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ABSTRACT

One challenge in engineering organisms is taking
responsibility for their behavior over many genera-
tions. Spontaneous mutations arising before or dur-
ing use can impact heterologous genetic functions,
disrupt system integration, or change organism phe-
notype. Here, we propose restructuring the genetic
code itself such that point mutations in protein-
coding sequences are selected against. Synthetic
genetic systems so-encoded should fail more safely
in response to most spontaneous mutations. We de-
signed fail-safe codes and simulated their expected
effects on the evolution of so-encoded proteins. We
predict fail-safe codes supporting expression of 20
or 15 amino acids could slow protein evolution to
∼30% or 0% the rate of standard-encoded proteins,
respectively. We also designed quadruplet-codon
codes that should ensure all single point mutations in
protein-coding sequences are selected against while
maintaining expression of 20 or more amino acids.
We demonstrate experimentally that a reduced set of
21 tRNAs is capable of expressing a protein encoded
by only 20 sense codons, whereas a standard 64-
codon encoding is not expressed. Our work suggests
that biological systems using rationally depleted but
otherwise natural translation systems should evolve
more slowly and that such hypoevolvable organisms
may be less likely to invade new niches or outcom-
pete native populations.

INTRODUCTION

The ability to engineer organisms is increasingly impor-
tant for academic, industrial and public uses (1–9). Tradi-
tional engineering disciplines have established methods for
controlling systems on the timescales of immediate input
and response (e.g. autonomous control) (10,11), and inter-
mediate learning and memory (e.g. algorithms that learn)
(12,13). However, living systems also perform on evolution-

ary timescales, realizing complicated behaviors across gen-
erations (1,14). To reliably operate engineered organisms ca-
pable of reproduction, we must learn to how to engineer lin-
eages on evolutionary timescales (15).

Evolution within a population relies on the diversity of
genetic makeups (i.e. genotypes) from which emerges a cor-
responding diversity of physiological and behavioral traits
(i.e. phenotypes). Genetic diversity is most-often generated
by error during DNA replication (i.e. mutation) and prop-
agated across generations (16,17). Individuals with pheno-
types better suited to a given environment tend to reproduce
more successfully, enriching the population with their off-
spring (17–19). Thus, to engineer the evolutionary trajecto-
ries of individual organisms competing within populations,
we must either control the processes that generate mutations
or the selective pressures acting within and among popula-
tions (20).

One direct approach to controlling the behavior of en-
gineered organisms over multiple generations is to reduce
organism fitness outside of a prescribed niche. Scientists
have long sought and realized such control of engineered
organisms for the safe advancement of fundamental re-
search (21,22). For example, biocontainment methods such
as engineered auxotrophy (23–25) or exogenously expressed
‘kill signals’ (26–32) have been widely used. However, such
methods can be detrimental to their host organisms and
may result in selective pressures that inactivate the under-
lying mechanism (33).

More general approaches for controlling behavior over
multiple generations consider altering the type and effect
of mutations that arise. Such approaches generally take ad-
vantage of degeneracy in the mapping of DNA to pro-
teins (i.e. the ‘genetic code’) to synonymously recode genes
of interest (34). Recoding approaches work by altering the
distribution of phenotypes available to an individual with-
out changing the proteins expressed by that individual. For
example, an organism can be recoded such that its initial
fitness is high but nearby regions of its mutational space
are less fit or even fatal. Such approaches have been tested
by synonymously recoding Coxsackie B3 and influenza A
viruses so that their genotypes were immediately adjacent
to deleterious genotypes, resulting in attenuated virulence

*To whom correspondence should be addressed. Email: endy@stanford.edu

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



10440 Nucleic Acids Research, 2019, Vol. 47, No. 19

via decreased evolutionary rates (35). Another approach is
to recode an organism so that its initial fitness is lowered
and no single mutation results in a significant restoration of
fitness; so-encoded organisms might be safely deployed for
a limited number of generations. Such a strategy was tested
by introducing infrequently used codon pairs into the po-
liovirus genome via synonymous recoding, resulting in both
attenuated virulence and reduced likelihood of escape mu-
tants arising during use (36). A third approach encodes an
essential gene within the coding sequence of a gene of in-
terest. Loss-of-function mutations in the essential gene are
selected against, reducing the likelihood that the gene of in-
terest is lost (Decrulle et al. 2019, preprint, 37). We note that
while recoding- and overlap-based approaches are general-
izable to most biological systems, only the local fitness land-
scape of an organism is affected; if an organism somehow
escapes its local fitness trap then it can continue to evolve
unimpeded.

A more fundamental approach aims to control the entire
fitness landscape of an organism by changing the underly-
ing mapping of genotype to phenotype. Most known life
uses the ‘Standard Code’ or a close variant thereof to as-
sign 64 nucleotide triplets (i.e. ‘codons’) to 20 unique amino
acids plus a termination signal (Figure 1A) (34,38). The
Standard Code has a highly nonrandom structure that is
optimized for translation fidelity across generations (Figure
1A and B) (34,39). For example, mutations in the Standard
Code are significantly more likely than in a randomly gen-
erated code to conserve the encoded amino acid (24% vs.
4%), and to minimize the physicochemical change upon mu-
tations that do not conserve the encoded amino acid (Fig-
ure 1D and E) (40). Redesigning the genetic code would al-
ter the type and effect of spontaneous mutations across all
genotypes, independent of the biological system using the
code. For example, recent theoretical work by Pines and col-
leagues proposed a ‘hyperevolvable’ genetic code for use in
directed evolution (hereafter ‘Colorado Code’) (41). More
specifically, Pines et al. hypothesize that decreasing synony-
mous mutation likelihoods and increasing the physicochem-
ical changes in amino acids resulting from missense muta-
tions should result in greater phenotypic changes for each
change in genotype (Figure 1C–E).

