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Previous studies have shown that the endoplasmic reticulum (ER)-anchored protein VAP

is strictly required by human papillomavirus type 16 (HPV-16) for successful infectious

entry. Entry appeared to be mediated in part through the induction of endosomal

tubulation and subsequent transport of the virion to the trans-Golgi network (TGN). In

this study, we were interested in investigating whether this mechanism of infectious entry

is conserved across multiple Papillomavirus types. To do this, we analyzed the role of

VAP and endosomal tubulation following infection with Pseudovirions (PsVs) derived

from the alpha, beta, delta, kappa, and pi papillomavirus genera, reflecting viruses that

are important human and animal pathogens. We demonstrate that VAP is essential for

infection with all PV types analyzed. Furthermore, we find that VAP and EGFR-dependent

endosomal tubulation is also induced by all these different Papillomaviruses. These

results indicate an evolutionarily conserved requirement for VAP-induced endocytic

tubulation during Papillomavirus infectious entry.

Keywords: papillomavirus, infectious entry, MICAL-L1, endosomal tubulation, PV trafficking

INTRODUCTION

The Papillomavirus family comprises over 200 different virus types, certain of which are responsible
for the development of epithelial tumors and cancer (Steben and Duarte-Franco, 2007). The L1 and
L2 capsid proteins of Papillomaviruses play essential roles in the establishment of infection. The L1
protein facilitates virus attachment to the extracellular matrix (Johnson et al., 2009), which initiates
conformational changes in the viral capsid that help in uptake of the infectious particle through
endocytosis (Yang et al., 2003; Selinka et al., 2007; Day et al., 2008), with the internalization of
Papillomaviruses believed to be dependent on EGFR signaling (Schelhaas et al., 2012; Surviladze
et al., 2012, 2013). The viral capsid undergoes disassembly due to endosomal acidification, resulting
in exposure of the L2 protein. The L2/DNA complex then separates from the majority of the
L1 with the help of cellular cyclophilins (Bienkowska-Haba et al., 2012), and most of the L1
protein is then degraded in the lysosome (Buck et al., 2013). A portion of the L2 protein spans the
endosomal membrane during this process and recruits cellular sorting factors, including members
of the sorting nexin protein family, components of the retromer, retriever and the ESCRT complex
(Bergant Marusic et al., 2012; Broniarczyk et al., 2014; Pim et al., 2015; Popa et al., 2015; McNally
et al., 2017), all of which facilitate the trafficking of the L2/vDNA complex, together with a small
amount of L1, toward the trans-Golgi network (TGN) (Day et al., 2013; DiGiuseppe et al., 2017).
The L2/vDNA complex is believed to reside in the TGN until the cell undergoes mitosis. The
events of membrane dissolution and nuclear envelope breakdown during mitosis then allow the
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L1/L2/vDNA complex to enter the nucleus and to accumulate at
PML oncogenic domains (PODs), where the initiation of viral
gene expression is believed to take place (Day et al., 2004; Pyeon
et al., 2009; Aydin et al., 2014; DiGiuseppe et al., 2017).

The early endosome, as it matures, forms tubular extensions
that are believed to play a role in cargo sorting and recycling.
These tubules detach from the endosome and traffic cargoes to
the Golgi complex or recycle them back to the plasma membrane
(Huotari and Helenius, 2011; Gautreau et al., 2014). Another
important aspect of endocytic trafficking is the establishment
of contact points between the endosome and the endoplasmic
reticulum (ER), which are critical for cargo trafficking from
the endosome to the TGN (Dong et al., 2016). The VAMP
(vesicle-associated membrane protein)-associated protein (VAP)
is thought to be important in making endosome-ER contact
points, since depletion of VAP results in phosphatidylinositol
4-phosphate (PI4P) accumulation in the endosome, and
dysfunctioning of the retromer and Wiskott-Aldrich Syndrome
Protein and SCAR Homolog complex (WASH), leading to
disruption of cargo trafficking from the endosome to the TGN
(Dong et al., 2016). We have recently shown that VAP is
important for HPV-16 PsV infectious entry and, moreover, HPV-
16 PsV induces VAP-dependent endosomal tubulation, without
which the incoming virus is unable to reach the TGN (Siddiqa
et al., 2018). In this study we were therefore interested in
investigating whether induction of tubulation was common to
different Papillomavirus types, and, furthermore, whether the
activity of VAP at endosomal-ER contact points was also required
for infectious entry of multiple PV types.

