of nearby rare deleterious variants [87], and the
pathogenicity of a gene with ASE increases with the
presence of a deleterious variant on the overexpressed
allele [89]. In our cohort, we found five ASE events
in carrier children that led to overexpression of a
deleterious “second-hit” coding variant (Additional file
1: Fig. S14B). For example, two carrier children with
autism in family GL_007 showed overexpression of a
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deleterious “second-hit” missense variant in the candi-
date autism gene [97] CARDI11, which was inherited
from their noncarrier parent (Fig. 5C).

We further performed eQTL discovery analysis to iden-
tify variants statistically correlated with expression changes
in our cohort, agnostic to variant pathogenicity or popula-
tion frequency. We identified 21 eQTLs which modulated
the expression of 23 eGenes, or genes whose expression is
significantly correlated with an eQTL (Additional file 1: Fig.
S15A; Additional file 2: Table S9). Interestingly, 19/21 iden-
tified eQTLs were not present in GTEx LCL data [47],
representing unique loci in our cohort. Carrier children
showed a trend (p = 0.107, two-tailed Mann-Whitney test)
towards carrying a higher number of minor eQTLs alleles
(average = 4.3/person) than their carrier parents (average =
3.2/person) (Additional file 1: Fig. S15B; Additional file 2:
Tables S7, S10). Furthermore, several eGenes had biological
functions related to neuronal processes [98-100] (Add-
itional file 2: Table S9), including SERPINFI, BEGAIN, and
ARFGEF2. For example, we identified a relatively rare
eQTL (allele frequency = 0.015) for overexpression of
ARHGAP39, a key regulator of neurogenesis and dendrite
morphology associated with learning and memory [101]
(Fig. 5D). The eQTL minor allele, located in a transcription
factor binding cluster, was only observed in a carrier child
and their noncarrier parent within GL_007, who both pre-
sented with neuropsychiatric phenotypes.

To assess the joint contributions of each type of ex-
pression change among the individuals in our cohort, we
assessed correlations between the numbers of gene ex-
pression changes assessed in our study by family-specific
pattern (Fig. 5E). We observed three significant positive
correlations (FDR < 0.05, Pearson correlation) between
pairs of gene expression changes in each person, which
often shared the same family-specific patterns. Specific-
ally, the number of genes with differential expression
strongly correlated with the number of genes with alter-
native splicing when shared with either the carrier par-
ent (r = 0.93, FDR = 2.91 x 10~ or noncarrier parent (r
= 0.91, FDR = 4.52 x 10™*), while unique splicing events
in the offspring correlated with splicing events shared
with the noncarrier parent (r = 0.83, FDR = 0.011). To-
gether, the correlations between transcriptomic alter-
ations suggest that different types of gene expression
changes could co-occur in parents and offspring, poten-
tially due to the same inherited “second-hit” variants dis-
rupting expression of similar genes and biological
pathways, as is observed for signals in genome-wide as-
sociation studies [102].

Genes with “second-hit” variants and expression changes
show strong connectivity in a brain-specific network