We propose the opposite––a set of ‘fail-safe’ genetic codes
designed to map mutations to deleterious phenotypes in-
dependent of the biological system in which the fail-safe
code is implemented. We designed a subset of such fail-
safe codes so that they might be readily realized using nat-
ural translation machinery alone, avoiding the need for ex-
tensive molecular reengineering. We simulated the expected
evolutionary dynamics of fail-safe encoded proteins in engi-
neered organisms as well as the interaction between popu-
lations encoded using different genetic codes. We also im-
plemented one such fail-safe code using a reduced set of
21 tRNA and found that the choosen code is capable of
synthesizing proteins in vitro. Our results suggest that fail-
safe codes might slow or altogether arrest the evolution of
protein-coding sequences in fail-safe encoded organisms.
Our results also suggest that fail-safe encoded organisms
should be less able to compete with native species if intro-
duced to new environmental contexts.

MATERIALS AND METHODS

Software

All code used herein is free online via https://github.com/
EndyLab/codon-tables/tree/manuscript.

Constructing mutation-distance networks

We made force-directed graphs to help understand the im-
pact of point mutations in any given code. Nodes repre-
sent encoded amino acids and edges represent mutations
between sense codons corresponding to those amino acids.
Two nodes are connected by an edge if there exists at least
one pair of codons, c1 and c2, encoding amino acids, a1 and
a2, such that c1 can be converted to c2 by a single point mu-
tation. The edge weight between any two amino acids a1
and a2 takes into account all possible acyclic paths between
the set of codons encoding a1 and a2, respectively, including
indirect paths that involve initial synonymous mutations.
Individual paths from c1 to c2 are weighted by an inverse
power law representing the number of point mutations nec-
essary to convert c1 to c2. Paths are then summed to give the
total edge weight.

Formally, let C = {UUU, . . . , GGG} be the set of all
triplet codons, A = {F, L, . . . , G} be the set of all amino
acids, T : c → a | c ∈ C, a ∈ A be a genetic code, and
w(a1, a2) be the edge weight between amino acids a1 and
a2:

w (a1, a2) =
C1∑
c1

C2∑
c2

pl(c1, c2)δ (c1, c2)

Where Ci = {c ∈ C | T (c) = ai }, l (c1, c2) = dist(ci , c2)
(by how many nucleotides they differ), and

δ (c1, c2)

⎧⎨
⎩1 if ∃ c̃1, c̃2 ∈ C

∣∣∣∣ l (c̃1, c̃2) ≤ 1,

c̃i reachable from ci by synonymous mutation
0 otherwise

,

We used a value of 1/12 for the parameter p ∈(0, 1) to
scale edge weights by mutational distance.

Modeling wobble decoding and tRNA promiscuity

When designing fail-safe codes we chose to decode sense
codons using the tRNA species that would recognize the
fewest additional codons. We also used the following heuris-
tic rules: NNY codons (with U or C in the wobble position)
can be decoded by tRNA species with anticodons GNN
and QNN (where Q is queuosine); generally, tRNAs can-
not discriminate NNU from NNC; similarly, NNR (with
A or G in the wobble position) are decoded by tRNAs
with modified uridine in the 34th position (e.g. cmnm5U,
mcm5U, Um, and xm5s2U); while Ile-tRNACAU can distin-
guish AUA from AUG using k2C in the 34th position, this
ability to decode NNA and not NNG does not generalize
to all NNA decoding species; and NNG is fully distinguish-
able from all other codons with an unmodified C in the 34th
position (42,43). A full description of our RNA base mod-
ification shorthand is provided (Supplementary Table S1).

https://github.com/EndyLab/codon-tables/tree/manuscript
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Figure 1. Genetic codes are expected to influence evolutionary dynamics. Table and mutation-distance network representations for the (A) Standard Code,
(B) a genetic code with random structure, (C) and the Colorado Code. Color signifies the rank-ordered hydropathy of the amino acids––isoleucine (I) is
most hydrophobic and arginine (R) is most hydrophilic. Mutation-distance networks represent amino acids as nodes. Node size represents the number of
codons allocated to each amino acid or null. Edge weights between nodes (representing amino acids a1 and a2) represent the accessibility of a2 to a1 via
point mutations. (D) Distribution of synonymous-mutation frequency (fs) for 106 randomly generated codes (gray histogram) and mean of this distribution
(black), as well as fs for the Standard Code (blue) and Colorado Code (red). (E) Distribution of mean mutation effects given a nonsynonymous mutation,
(〈�KD〉), for 106 randomly generated codes (gray histogram) and mean of this distribution (black), as well as �KD for the Standard Code (blue) and
Colorado Code (red). We defined 〈�KD〉 of a genetic code as the average over all nonsynonymous mutations (from a1 to a2) of the change in Kyte–Doolittle
hydropathy (�KD) between the two residues (�KD = | KD(a2) − KD(a1)|).

Simulating evolutionary dynamics

All simulations were carried out in Python 3.6.4 on Docker
instances running Debian 8 hosted by Amazon Web Ser-
vices (AWS). Parallelization was managed by AWS Batch.
Each simulated strain was partitioned into one of two
groups, based on population size, which were modeled inde-
pendently over a small epoch dt (0.1 generations). We mod-
eled small population-size groups using a stochastic birth-
death model. The per-individual doubling probability in an
epoch is given by pb = [1 + (fi − 〈f〉)]dt where fi is fitness of
the ith strain and 〈f〉 is the mean fitness of the population.
The corresponding death probability is fixed at pd = (1) dt.
We modeled the large population-size group analytically
with strain size Ni given by Ni(t + dt) = Ni(t)e(fi−〈f〉)dt. At
the end of each epoch, we recalculated the mean fitness of

the simulated population and reallocated strains between
the low and high population-size groups. The threshold
population size at which a strain is reallocated (εi) is strain
specific and given by εi= ξ

fi−〈f〉 , where ξ is a constant factor
(we chose ξ = 3).