METHODS

Cell Culture
HeLa cervical cancer cells, VAP Double Knockout (DKO) HeLa
cells [generated using TALEN-based gene editing to abolish the
expression of VAP-A and VAP-B; kindly provided by Pietro de
Camilli (Dong et al., 2016)], and HEK293TT human embryonic
kidney cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal calf serum (FBS), penicillin
streptomycin (100 U/ml), and glutamine (300 µg/ml).

To confirm the absence of VAP expression in the VAP DKO
HeLa cells, the cells were harvested and lysed in E1A buffer. Cell
lysates were then analyzed by western blot for levels of VAP-B
expression in WT and VAP DKO HeLa cells.

Plasmids, Antibodies, and Inhibitor
The following plasmids were used to make PsVs: p16shell.L2-
3xFLAG-thrombin-HA (Zhang et al., 2014); pV18cap (Campos
et al., 2012) kindly provided by Samuel Campos; pV2-31LLh
(Smith et al., 2007) kindly provided by Michelle Ozbun; p2shell
(Cerqueira et al., 2017), p5shell (Buck et al., 2006), pBPVshell
(Buck et al., 2004), pCRPVshell (Roberts et al., 2007), and
pMushell (Handisurya et al., 2012), all kindly provided by
Christopher Buck. They carry bicistronic sequences encoding
the L1 and L2 capsid proteins from HPV-16, HPV-18, HPV-31,
HPV-2, HPV-5, BPV-1, SfPV-1, and MmuPV-1 respectively. The

plasmid pGL3 luci, which carries the firefly luciferase gene, was
purchased from Promega.

Mouse anti-MICAL-L1 (Novus Biologicals), rabbit anti-
α-actinin (Santa Cruz), mouse anti-VAP-B (Abcam) and
mouse anti-pERK1/2 antibody (Cell Signaling) were used for
immunofluorescence or western blotting. The EGFR-specific
inhibitor PD168393 was purchased from Sigma-Aldrich.

Pseudovirion Production and Labeling
HPV-16, HPV-18, HPV-31, HPV-2, HPV-5, BPV-1, SfPV-1,
and MmuPV-1 PsVs with a packaged luciferase reporter gene
(pGL3 luci) were generated in HEK293TT cells as described
previously (Buck et al., 2005). The purity of the PsVs samples, was
determined by SDS-PAGE analysis. The quantitation of packaged
pGL3 DNA for viral genome equivalent (vge) was carried out
by real-time PCR, using a standard curve of reporter plasmid
DNA. For EdU labeling, growth medium was supplemented with
25µM EdU at 12 h post-transfection during PsV production. All
PsVs were used in equivalent amounts to those of HPV-16 PsVs.

Infectivity Assays
Wild type (WT) HeLa and VAP DKO cells were infected with
diverse PsVs for 48 h at a multiplicity of infection (m.o.i.) of
∼50 vge/cell. Infectivity was monitored by measuring the firefly
luciferase activity using a luciferase assay system kit (Promega).

To check the role of EGFR signaling in infection, HeLa
cells were treated with 300 nM of the EGFR-specific inhibitor
PD168393 for 30min, or with DMSO as a control, prior to
infection with 50 vge/cell. The inhibitor was maintained during
the 48 h of infection and cell viability was >90%. The luciferase
activity was monitored as a measure of infectivity 48 h post-
infection, as described above.

Twenty four hours after inhibitor application, cells were
treated with 10 ng/ml of EGF for 15min to confirm that
the EGFR signaling is perturbed in response to the inhibitor.
Cell lysates were then analyzed by western blot for levels of
pERK1/2 expression.

PsVs Trafficking Assay
WT HeLa and VAP DKO cells (2.5 × 105 per well) were seeded
in 6-well plates. Cells were infected with PsVs at 150 vge/cell,
together with EdU-labeled reporter DNA, and agitated at 4◦C
for 1 h to allow virus attachment to the cells. Cells were then
washed with phosphate-buffered saline (PBS), supplemented
with DMEM, and incubated at 37◦C for 2, 8, and 24 h post-
infection. Cells were fixed with 3.7% paraformaldehyde for
15min at room temperature. Immunofluorescence for MICAL-
L1 was performed as described before (Siddiqa et al., 2018).
Images were obtained using a Zeiss Axiovert 100M microscope,
and analyzed by using an LSM image browser that supports the
LSM 510 confocal unit.