Finally, to determine whether associations between tran-
scriptomic changes and “second-hit” variants in LCL
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Fig. 5 Alternative splicing, allele-specific expression, eQTL, and network analysis. A Forest plot shows classes of rare variants with significant
enrichment (Fisher's exact test, ** = FDR < 0.05, * = uncorrected p < 0.05) towards genes with alternative splicing in carrier children (n = 9) that
are shared with either carrier or noncarrier parents. Forest plot shows log-odds ratios (dots) and 95% confidence intervals (whiskers). Odds ratios,
confidence intervals, p values, and Benjamini-Hochberg-corrected FDR values for comparisons with all classes of “second-hit” variants are listed in
Additional file 4: Data S2. B Scatter plot shows isoform usage percentage for TADA2A-003 in replicates for individuals in family GL_007. Samples in
blue carry a “second-hit” splice-site variant in TADA2A and exhibit a higher frequency of the alternative isoform. C Scatter plot shows allele
frequencies for the autism-associated gene CARD11 in carrier child P2C_07, noncarrier parent F2NC_07, and carrier parent M2C_07 in GL_007.
Blue circles indicate allele frequency for haplotypes carrying a “second-hit” coding variant disrupting CARD11. D Scatter plot shows z-scores for
expression values of ARHGAP39 for all individuals with available genotypes for the gene. Individuals who carry the minor allele for the ARHGAP39
eQTL (blue dots) have higher expression of the gene than the rest of the cohort (orange dots). E Plot shows correlations among the numbers of
gene expression alterations in carrier offspring for the 13 trios assessed in our study. Colors and sizes of the circles are proportional to the
correlation coefficients between gene expression changes, where blue indicates a positive correlation and red indicates a negative correlation.
Asterisks denote significant correlations (FDR < 0.05, Pearson correlation with Benjamini-Hochberg correction). F Boxplot shows the average
shortest distances for carrier offspring (n = 13) between pairs of genes with “second-hit” coding variants and genes with identified expression
changes in a brain-specific network. Genes with expression changes were more strongly connected to genes with “second-hit” variants in the
brain-specific network than the average distances for genes within 100 permuted brain-specific networks per sample (p = 4.88 x 10~*, two-tailed
paired Mann-Whitney test). Boxplot indicates median (center line), 25th and 75th percentiles (bounds of box), and minimum and
maximum (whiskers)

samples were also relevant in the nervous system, we
assessed connectivity patterns of genes with “second-hit”
variants and altered gene expression using a brain-
specific gene interaction network [75, 76]. We generated
individual networks for carrier offspring in the 13 trios

and calculated shortest distances between genes with
protein-coding “second-hit” variants and genes with
LCL-derived expression changes in each offspring (see
“Methods”). We found that the average shortest dis-
tances between genes with “second-hits” and expression
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changes were significantly smaller in 6/13 offspring than
those derived from permuted networks (FDR < 0.05,
one-tailed z-test with n = 100 permutations). In fact,
networks for offspring in aggregate had significantly
smaller shortest distances (p = 4.88 x 10 two-tailed
paired Mann-Whitney test) than the shortest distances
from the sets of permuted networks, where genes were
randomly reassigned to different nodes in the network
(Fig. 5F). These data indicate that “second-hit” variants
closely interact with genes with expression changes de-
tected from LCL samples in a brain-specific context,
suggesting a potential mechanism for how gene expres-
sion changes that underlie developmental phenotypes
can be influenced by “second-hit” variants in the gen-
ome. However, these findings should be confirmed using
expression data from patient-derived neuronal models of
the 16p12.1 deletion, as expression changes in LCL sam-
ples may not be conserved in the nervous system.

Discussion

We previously described a two-hit model for the
16p12.1 deletion, where the presence of both the dele-
tion and “second-hit” variants determine the phenotypic
trajectory of affected children [11, 16]. Here, we propose
a potential mechanism for how the deletion and “sec-
ond-hits” jointly interact to alter clinical phenotypes by
way of the transcriptome. We found that the 16p12.1 de-
letion itself disrupts the expression of genes across the
genome through direct effects, such as chromatin inter-
actions, and through indirect effects, such as down-
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chromatin interactions were observed between regions
within the 16p12.1 deletion and flanking genes such as
STX1B and DNAH3, and 1493 genes outside of chromo-
some 16 were also dysregulated in deletion carriers. The
identification of flanking genes downregulated by the de-
letion is in line with similar findings for the 16p11.2,
1q21.1, and 22q11.2 deletion disorders [21, 103]. Each of
these CNVs exhibited altered gene expression in adja-
cent regions that is putatively mediated by chromatin in-
teractions, highlighting the importance of considering
the three-dimensional structure of the genome to eluci-
date CNV pathogenicity. Similarly, we found that “sec-
ond-hits” disrupt gene expression through both direct
and indirect mechanisms. Genes with nearby “second-
hit” variants were more likely to exhibit outlier expres-
sion and alternative splicing, and genes with “second-
hits” were more closely connected to genes with expres-
sion changes in a brain-specific network than random
sets of genes in permuted networks. In fact, we observed
11 examples of combined effects of the deletion and
“second-hit” variants towards expression in our cohort,
including the candidate neurodevelopmental genes
SYNJI and ZEB2. These synergistic effects towards gene
expression are similar to those previously observed for
eQTLs [104] and HLA alleles [105], except that these ef-
fects are potentially due to the combined effects of rare
deleterious variants. We note that only a subset (~11%)
of genes with altered expression in our cohort harbored
deleterious “second-hit” variants that could affect ex-
pression. It is likely that the downstream effects of both