We modeled the generation of new strains due to mu-
tation using a two-step process. We first draw the number
of mutants each strain will generate in a given epoch from
a Poisson distribution with an expectation value for each
strain μi = Ni Ubφidt, where Ni is the strain’s population
size, Ub is the per genome per generation beneficial muta-
tion rate (set at 10−5.5 mutations

genome − gen ), and dt is the epoch dura-
tion. φi is calculated as the fraction of missense mutations
in a genetic code that do not result in truncation, normal-
ized by that same fraction for the Standard Code. We ignore
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deleterious and neutral mutations because, under strong se-
lective pressure, the evolution of a population is largely de-
termined by beneficial mutations (44).

Each mutation is then assigned a fitness effect (dfi) drawn
from a Distribution of Fitness Effects (DFE). We mod-
eled the DFE with a generalized half-normal distribution
(P (df) = βλ

2 	( 1
β

)
e−(λ df)β ). Parameters were set at β = 1

and λ = 2 such that the average mutation would have a
fitness effect equal in magnitude to that empirically deter-
mined in (45). Stated differently, we randomly assigned the
strength of each mutation such that the average mutation
was weakly beneficial (i.e. ∼2% faster doubling than the
parental strain) and that stronger mutations were exponen-
tially less likely to occur. We then introduce a new strain
for each mutation with population size Ni = 1 and fitness
fi = fj + dfi, where fj is the fitness of the parent strain from
which the new strain mutated.

We also used two approximations to reduce computa-
tional costs. Theory suggests that mutants generated from
strains with low population-sizes have a vanishingly low
probability of establishing in the population (44). Thus
in our first approximation, we did not generate mutants
originating from the small population-size group. Our sec-
ond approximation prematurely removed low fitness strains
from the population once two conditions are met: (i) the
mean fitness of the population surpassed the fitness of that
strain and (ii) the population size of that strain is low
enough to move the strain to the small population-size
group. Our second assumption artificially inflates the mean
fitness of the simulated population by ∼0.03%.

Preparing expression plasmids

We received pSB1C3-T7-sfGFP from Eric Wei for use as
the standard-encoded expression vector (sfGFP SC) as well
as the backbone for our RED20-encoded expression vector
(sfGFP RED20). To produce sfGFP RED20, we computa-
tionally recoded the coding sequence of super-folder green
fluorescent protein (sfGFP) to only include codons used by
RED20. The recoded gene was then synthesized by Inte-
grated DNA Technologies (IDT) as a gBlock and assembled
into pSB1C3-T7 using the NEB HiFi Assembly kit (NEB#
E5520S) to produce sfGFP RED20.

Chemically competent Escherichia coli Top10 cells were
incubated with 2.5 �l of assembly product on ice for 30
min. These cells were then heat shocked at 42◦C for 30 s,
returned to ice for 2 min, and grown out in 950 �l SOC me-
dia at 37◦C for 1 h. The resulting transformants were plated
on LB agar with chloramphenicol (25 ng/�l) and grown
over night at 37◦C with shaking. Colonies were then grown
up in 50 ml TB broth with chloramphenicol (25 ng/�l) for
16 h at 37◦C with shaking. Each overnight culture was split
into five batches of 10 ml each, and plasmid was prepared
from each batch separately using QIAprep Spin Miniprep
kits (QIAGEN, Cat No./ID: 27104) and then pooled.
Final DNA product was assessed for quantity and purity
using a NanoDrop 2000 (Thermo Scientific). Annotated
sequence maps for sfGFP SC (https://benchling.com/s/seq-
gqXNUQJ41NbxOmdFD3LN) and for sfGFP RED20

(https://benchling.com/s/seq-w63RBxrXRxi6uIruvKEM)
are freely available.

Expressing protein in vivo

Chemically competent E. coli BL21(DE3) cells were trans-
formed with either sfGFP SC or sfGFP RED20 as de-
scribed above. Transformants were then plated and indi-
vidual colonies were grown up in 5 ml LB broth with
chloramphenicol (25 ng/�l) for 12 h at 37◦C with shak-
ing. These cultures were then back diluted in fresh me-
dia to an OD600 of 0.5, induced with Isopropyl �-D-1-
thiogalactopyranoside (IPTG) to a final concentration of 1
mM, and incubated at 37◦C with shaking. After induction,
cells were photographed under blue light.

Expressing protein and measuring fluorescence in vitro

We identified 20 elongator tRNA species, one for each con-
ventional amino acid, as well as the initiator tRNA from
E. coli (Supplementary Table S1). In cases where E. coli en-
codes multiple tRNA species decoding the same codon (e.g.
tRNAThr, tRNATyr and tRNAVal) we chose specific tRNA
whose biochemical function had been previously assayed in
vitro, as possible (46–49). The resulting 21 tRNA sequences
were obtained individually by direct RNA synthesis with-
out any base modifications (Agilent Technologies) and re-
suspended in nuclease free TE buffer at pH 8.0. Individ-
ual tRNAs were combined in equimolar ratio at 250 �M
each to create a RED20 tRNA 25× master mix (10 �M
final concentration per tRNA). An in vitro RED20 proto-
type was prepared by supplementing a PURExpress in vitro
expression system lacking tRNAs (PURE �tRNA, NEB#
E6840S). A standard-encoded expression system was built
by supplementing PURE �tRNA with control tRNAs sup-
plied by NEB. We added 1 �l of murine RNase inhibitor to
all in vitro reaction (NEB# M0314S). Each reaction also re-
ceived 60 pmol of either the RED20-encoded or standard-
encoded expression vector. Otherwise, reactions were as-
sembled as specified by NEB to a final volume of 10 �l.