Data Analysis
The mean data from three independent experiments was
analyzed and plotted using GraphPad Prism 6. Standard error
was determined, and statistical significance was sought through
one way ANOVA or Student’s t-test. The p-value below 0.05
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was considered statistically significant and throughout, the p-
values have been defined as follows ∗p < 0.01, ∗∗p < 0.001,
∗∗∗∗p < 0.00001. Briefly, to check the infectivity of PsVs
under different conditions, relative luminescence was measured
for three independent experiments. For quantification of EdU
labeled reporter DNA in WT HeLa and VAP DKO infected cells,
at least 150 cells for 2 h post-infection from three independent
experiments for each cell line were analyzed. EdU particles were
manually counted and percentage was calculated using total cell
numbers and the data for VAP DKO cells were normalized to
the WT HeLa for each PsV type. The number of MICAL-L1
positive tubules in WT HeLa and VAP DKO cells were manually
counted and percentage was calculated using total number of
cells analyzed for UI, 2, 8, and 24 h post-infection, respectively.
At least 150 cells under each condition from three independent
experiments were analyzed if stated otherwise. The data for WT
HeLa was normalized to the tubulation observed in UI cells for
each PsVs. The data for VAP DKO HeLa cells was normalized to
tubulation observed in WT HeLa for each PsVs at specific time
points, respectively.

RESULTS

VAP Is Required for Infectious Entry With
Different Papillomavirus Types
In order to investigate the requirement of VAP for infectious
entry with different Papillomavirus types, we performed a series
of infection experiments using representative PsVs derived from
genus alpha (HPV-18, HPV-31, HPV-2), genus beta (HPV-
5), genus delta (BPV-1), genus kappa (SfPV-1), and genus
pi (MmuPV-1), all of which carried a luciferase reporter
construct and are enlisted in Figure 1A. The loss of VAP-
B in the VAP DKO HeLa cells is confirmed by western
blotting (Figure 1B). WT and VAP DKO HeLa cells were
infected with the different PsVs and, after 48 h, the cells
were harvested and luciferase activity was measured. All
PsVs were used in equivalent amounts to those of HPV-
16 PsVs (50 vge/cell). For each PsV the luciferase activity
obtained in VAP DKO HeLa cells is normalized to the
respective luciferase activity in WT HeLa cells. The results
in Figure 1C show a significant decrease in the infectious

FIGURE 1 | Infection by diverse papillomavirus types depends on the integral ER protein VAP. (A) List of different PVs analyzed in this study. (B) Western blot shows

the efficacy of VAP-B knockdown. (C) WT HeLa (CTRL) and VAP DKO HeLa cells were infected with the indicated PVs for 48 h. Relative luminescence was measured

and is plotted as a bar graph. The data shown here are the mean luciferase readings derived from 3 independent experiments, normalized against the respective

infection in WT HeLa, where the bars indicate standard errors. Significance was determined using one way ANOVA (**** P <0.00001).
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FIGURE 2 | Continued
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FIGURE 2 | Representative images of multiple PV types inducing VAP-dependent endosomal tubulation. WT HeLa (A) and VAP KDO HeLa (B) cells were infected

with HPV-16 PsVs (150 vge/cell), and fixed at 2, 8, and 24 h post-infection. Reporter DNA encapsidated within the PsVs is detected by EdU labeling (red), whereas

endogenous MICAL-L1 is stained with MICAL-L1 antibody (green) as a marker of an endosomal tubulation. Experiments are performed at least three times. Images

were captured by confocal microscopy. The same analysis was performed with HPV-18 PsVs in WT HeLa (C) and in VAP KDO HeLa (D) cells; HPV-31 PsVs in WT

HeLa (E) and in VAP KDO HeLa (F) cells; BPV-1 PsVs in WT HeLa (G) and in VAP KDO HeLa (H) cells; MmuPV-1 PsVs in WT HeLa (I) and in VAP KDO HeLa (J) cells.

