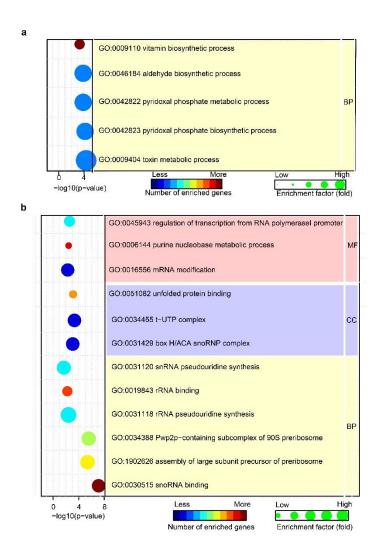
Supplementary Information

Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in

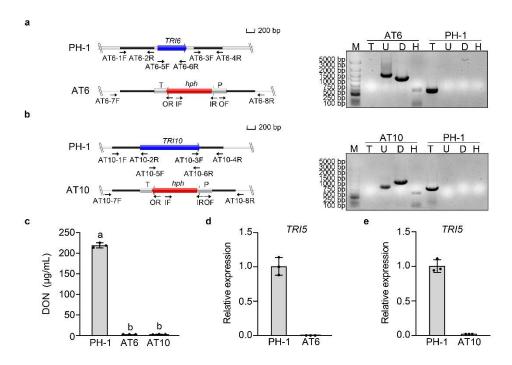
Fusarium graminearum

Panpan Huang^{1,2}, Xiao Yu¹, Huiquan Liu¹, Mingyu Ding¹, Zeyi Wang², Jin-Rong Xu²*, and Cong Jiang¹*


¹ State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.

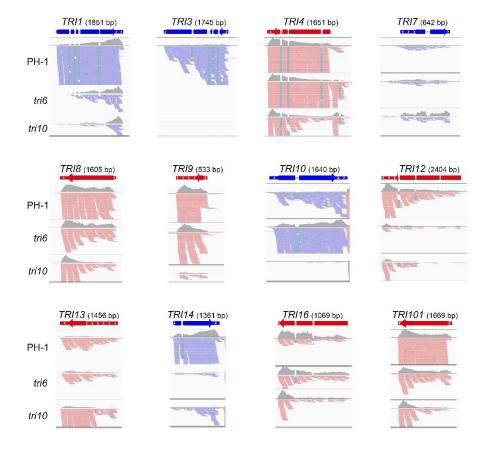
² Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907. USA.

Contents:

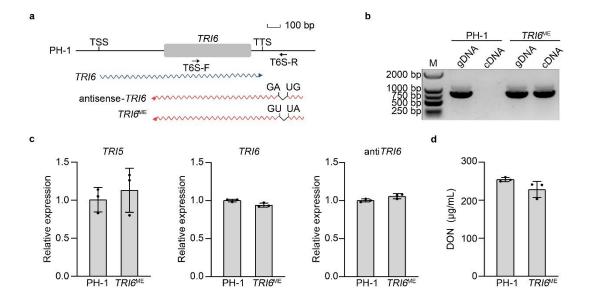

- I. Supplementary Figure 1-7
- II. Supplementary Table 1-3

I. Supplementary Figures

Supplementary Fig. 1 GO enrichment analysis with DEGs in the tri6 and tri10 mutants.


a Enriched gene ontology (GO) terms in genes with down-regulated transcripts in the *tri6* mutant.
b Enriched gene ontology (GO) terms in genes with down-regulated transcripts in the *tri10* mutant. MF, molecular function; CC, cell component; BP, biological process.

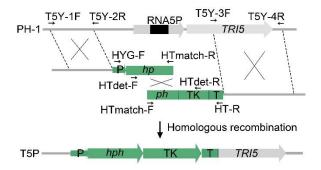
Supplementary Fig. 2 Generation of the *tri6* and *tri10* gene replacement mutants by an inverted *hph* cassette.


a Schematic drawing of the primers used to generate gene replacement transformants AT6 and screen for knockout mutants (left panel). The upstream and downstream flanking sequences of the TRI6 gene were amplified with primer pairs AT6-1F/AT6-2R and AT6-3F/AT6-4R and connected to the inverted *hph* cassette to generate gene replacement constructs. P, TrpC promoter; T, CaMV ployA signal terminator. DNA isolated from the wild-type strain PH-1 and tri6 mutant (AT6) for the PCR verification of TRI6 deletion (right panel). PCR products amplified by primer pairs AT6-7F/OR (lane U) and OF/AT6-8R (lane D) showed the occurrence of homologous recombination at the upstream and downstream flanking sequences of the TRI6 gene, respectively. Lane T was amplified with primer pairs AT6-5F and AT6-6R to show the deletion of TRI6 genes. Lane H showed the amplification of the inverted hph gene with primers IF and IR. M, molecular marker. **b** Schematic drawing of the primers used to generate gene replacement transformants AT10 and screen for knockout mutants (left panel). The upstream and downstream flanking sequences of the TRI10 gene were amplified with primer pairs AT10-1F/AT10-2R and AT10-3F/AT10-4R and connected to the inverted hph cassette to generate gene replacement constructs. DNA isolated from the wild-type strain PH-1 and tri10 mutant (AT10) for the PCR verification of TRI10 deletion (right panel). PCR products amplified by primer pairs AT10-7F/OR (lane U) and OF/AT10-8R (lane D) showed the occurrence of homologous recombination at the upstream and downstream flanking sequences of the TRI10 gene, respectively. Lane T was amplified with primer pairs AT10-5F and AT10-6R to show the deletion of TRI10 genes. Lane H showed the amplification of the inverted hph gene with primers IF and IR. M, molecular marker. c Deoxynivalenol (DON) levels in 7-day-old LTB cultures of wild-type