Reactions were carried out in a SpectraMax i3 plate
reader (Molecular Devices) using clear bottom, 384-well
microtiter plates (Corning) at 37◦C for 16 h. Protein ex-
pression was measured using the same plate reader. Samples
were excited at 485 nm (9 nm bandwidth) and emission was
measured at 520 nm (15 nm bandwidth) every two minutes
following 3 s of shaking.

RESULTS

Fail-safe codes lacking translation machinery for a subset of
codons are designed to penalize missense mutation

We designed fail-safe genetic codes with reduced sets of
translation machinery as necessary to encode each express-
ible amino acid, eliminating degenerate sense codons as
possible (Figure 2). Most codons in our reduced codes are
‘null codons,’ meaning they should not be specifically recog-
nized by any tRNAs or translation factors. Genes designed
for such fail-safe codes would be encoded using the single,
specific sense codon designated for each amino acid. Mu-
tations in so-encoded open reading frames (ORFs) would

https://benchling.com/s/seq-gqXNUQJ41NbxOmdFD3LN
https://benchling.com/s/seq-w63RBxrXRxi6uIruvKEM
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Figure 2. Genetic codes can be designed to map mutations from sense
codons to null codons. Table and mutation-distance network representa-
tions of fail-safe codes. (A) FS20 requires synthetic translation machinery.
(B) RED20 can be realized using E. coli translation machinery. Both FS20
and RED20 support expression with the full set of proteinogenic amino
acids. (C) FS16 requires synthetic translation machinery. (D) RED15 can
be realized using E. coli translation machinery. Both FS16 and RED15
support expression with a reduced set of amino acids such that all point
mutations map to null codons. We omit specific amino acids in accordance
with specific rationales (Supplementary Figure S1).

most typically result in null codons. Previous work has
shown that deletions of tRNAs or release factors that re-
move all machinery decoding a particular codon are either
strongly deleterious or lethal, implying that attempting to
translate null codons should slightly reduce organismal fit-
ness (50,51).

As a first example, we designed a family of fail-safe codes
that map 20 sense codons uniquely to 20 amino acids and
one codon to a stop signal. These codes are each instan-
tiated with 20 synthetic elongator tRNAs, one synthetic
initiator tRNA, and one synthetic release factor. We call

these codes ‘Fail-Safe 20,’ or FS20, because they support
expression of all 20 conventional amino acids. There are
P(64, 21) ≈ 2 × 1036 unique FS20 codes, one of which op-
timized to map single point mutations to null codons is
shown (Figure 2A). FS20 codes that map the maximal frac-
tion of single point mutations to null codons have the same
number of sense codons adjacent only to null codons, and
of sense codons adjacent to each other via point mutation.
However, the set of sense codons adjacent to each other
via point mutation differs for each FS20 code. Engineers
might therefore encode engineered organisms using FS20
codes that maximize the likelihood of null codon muta-
tions for any given proteome. While our designs for FS20
codes anticipate eventual advances in synthetic biology suf-
ficient to realize entirely arbitrary genetic codes, building
most FS20 codes today would be nontrivial. Specifically,
most FS20 codes would require codon reassignments re-
quiring significant tRNA and tRNA synthetase engineer-
ing. While codon reassignment has been well explored for
use with non-natural amino acids involving a few codons,
such reassignment has not been reported for all 64 codons
(52–58).

To avoid reengineering all tRNAs and tRNA synthetases,
we next considered synthetic genetic codes that reuse the
translation machinery already implementing the Standard
Code. Such genetic codes can be readily realized by reusing
naturally occurring molecules. As a first example, we de-
signed a ‘reduced’ fail-safe code we named RED20 that
maps 20 sense codons uniquely to 20 amino acids, and three
codons to stop signals (Figure 2B). RED20 would require
20 natural elongator tRNAs, one natural initiator tRNA,
and the set of natural release factors. RED20 is one instance
of a family of ≈ 3 × 108 similar codes and, like FS20, is
optimized to map single point mutations to null codons,
thereby increasing the fraction of deleterious or lethal mu-
tations. Practically, RED20 can be instantiated by natural
tRNAs sourced from E. coli (Supplementary Table S1).

Fail-safe codes with reduced amino acid sets or quadruplet
codons only map mutations to null codons

While FS20 and RED20 are designed to maximize the frac-
tion of coding-sequence mutations mapping to null codons
and minimize the fraction of missense mutations, it is im-
possible to encode 20 amino acids in a 64-codon genetic
code such that each sense codon is only immediately adja-
cent to null codons. To ensure that all mutations from sense
codons map to null codons, we considered either encoding
fewer amino acids or adopting a larger codon table.

We designed a family of fail-safe codes based on the FS20
codes that only encode reduced sets of 16 amino acids (here-
after FS16, Figure 2C). FS16 codes map 16 sense codons
uniquely to 16 amino acids and one codon to a stop signal.
FS16 codes are each instantiated with 16 synthetic elon-
gator tRNAs, one synthetic initiator tRNA, and one syn-
thetic release factor. There are P(64, 17) × P(20, 16) ≈
5 × 1046 unique FS16 codes, one of which designed to map
all single point-mutations to null codons is shown (Figure
2C). Similarly, we designed a fail-safe code based on RED20
that maps 15 sense codons uniquely to 15 amino acids and
three codons to stop signals (hereafter RED15, Figure 2D).
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RED15 is instantiated with 15 natural elongator tRNAs,
one natural initiator tRNA, and the set of natural release
factors. RED15 is a member of a family of ≈ 2 × 1011 sim-
ilar codes and, like FS16, is designed to map all single point
mutations to null codons. As with RED20, RED15 could be
instantiated with tRNA sourced from E. coli (Supplemen-
tary Table S1). Because FS16 and RED15 map all muta-
tions to null codons, we call them ‘ideal’ fail-safe codes. We
selected and recommend specific FS16 and RED15 codes
on the basis of our own idiosyncratic design principles (e.g.
if one of many similar amino acids is encoded then other
similar amino acids become less important; Supplementary
Figure S1), but encourage other fail-safe code designers to
consider different choices (e.g. histidine over glutamine, or
vice versa).