stream genetic interactions (Fig. 6). For example, the deletion and “second-hit” variants could be
N
Carrier parent Noncarrier parent
“Second-hit” .
variants “Second-hit”
16p12.1 del variants
“Second-hit”
“Second-hit” variants
variants
Carrier child
“Second-hit”
variants
16p12.1 del
“Second-hit”
variants

Fig. 6 Genetic and transcriptomic mechanisms for phenotypic variability in 16p12.1 deletion families. Affected children inherit the 16p12.1
deletion (red) and a smaller number of rare “second-hit” variants (green) from a carrier parent, and a larger number of “second-hit” variants from
the noncarrier parent (blue). Altered expression of genes due to these “second-hit” variants affects nearby downstream connected genes in an
interaction network (grey), causing additional transcriptomic perturbation. Because of this, carrier children have numerous gene expression
changes compared with their carrier parents, including genes showing synergistic effects of the deletion and “second-hit” variants (orange),
potentially accounting for more severe developmental phenotypes observed in the children
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responsible for a larger proportion of gene expression
changes, along with other common variants and envir-
onmental factors. Thus, our results suggest that the
16p12.1 deletion and the “second-hit” variants interact
with each other in a complex manner to mold the shape
of the transcriptome, resulting in strong dysregulation of
developmental genes and contributing to neuropsychi-
atric features in 16p12.1 deletion carriers.

Results from our study align with previous studies,
which found that rare variants of different classes have
varying effect sizes towards gene expression [25, 87].
Our study extends this paradigm by identifying classes
of rare “second-hit” variants whose contributions to gene
expression changes differ by inheritance pattern. We
found that high-effect variants, such as whole-gene du-
plications, cause expression changes regardless of
parent-of-origin, and splice-site variants lead to changes
in isoform expression independently of inheritance. In
contrast, lower-effect variants, including missense, silen-
cer, and upstream SNVs, were more strongly associated
with gene expression changes when inherited from the
noncarrier parent than the carrier parent. These findings
indicate that noncarrier parents are more likely to pass
gene expression-altering “second-hit” variants down to
their carrier children, potentially accounting for more
severe phenotypic manifestations in children with the
deletion compared with their carrier parents (Fig. 6).
One potential explanation for why carrier children re-
ceive a higher number of deleterious variants from their
noncarrier parent is assortative mating among their par-
ents, as 8/8 carrier parents and 7/9 noncarrier parents in
our cohort manifested at least mild neuropsychiatric fea-
tures. Assortative mating has been extensively observed
among individuals with neurodevelopmental or psychi-
atric disorders [106, 107], in particular autism [108], sug-
gesting its relevance towards phenotypic variability
among deletion carriers in our cohort. Future family-
based transcriptome studies with larger sample sizes
may be able to pinpoint specific rare variants within dys-
regulated genes that are associated with distinct pheno-
types in the carrier children.

We also identified putative biological and develop-
mental pathways disrupted by both the deletion and
“second-hit” variants. For example, we found that
genes differentially expressed by the deletion were
preferentially expressed in multiple brain tissues dur-
ing development and were enriched for core signaling
and developmental pathways. In fact, knockdown of
individual homologs of 16p12.1 genes in Drosophila
melanogaster models showed neuronal phenotypes
and transcriptome disruptions, suggesting that the in-
dividual effects of multiple genes in the deletion
sensitize the genome for neuropsychiatric phenotypes
[109]. Interestingly, we found several examples of
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biological functions and mechanisms that were simul-
taneously dysregulated by both the deletion and “sec-
ond-hit” variants in the carrier children. For example,
most carrier children shared differential expression in
genes enriched for nervous system development, cell
adhesion, signaling, and locomotion with both their
carrier and noncarrier parents. These results provide
insights into how the deletion and “second-hit” vari-
ants synergistically dysregulate genes and pathways re-
lated to development, ultimately contributing towards
a wide range of developmental phenotypes observed
in children with the deletion.