Scale bar: 20µm. The right-hand column shows the zoomed images. Scale bar: 5µm.

entry of all these PV types (P <0.00001; one-way ANOVA)
when VAP expression is knocked down, indicating that the
VAP requirement for infectious entry of Papillomaviruses is
evolutionarily highly conserved.

Role of VAP in Inducing Endosomal
Tubulation With Diverse
Papillomavirus Types
After establishing that VAP is required for the efficient infectious
entry of these diverse Papillomavirus types, we were interested
to know whether VAP also has a role in inducing endosomal
tubulation, as was observed previously for HPV-16 infection
(Siddiqa et al., 2018). WT and VAP DKO HeLa cells were
infected with diverse EdU-labeled PsVs. All PsVs were used in
equivalent amounts to those of HPV-16 PsVs (150 vge/cell),
and tubulation was analyzed 2, 8, and 24 h post-infection,

using immunofluorescence staining for molecules interacting
with CasL-like 1 (MICAL-L1), which is widely used as a
marker of endosomal tubulation. HPV-16 PsVs were used as
a control and, as can be seen from Figure 2, the maximum
increase in endosomal tubulation was observed by 8 h post-
infection in WT HeLa (Figure 2A). In contrast, endosomal
tubulation was greatly reduced in VAP DKO HeLa cells
(Figure 2B), which is consistent with previous studies (Siddiqa
et al., 2018). We extended this analysis to other members
of genus alpha (HPV-18, HPV-31), to genus delta (BPV-1),
and to genus pi (MmuPV-1), to determine whether they also
induce endosomal tubulation in a VAP-dependent manner.
As can be seen from Figures 2C–J, 3A, all the Papillomavirus
types analyzed induced endosomal tubulation as early as 2 h
post-infection in WT HeLa cells. This increased at 8 h post-
infection and was reduced by 24 h post-infection, a pattern of
endosomal tubulation very similar to that seen with HPV-16
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PsVs. In contrast, when the same assays were performed in VAP
DKO HeLa cells this tubulation was largely absent, confirming
that the requirement for VAP in the induction of endosomal
tubulation is conserved across multiple Papillomavirus types.
The endosomal tubulation for each PsV in WT HeLa cells
are quantified from three independent experiments and plotted
in a bar graph (Figure 3A). The data was normalized to the
tubulation observed in the uninfected cells. The endosomal
tubulation in VAP DKOHeLa cells was also quantified, as shown
in Figure 3B. The data was normalized with respect to the
tubulation observed inWTHeLa cells for each virus, respectively.
As shown in Figure 3B, the loss of endosomal tubulation is
statistically significant (P <0.00001; Student’s t-test) across the

range of PsVs. In order to show that loss of tubulation in VAP
DKO HeLa cells is not due to differences in the uptake of

viruses, EdU was counted in WT and VAP DKO HeLa cells
from three independent experiments at 2 h post-infection and

shown in Figure 3C. Only a very slight difference in EdU was

observed in VAP DKO cells in comparison to the WT HeLa.

In our previous study we have mentioned that tubulation was
induced in HeLa cells even when virus was titrated down to 30

vge/cell. This suggests that tubulation can occur with very less
amount of virus, and its loss in VAP DKO cells is more likely
VAP dependent.

EGFR Signaling Is Important for Infectious
Entry and Endosomal Tubulation
Previous studies have shown that loss of MICAL-L1 perturbs
EGFR recycling back to the plasma membrane (Abou-Zeid et al.,
2011), and EGFR signaling has also been shown to play an
important role in the infectious entry of HPV (Surviladze et al.,
2012). We therefore hypothesized that EGFR signaling might
also be playing a role in Papillomavirus-induced tubulation,
as this would indicate a requirement for endocytic uptake of
the incoming virus for tubulation to occur. To examine this
possibility, HeLa cells were first treated with 300 nM of the
EGFR-specific inhibitor PD168393. Efficacy of the inhibition
was ascertained by measuring pERK1/2 by western blotting
(Figure 4B). HeLa cells were infected with the HPV-16 PsVs
and, as can be seen from Figure 4A, treatment with inhibitor
resulted in a dramatic decrease in HPV-16 infectious entry, which
is consistent with previously published studies (Surviladze et al.,
2012). The role of EGFR signaling in endosomal tubulation
was then ascertained by treating HeLa cells with PD16893, and
then infecting them with EdU-labeled HPV-16 PsVs. Cells were
then fixed and stained for MICAL-L1 at 8 h and 24 h post-
infection. As can be seen from Figure 4D, inhibition of EGFR
signalling resulted in dramatic decrease in endosomal tubulation
in comparison to control in Figure 4C. Having shown that