We also considered genetic codes with expanded codon
sets. Quadruplet decoding occurs in nature (59–61) and has
been demonstrated experimentally (55,62–64). While the
use of quadruplet codons is currently limited to a few posi-
tions per gene (55,63,64), we considered quadruplet codon
designs in anticipation of ongoing advances in synthetic
biology. Specifically, we designed a family of quadruplet-
codon fail-safe codes (hereafter FSQUAD) with 256 avail-
able codons (Supplementary Figure S2). FSQUAD codes
would be able to encode more than 20 amino acids such
that all mutations from sense codons map to null codons,
allowing for programmable incorporation of non-natural
amino acids in a fail-safe encoded system. Like FS20- or
FS16-encoded organisms, an FSQUAD-encoded organism
should also be resistant to horizontal gene transfer. Ad-
ditionally, previous work suggests that quadruplet decod-
ing is adaptive at higher temperatures, which implies that
FSQUAD-encoded organisms may be well suited to high-
temperature applications (61).

Simulations quantify relative evolutionary rates of different
genetic codes

We simulated large asexual populations of organisms en-
coded via different fail-safe genetic codes to explore how
fail-safe genetic codes might impact behavior over many
generations. We developed a hybrid model where small
population-size lineages are treated stochastically using
a birth-death process to capture genetic drift, and large
population-size lineages are treated deterministically with
exponential growth. Mutations are generated stochastically,
the number of which is dependent on the population size
and genetic code used (44,45). The fitness effect of each mu-
tation is drawn randomly from a Distribution of Fitness Ef-
fects (DFE). The parameters of the DFE were chosen such
that its mean matched the empirically determined average
fitness-effect of a mutation (45). Stated differently, we ran-
domly generate the number of mutations, then randomly
generate the effect each mutation has on organismal fitness,
such that the number and strength of those mutations match
what we would expect to observe in an experiment (44).

During the course of a simulation, an initially mono-
clonal population generates diversity via mutation. Newer,
more fit strains arise and slowly outcompete less fit strains,

Table 1. Evolutionary rates are expected to vary across natural and fail-
safe genetic codes. Predicted evolutionary rate is reported as the change
in fitness (in units of 1/gen) per unit time (in units of gen). Mean rate of
fitness increase is reported along with standard deviation. Codes marked
with an asterisk were simulated both with and without considering tRNA
promiscuity

Genetic code Evolutionary rate (1/gen2)

Standard Code 8.7 × 10−4 ± 1.3 × 10−4

Colorado 9.8 × 10−4 ± 1.4 × 10−4

FS20 2.4 × 10−4 ± 0.9 × 10−4

FS16 0.0 × 10−4 ± 0.0 × 10−4

RED20* 3.8 × 10−4 ± 0.4 × 10−4 (no wobbling)
5.9 × 10−4 ± 1.4 × 10−4 (with wobbling)

RED15* 0.0 × 10−4 ± 0.0 × 10−4 (no wobbling)
3.2 × 10−4 ± 0.9 × 10−4 (with wobbling)

FSQUAD 0.0 × 10−4 ± 0.0 × 10−4

increasing the mean fitness of the population (Figure 3A).
We compare evolutionary rates of genetic codes by com-
paring the rates at which the mean fitnesses of populations
encoded in these codes change over time (Figure 3B). For
example, for our chosen parameters, we predict the Stan-
dard Code allows fitness to increase at a rate of 8.71 ×
10−4 1/gen2 (s.d 1.31 × 10−4 1/gen2). With the same pa-
rameters, the Colorado Code is expected to evolve only 12%
faster (9.79 × 10−4 1/gen2, s.d. 1.36 × 10−4 1/gen2).

The fail-safe codes studied here are expected to have a
much stronger effect on evolutionary dynamics (Table 1).
For example, FS20 reduced predicted evolutionary rates by
73% compared to the Standard Code (2.35 × 10−4 1/gen2,
s.d. 0.877 × 10−4 1/gen2). RED20 behaves qualitatively
similarly to FS20, despite its imposed design constraints,
yielding an expected evolutionary rate only 43% that of
the Standard Code (3.77 × 10−4 1/gen2, s.d. 0.977 ×
10−4 1/gen2). The ideal fail-safe codes FS16 and RED15
were predicted to arrest ORF evolution due to single point
mutations altogether.