Some limitations can be noted in the context of our
study. First, we investigated gene expression changes
within patient-derived LCL samples, which have reduced
relevance for brain expression. However, over 80% of
genes expressed in GTEx brain samples, as well as over
70% of neurodevelopmental disease genes, were
expressed in our LCL samples (Additional file 1: Fig.
S4A-B). Nevertheless, repeating the study in tissues that
are implicated in neurodevelopmental disorders, poten-
tially using patient-derived reprogrammed neuronal pro-
genitor cells, would verify the associations between
variants, expression changes, biological functions, and
clinical features. Second, we have a relatively small co-
hort of 32 individuals within five families. It would be
useful to determine whether the identified associations
are strengthened in a larger cohort, especially those that
did not pass multiple-testing corrections. Phenotypically
more diverse cohorts would also allow for performing
additional correlations between gene expression changes
and specific clinical features, such as whether more out-
lier genes are present among families with stronger his-
tories of neuropsychiatric disease.

Conclusions

Overall, our work supports a model for complex disor-
ders, where combinatorial effects of multiple variants
with different effect sizes affect expression of genes in
developmental pathways, which further influence the ex-
pressivity of clinical features. These results exemplify
that family-based transcriptome studies, similar to
family-based genome studies, can help explain changes
in phenotypes from parents to children and between sib-
lings, especially in complex disorders with a high degree
of intra- and inter-familial variability.
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carrier children. Table S9. This table lists identified eQTL variants in the
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Additional file 3: Data S1. This file lists differentially expressed
transcripts between carriers and noncarriers of the 16p12.1 deletion,
using both the main analysis and relatedness correction methods. It also
includes enrichment of differentially expressed genes for Gene Ontology
terms, candidate neurodevelopmental-associated genes, and genes pref-
erentially expressed in GTEx and BrainSpan datasets.

Additional file 4: Data S2. This file contains all information on the
statistic tests performed in the manuscript, including sample sizes, test
statistics, log-odds ratios, confidence intervals, p-values, and Benjamini-
Hochberg corrected FDR. * indicates p < 0.05 without multiple testing
correction, and ** indicated FDR < 0.05 after correction.

Additional file 5: Data S3. This file lists module assignments for genes
derived from weighted gene co-expression network analysis, and the en-
richment of genes in six modules that correspond to deletion carrier sta-
tus for Gene Ontology terms.

Additional file 6: Data S4. This file lists differentially expressed genes
identified in each of the offspring in all trios (n = 13 with carrier offspring
and n = 4 with noncarrier offspring) by family-specific pattern (unique oc-
currence or shared with a parent), and the enrichment of each gene set
for Gene Ontology terms.

Additional file 7: Data S5. This file lists all genes in each individual that
showed any gene expression change (differential expression, outlier
expression, alternative splicing, ASE, or eQTL minor allele), with family-
specific patterns when applicable, alongside the number of identified rare
variants disrupting each gene.

Additional file 8: Data S6. This file lists all outlier genes identified in
each individual in the 16p12.1 deletion cohort, along with their
expression z-scores, preferential expression in the human brain, and pLI
and RVIS intolerance to variation scores.

Additional file 9: Data S7. This file lists isoforms and genes with
alternative splicing identified in offspring of all trios (n = 13 with carrier
offspring and n = 4 with noncarrier offspring) by family-specific pattern
(unigue occurrence or shared with a parent).

Additional file 10: Data S8. This file lists genes with allele-specific ex-
pression identified in all individuals in the cohort, including the presence
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of rare deleterious coding variants on the overexpressed haplotype of
each gene.
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