FIGURE 3 | The number of tubules and EdU labeled viral DNA in WT HeLa and VAP KDO HeLa cells was quantified. At least 150 cells under each condition from

three independent experiments were analyzed. (A) Number of endosomal tubules in WT HeLa cells were counted for UI, 2, 8, and 24 h post-infected cells and data

was normalized to the uninfected cells. The data shown here is the mean number of tubules. An increase in tubulation was observed for all PV types analyzed: the

increase observable as early as 2 h, becoming maximum at 8 h with a reduction at 24 h post-infection. Bars indicate standard errors. (B) Number of endosomal

tubules in VAP-DKO HeLa cells were counted and data was normalized to the number of tubules counted in the WT HeLa for each respective PsV type (CTRL). Data

shown here is the mean number of tubules. The dramatic decrease in tubulation in the absence of VAP is significant as found by Student’s t-test comparing UI, 2, 8,

24 h WT with UI, 2, 8, 24 h VAP DKO HeLa cells for each PsVs, respectively (**** P <0.00001). Bars indicate the standard error (C) EdU labeled viral DNA in VAP-DKO

HeLa cells was counted for 2 h post-infection and data was normalized to the EdU counted in the WT HeLa for each PsV type (CTRL). The data shown here is the

mean number of EdU particles. There is very slight difference in EdU in the absence of VAP. Bars indicate the standard error.
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tubulation is lost in the absence of EGFR signaling, we were next
interested in determining whether tubulation would be perturbed
if EGFR signaling was abolished once infection had already been
established. Cells were infected with HPV-16 PsVs and treated
with EGFR-specific inhibitor at 6 h post-infection. As can be
seen from Figure 4E, inhibition of EGFR signaling post-infection
had no effect on endosomal tubulation. The data from three
independent experiments is quantified and plotted in a bar graph
(Figure 4F). The data was normalized to the tubulation observed
in the uninfected cells. The loss of endosomal tubulation in
presence of EGFR inhibitor is statistically significant (P <0.001;
Student’s t-test).

This suggests that EGFR signaling is required in the early
stages of virus infection, most likely promoting virus endocytosis,
which is in turn required for endosomal tubulation. However,
once the virions have been endocytosed, the subsequent
abrogation of EGFR signaling does not affect the endosomal
tubulation process.

DISCUSSION

Endocytic trafficking plays an essential role in the successful
infectious entry of HPV-16, as it allows the transport of viral

cargo from endosome to TGN, from whence it subsequently
enters the nucleus. We had previously shown the induction of
endosomal tubulation in response to HPV-16 PsVs infection,
as indicated by MICAL-L1 imaging (Siddiqa et al., 2018).
However, these events of endosomal tubulation depend upon the
ER-associated VAP protein, without which the incoming viral
DNA/L2 fails to reach the TGN and instead remains trapped
in Vps29-TGN46 hybrid vesicle structures. Our previous study
has shown that in the absence of VAP, HPV-16 infection is not
blocked before capsid uncoating, indicating that infectious virus
entry is not blocked from the beginning (Siddiqa et al., 2018). In
the current study we have shown that VAP protein is essential
for the infectious entry of diverse Papillomavirus genera. This
in turn is also required for virus-induced endosomal tubulation
and suggests that ER-endosome contact points are important
for trafficking the incoming viruses to the TGN. Moreover,

EGFR signaling plays an essential role in this process at the
early stages of virus infection, indicating that viral endocytosis

is required for the induction of endosomal tubulation. However,

it needs to be emphasized that some Papillomavirus infectious
entry still occurs despite the complete loss of VAP in the VAP

DKO cells. This suggests that Papillomaviruses most likely make
use of multiple entry pathways, in which there are substantial

FIGURE 4 | EGFR signaling is required for virus uptake and endocytic tubulation. (A) HeLa cells were treated with 300 nM of the EGFR-specific inhibitor (PD168393).