Biocontainment may arise intrinsically in organisms using
fail-safe genetic codes

We hypothesized that fail-safe encoded organisms will
adapt to new environments more slowly than naturally-
encoded organisms and thus might be less able to dis-
place established populations. If true, then fail-safe encod-
ing could be used as an intrinsic biocontainment layer, one
that does not rely on a heterologous genetic function but
rather is instantiated via the encoding of the entire organ-
ism. To quantitatively assess this possibility, we simulated
competing populations of organisms encoded by both stan-
dard and fail-safe codes, exploring when and to what ex-
tent invading populations might displace established pop-
ulations. In our simulations, the invasive populations ei-
ther swept or were swept by the native populations (Figure
4A). More specifically, we defined a containment probabil-
ity, Pcontain(f0, t, T), as the likelihood that the invasive pop-
ulation will have been outcompeted by time t, given an ini-
tial invasive population fraction f0 and genetic codeT. After
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Figure 3. Simulations suggest fail-safe codes should attenuate evolution more effectively than hyperevolvable codes might accelerate evolution. (A) A
simulation of mutation-selection balance in large, asexual populations. Each line represents the population size of an isogenic lineage versus time. New
lineages arise as mutants are generated. (B) Mean fitness traces for replicates of populations (n = 1000) using the Standard Code (blue), Colorado Code
(red), FS20 (dark green), FS16 (light green), RED20 (dark orange), and RED15 (light orange). Mean fitness of a simulated batch culture (bold) and
standard deviation across replicates (shaded region) are shown.

sufficient time, the containment probability reaches a steady
state, varying only in initial population fraction (Figure 4B,
Supplementary Figure S5). We estimated the steady state
containment probability versus initial invasive population
fraction for our fail-safe codes (Figure 4C). We predict FS20
will maintain a containment probability Pcontain < 99% up
to an initial invasive population fraction f0 ≤ 36%. RED20
was able to maintain Pcontain < 99% up to f0 ≤ 14%. We pre-
dict organisms encoded in FS16 and RED15 would be out-
competed across all initial conditions simulated. Our theo-
retical results suggest that population-level biocontainment
is expected to be an intrinsic property of organisms encoded
via fail-safe codes.

A reduced set of tRNAs instantiating RED20 enables protein
expression

We sought to learn if any of our fail-safe codes might actu-
ally work. As a first test, we encoded the superfolder green
fluorescence protein (sfGFP) in both the Standard Code
(sfGFP SC) and in RED20 (sfGFP RED20). We trans-
formed plasmids expressing each gene into E. coli contain-
ing a full complement of natural tRNA. We observed that
both encodings of sfGFP were well expressed (Supplemen-
tary Figure S6). We next sought to test if a reduced set of
tRNA would express the reduced encoding of sfGFP but
not the standard encoding. Since a RED20-encoded or-
ganism does not yet exist, we created a chemically-defined
in vitro expression system with a tRNA set instantiating
RED20. Specifically, we obtained a variant of PURE––the
in vitro translation system composed of individually puri-
fied components (65)––that was lacking all tRNA (PURE
�tRNAs). We were unable to source naturally produced
tRNAs at high purity, so we elected to obtain chemically
synthesized tRNAs. We designed a set of 20 elongator
tRNAs plus an initiator tRNA that instantiate RED20
and procured them via commercial direct-RNA synthe-
sis; these synthetic tRNAs lacked all base modifications
known to affect tRNA function (42,66–68). We combined
PURE �tRNAs with the 21 synthetic tRNA to make an in
vitro RED20 expression system (PURE RED20). We used
bulk purified tRNAs to reconstitute standard-code PURE

as a control (PURE). We found that PURE RED20 ex-
pressed RED20-encoded, but not standard-encoded, fluo-
rescent protein (Figure 5). Specifically, we observed that our
RED20 system expressed RED20-encoded sfGFP at a level
8-fold higher than standard-encoded sfGFP (Figure 5B).

DISCUSSION

We designed fail-safe genetic codes that lack translation ma-
chinery recognizing the majority of codons such that indi-
vidual point mutations in protein coding sequences should
be deleterious to the host organism. We simulated the evo-
lution of populations using these codes to predict the ex-
pected effects of fail-safe genetic codes on evolutionary dy-
namics. Our fail-safe codes are predicted to reduce evolu-
tionary rates in protein coding sequences to ∼30% of the
standard code while encoding a full set of 20 conventional
amino acids, and to select against all individual point mu-
tations in organisms encoding only 15 or 16 amino acids.
The most immediately practical codes, RED20 and RED15,
should not require any tRNA or tRNA synthetase engineer-
ing to implement. As a first test, we built one RED20 code
in vitro and demonstrated expression of a protein encoded
by only 20 sense codons.

Fail-safe codes may serve as a base layer for biocontainment
strategies

Previous work has focused on containing organisms to pre-
scribed physical niches (23–32). However, full control of re-
producing populations will also require containing organ-
isms to prescribed genotypes. To ensure the reliability and
long-term stability of synthetic genetic programs, we also
need genetic containment methods. Our work suggests that
fail-safe codes can offer both physical and genetic contain-
ment. Specifically, we predict that fail-safe encoded organ-
isms will not only explore genotype space slower than or-
ganisms encoded using the standard code, but will also be
less likely to outcompete native populations in new envi-
ronmental contexts. Organisms encoded with fail-safe codes
such as FS20 or FS16 would additionally be genetically iso-
lated from natural organisms (56,69). We believe that fail-
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Figure 4. Fail-safe codes may also prevent organisms from escaping into
the environment. (A) Replicates (n = 300) of simulated competition be-
tween a native population encoded in the Standard Code and a mono-
clonal invasive population either encoded in the Standard Code with an
initial population fraction f0 = 10% (light blue) or 70% (dark blue), or en-
coded in FS20 with f0 = 70% (green). We approximate containment prob-
ability Pcontain as the fraction of simulations in which the invasive popula-
tion is eliminated. (B) Contour graphs of containment probability vs. time
(x axis) and f0 (y axis) for invasive strains using the Standard Code (n =
300 replicates). Color represents Pcontain magnitude, varying from 0 (green)
to 1 (blue). Pcontain reaches a steady state value at the limit of large t. (C)
Pcontain at steady state versus f0 for invasive strains using fail-safe codes
(n = 300 replicates). Bootstrapped-resampled traces of the data (lighter
shaded lines) are shown with colors as in Figure 3B.

safe codes could be used as a base containment layer upon
which additional safeguards can be added modularly (26).

Limitations of our evolutionary model highlight future work
in designing fail-safe codes

Our computational model of evolving populations is over-
simplified compared to the actual complexity of biology.
For example, in our model we assume a ‘flat mutation’ rate,

meaning that all base substitutions are equally likely to oc-
cur. Empirical studies refute this assumption, suggesting
separate mutation rates for ‘transitions’ (purine-to-purine
or pyrimidine-to-pyrimidine) and ‘transversions’ (purine-
to-pyrimidine or pyrimidine-to-purine). We also decided to
define our distribution of fitness effects (DFE) independent
of the identities of the amino acids substituted. A more
complex model may weigh fitness effect by the magnitude
of change between substituted amino acids as measured by
a physicochemical metric or empirically determined substi-
tution matrix designed to avoid bias towards any given ge-
netic code (70). A computational model that includes such
higher-order considerations may enable design of improved
fail-safe codes.

Additionally, we only considered point mutations, which
affect just the codon where the mutation occurred. However
some mutations, such as insertions or deletions, can disrupt
the reading frame in which a gene is translated. Shifting the
reading frame not only affects the codon in which a muta-
tion occurs, but also all downstream codons. The Standard
Code is naturally robust to frame-shift mutations, encod-
ing ‘hidden’ stop codons that terminate off-frame transla-
tion (71). More specifically, when frameshifted proteins are
translated, the Standard Code minimizes the effect of the
frameshift in two ways: (i) by encoding chemically similar
amino acids both off- and on-frame (72) and (ii) by using a
subset of 20 codons that form a circular code, meaning that
translating these codons in any reading frame will eventu-
ally recover the originally encoded signal (73,74). We believe
that unlike the Standard Code, fail-safe codes will be sensi-
tive to frameshift mutations. Since frameshift mutations af-
fect multiple codons at a given time, and since any given
codon is very likely to map to a null codon upon muta-
tion, then most frameshift mutations should result in mul-
tiple null codons. We also expect that many fail-safe codes
lack circular codes, despite this not being one of our design
considerations. While we expect fail-safe codes will penalize
frameshift mutations, future work may wish to further opti-
mize fail-safe codes by explicitly considering frameshifting.

RED20 in vitro expression has a low signal and a high noise
floor

The RED20 encoding of green fluorescent protein ex-
pressed ∼50-fold less well in a cell-free expression system
containing only 21 synthetic tRNA compared to expression
via a full set of natural tRNA sourced directly from cells.
We believe this difference is due to either a decrease in the
total protein-expression capacity of our RED20 system, or
to a reduced fraction of functional protein relative to to-
tal protein produced. More specifically, since tRNA base
modifications are known to affect tRNA function during
translation, it is possible that our unmodified synthetic tR-
NAs may reduce the efficiency of our translation system and
thus reduce the total protein produced (42,66–68). It is also
possible that our unmodified tRNAs have a reduced codon
specificity, causing an increased misincorporation rate and
thus a decreased total fraction of correctly-expressed pro-
tein. Future work could quantify the amount and identity
of translated products from an in vitro RED20 expression
system to address this question. Alternatively, optimizing
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Figure 5. A reduced set of tRNA encoding RED20 can express a functional fluorescent protein. (A) Frequency of codon usage in coding sequences for super
folder variants of GFP (sfGFP) encoded in either the Standard Code (sfGFP SC, left) or RED20 (sfGFP RED20, right). Unused codons are represented
in white, while frequently used codons are represented in red. (B) Fluorescence versus time for sfGFP encoded in the Standard Code (orange, n = 3) or in
RED20 (green, n = 4) expressed in vitro from a tRNA set encoding either the Standard Code (left) or RED20 (right). Reactions without template DNA
were included as negative controls (blue, n = 3). Mean fluorescence for a given condition, averaged across replicates (bold lines) and standard deviation
across replicates (shaded regions) are shown.

buffer composition or tRNA concentrations may reduce
this difference.

We also observed that our RED20 expression system
made small amounts of fluorescent protein from a standard
encoding of the gene, which theoretically should not be ex-
pressed at all by RED20. We believe the flourescence signal
is above the experimental noise floor as set by a total ab-
sence of template DNA (Figure 5 and Supplementary Fig-
ure S7). We also believe that this signal is not due to residual
tRNA in PURE �tRNA, given that the observed fluores-
cence is ∼10 greater than the PURE �tRNA control (Sup-
plementary Figure S7). Rather, RED20 may produce func-
tional standard-encoded sfGFP due to promiscuous decod-
ing of null codons. As mentioned, unmodified tRNAs can
have reduced codon specificities, which may allow some null
codons to be translated at low levels. Future work using ap-
propriately base-modified tRNAs are warranted.

Wobble decoding presents a general challenge for code engi-
neering

One challenge in code engineering is the tendency for tR-
NAs to recognize more than one codon due to wobble
decoding (43,67,75). For example, designs for a hypere-
volvable code generally maximize the diversity of encoded

amino acids adjacent to any given sense codon, which can
result in an ambiguous code where many codons are rec-
ognized by two differentially aminoacylated tRNAs (Sup-
plementary Figure S3). The effect of wobble decoding on
fail-safe codes should be less drastic. For example, we sim-
ulated the behavior of RED20- and RED15-encoded organ-
isms assuming that tRNAs that could perform wobble de-
coding as well as cognate decoding (Supplementary Figure
S4). Under these assumptions, RED20 and RED15 main-
tain predicted evolutionary rates 67% and 37% that of the
standard code, respectively. We also predict that organisms
using RED20 and RED15 maintain a containment prob-
ability >95% up to an invading population fraction (f0)
of 22% and 54%, respectively. Therefore, while engineering
one-to-one decoding would improve fail-safe codes, we pre-
dict that RED15 and RED20 are robust to wobble decoding
even if instantiated using native or near-native tRNA.