DMSO-treated cells were used as a control. Cells were infected with HPV-16 PsVs (50 vge/cell) carrying a luciferase reporter plasmid and luciferase activity was

measured at 48 h posttransduction. The data shown are the mean luciferase readings from three independent experiments, where bars indicate standard errors.

Significance was determined using Student’s t-test (* P <0.01). (B) Western blot for p-ERK1/2 following 10min EGF (10 ng/ml) exposure in the presence or absence

of PD168393 was performed in HeLa cells. (C) HeLa cells were treated with DMSO and infected with HPV-16 PsVs (150 vge/cell) for 8 and 24 h. Tubulation was

detected with MICAL-L1 (green). (D) HeLa cells were treated with 300 nM PD168393 and infected with HPV-16 PsVs (150 vge/cell) for 8 and 24 h. (E) HeLa cells were

infected with HPV-16 PsVs (150 vge/cell) and treated with 300 nM PD168393 6 h post- infection. Scale bar: 10µm. The right-hand column shows the zoomed

images. Scale bar 5µm. (F) The number of tubules in HPV-16 PsVs infected HeLa cells (CTRL), EGFR inhibitor treated cells and 6 h post-infection EGFR inhibitor

treated cells were quantified. At least 50 cells under each condition (UI, 8 and 24 h infection) from three independent experiments were analyzed and data was

normalized to the uninfected cells. Data shown here is the mean number of tubules. The dramatic decrease in tubulation in the absence of EGFR signaling is

significant as found by Student’s t test comparing 8 h untreated to inhibitor treated cells (** P <0.001). Bars indicate the standard error.
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elements of redundancy. This has been shown in many similar
studies, where loss of a particular trafficking component does
not necessarily block infectious entry completely but results in a
marked reduction in the efficiency of infection (Bergant Marusic
et al., 2012; Lipovsky et al., 2013; Cerqueira et al., 2015; Pim et al.,
2015; Grassel et al., 2016).

VAP provides the contact point between the ER and
endosome. One aspect of these contact points is that they
facilitate endosomal fission: when cargo-containing endosomal
tubules or vesicles come into contact with the ER, they are
marked by the retromer-associated protein FAM-21, which
defines the time and position of endosomal fission (Rowland
et al., 2014). It has been suggested that endosome maturation
and trafficking is coupled to ER contact points. Interestingly,
these contact points increase in number as the endsome matures
(Friedman et al., 2013). It is likely that VAP-dependent ER-
endosome contact points facilitate the ER-mediated cleavage
of virion-positive vesicles, which then reach the TGN. Further
studies are needed to fully understand how the incoming virions
affect tubulation, and how diverse papillomaviruses use this
system to their advantage.

MICAL-L1 is frequently used as a marker of endosomal
tubulation (Sharma et al., 2009; Giridharan et al., 2013; Compeer
and Boes, 2014; Etoh and Fukuda, 2019). Its precise function
is not known, however it has been shown to play a role
in recycling certain cargoes, including transferrin and EGFR,
from the elongated tubular endosomal network (ETEN) and
late endosomes toward the plasma membrane (Compeer and
Boes, 2014). The presence of HPV-16 positive MICAL-L1
tubules (Siddiqa et al., 2018) indicates that ETEN might play

a role in tubules destined for the TGN, as well as in those
trafficking to the plasma membrane. The evidence suggesting a
role for MICAL-L1 in EGFR recycling is further strengthened
by another study that shows the F-BAR protein PACSIN2
(an alternative marker for endosomal tubulation) is involved
in the regulation of EGFR signaling (Kreuk et al., 2012).
Our study shows loss of endosomal tubulation when EGFR
signaling is blocked, pointing to the role of EGFR signaling
both in infection and in virus-induced endosomal tubulation.
However, more work is required to validate the precise
mechanism involved.

Taken together, these results demonstrate a highly conserved
role for endosomal-ER contact in infection with multiple
Papillomavirus types, and suggest a highly conserved pathway of
endosomal trafficking, via ER-associated vesicular processing, to
ensure viral entry into the TGN.
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