Predicting how wobble decoding might affect a quadru-
plet code is difficult. We might naively assume that the ad-
ditional base pair in the codon-anticodon complex would
allow FSQUAD to encode four times as many amino acids
unambiguously. If so, an ideal quadruplet fail-safe code
may be able to encode up to 32 sense positions adja-
cent only to null codons without requiring tRNAs capa-
ble of one-to-one decoding. However, engineering a full
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set of quadruplet-decoding tRNAs, the cognate aminoacyl
transferases and translation factors, and maintaining per-
fect codon–anticodon specificity has not yet been demon-
strated.

Reduced amino acid sets may still encode interesting biologi-
cal functions

One way to increase the probability of mutating to a null
codon in a fail-safe code is to decrease the number of en-
coded amino acids, thereby decreasing the number of re-
quired sense codons. But what biological functions can
be encoded with fewer than twenty amino acids? Could a
whole organism ever be encoded with a reduced amino acid
set? Of the twenty proteinogenic amino acids, ten are pre-
dicted to have resulted from biosynthesis in early terrestrial
organisms (76–78). This implies relevant biological func-
tions and perhaps entire organisms may have been encoded
with as few as ten amino acids.

As one starting point, Akanuma, Kigawa, and Yokoyoma
demonstrated a functional 213 residue enzyme depleted en-
tirely of seven amino acids, including four of the five amino
acids we removed in RED15 (79). As a second step towards
a reduced amino acid set organism, we recently replaced
cysteine from all enzymes in the cysteine biosynthesis path-
way (78). Additionally, via a search the UniProt database
(80) we found the antimicrobial peptide acanthoscurrin-2
is naturally encoded only via amino acids in our RED15
code (81). Finally, we predict that a functional GFP should
be possible via a RED15 code (Supplementary Table S2 and
Supplementary Figure S8). Taken together, while significant
additional work would be required to remove four or five
amino acids from any known natural organism, as would
be needed to realize a FS16 or RED15 code, we believe that
reduced amino acid set organisms are possible and should
be pursued systematically.

Gene duplication and tRNA evolution should be expected fail-
ure modes

We expect that increasing the rate of mutations to null
codons will add a selective pressure for noncognate trans-
lation machinery to recognize null codons. For example, ri-
bosomal ambiguity mutations (ram) impair the proofread-
ing ability of the ribosome (82,83), increasing the likelihood
that a noncognate tRNA can recognize a null codon. While
several ram mutations have been discovered in ribosomal
proteins (84–88) we expect that ram mutations in rRNA
(89–95) would be more likely to accumulate in any fail-safe
encoded organism as designed herein.

We also note that fail-safe codes would not prevent gene
duplication. Chromosomal and whole-genome duplication
events can result in novel genetic functions (96–98), fre-
quently as a response to stress (99) or other selective pres-
sures (100). Duplication of tRNA genes specifically and
subsequent mutation of the anticodon loop has been sug-
gested as a mechanism for genetic code reprogramming in
nature (101,102). Such a mechanism could generate tR-
NAs that recognize null codons, subverting any evolution-
ary containment strategy based on a fail-safe code. Such
failure modes, and likely others, would need to be accounted
for and addressed to realize fully non-evolving organisms.

Removing sense codons from a genome presents a technical
challenge

Building a fail-safe encoded organism will require the abil-
ity to encode an entire genome such that each amino acid
is represented by only one codon. However, codon us-
age has been shown to regulate gene expression, transla-
tion speed, co-translational folding of proteins (103–105),
and also the overall fitness of the organism (36). As a re-
sult, some synonymous codon substitutions appear disal-
lowed in vivo (106). It is an open question how many sense
codons are required to instantiate a living organism. Re-
cently, Fredens and colleagues created a synthetic variant
of the E. coli genome using only 61 codons, 59 of which
encode amino acids via synonymous recoding of 18,214
codons plus deletion of otherwise-essential tRNA (107).
Additionally, Ostrov and colleagues are working to remove
seven sense codons from E. coli, creating a 57-codon or-
ganism, and have reported successfully recoding 60% of E.
coli genes (108). While both examples demonstrate genome-
scale codon reduction, realizing a 15 or 20 sense-codon or-
ganism would require significantly greater genome-scale re-
coding and codon reduction. We note that recently devel-
oped tools for accelerating total genome synthesis have en-
abled researchers to more rapidly screen recoding strate-
gies, accelerating the pace of progress in the field of codon
reduction (106). As engineering whole genomes becomes
ever more feasible, so too should designing and building
genomes with fewer and fewer sense codons.

CONCLUSION

We believe that fail-safe codes will play a foundational role
in controlling the evolution of biological systems, especially
in the context of whole genome engineering. We note sev-
eral challenges that need to be addressed before any fail-
safe organism can be realized. Practically, a subset of our
proposed codes do not require reassigning sense codons
and instead rely only on the removal of some isoacceptor
tRNAs from natural translation systems, greatly simplify-
ing initial experiments. We nevertheless recognize that the
proposed work extrapolates far beyond what is currently
known. However, given the importance of exploring and
realizing non-evolving biological systems we hope that ad-
ditional academic work on fail-safe codes will be quickly
complemented by coordinated professional efforts to real-
ize fail-safe genetic codes and chassis organisms. We believe
such work will result in a sort of ‘best available technology’
for realizing responsibly engineered organisms suitable for
deployment in field, plant, animal, or patient.
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