PH-1, AT6, and AT10 transformants. **d** Assayed for the expression of TRI5 by qRT-PCR with RNA isolated from 3-day-old LTB cultures of the wild-type PH-1 and AT6. **e** Assayed for the expression of TRI5 by qRT-PCR with RNA isolated from 3-day-old LTB cultures of the wild-type PH-1 and AT10. For each gene, its expression level in PH-1 was arbitrarily set to 1. For **c**, **d**, and **e**, mean and standard deviation were estimated with data from three (n = 3) independent replicates (marked with black dots on the bars). For DON production, different letters indicate significant differences based on the one-way ANOVA followed by Turkey's multiple range test. Differences were considered statistically significant when p-value is < 0.05. The exact p-values are shown in the Source Data file.

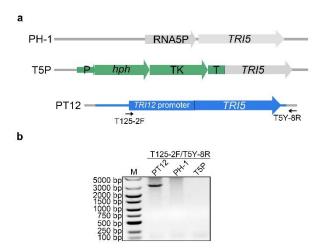
Supplementary Fig. 3 Expression profiles of the TRI genes without antisense transcripts.

Predicted ORFs of marked *TRI* genes and read counts of their transcripts in RNA-seq data of PH-1 and the *tri6* and *tri10* deletion mutants. No antisense transcripts of these *TRI* genes were observed. The length of transcripts was indicated in the figure.



Supplementary Fig. 4 The antisense transcripts of TRI6.

a Schematic drawing of the TRI6 and $TRI6^{\text{ME}}$ alleles and its sense and antisense transcripts. Specific primers for PCR verification were indicated. **b** Verification by PCR through specific primer T6S-F/T6S-R. RNA isolated from 3-day-old LTB cultures of PH-1 was used for cDNA synthesis. Mutations on the splicing site disrupted the intron splicing in the $TRI6^{\text{ME}}$ strain. M, molecular marker. **c** Relative expression levels of TRI5, TRI6, and antisense-TRI6 were assayed by qRT-PCR with RNA isolated from 3-day-old LTB cultures of PH-1 and $TRI6^{\text{ME}}$ transformant. For each gene, its expression level in PH-1 was arbitrarily set to 1. **d** DON production in 7-day-old LTB cultures of PH-1 and $TRI6^{\text{ME}}$ transformant. For **c** and **d**, mean and standard deviation were estimated with data from three (n = 3) independent replicates (marked with black dots on the bars). For DON production, no significant statistical differences were observed based on the two-tailed unpaired t test. The exact p-values are shown in the Source Data file.


Supplementary Fig. 5 Full-length transcript of RNA5P.

Two isoforms of RNA5P are formed due to alternative splicing of the intron and are predicted to encode two small proteins that share the same stop codon. Two isoforms of RNA5P were underlined in red and blue, respectively. The GU-AG splicing sites were indicated with red font. The red arrow marks 3×FLAG.

Supplementary Fig. 6 Schematic drawing of the primers used to generate gene replacement transformants T5P (the $TRI5^{\Delta promoter}$ mutant).

The upstream and downstream flanking sequences of the TRI5 gene were amplified with labelled primer pairs and connected to the hygromycin phosphotransferase (hph)-thymidine kinase (TK) fusion cassette to generate the $TRI5^{\Delta promoter}$ mutant (T5P). P, TrpC promoter; T, CaMV ployA signal terminator.

Supplementary Fig. 7 PCR verification of the P_{TRI12} -TRI5 transformants.

a Schematic drawing of RNA5P in the upstream region of TRI5 and the generation of the $TRI5^{\Delta \text{promoter}}$ (T5P) and P_{TRI12} -TRI5 (PT12) transformants. b PCR products were amplified with primer pairs T125-2F and T5Y-8R from genomic DNA isolated from the wild-type strain PH-1, T5P ($TRI5^{\Delta \text{promoter}}$ transformant), and PT12 (P_{TRI12} -TRI5 transformant). PCR products amplified from the DNA templates of PT12 transformant showed the replacement of the TRI5 promoter with that of TRI12. DNA template isolated from the wild-type PH-1 (WT) and T5P ($TRI5^{\Delta \text{promoter}}$ transformant) was used as a control. M, molecular marker.

II. Supplementary Tables
Supplementary Table 1. Strains of Fusarium graminearum used or generated in this study.

Strains	Brief description	References	
PH-1	Wild-type strain of <i>F. graminearum</i>	(Cuomo et al., 2007)	
tri6	The <i>tri6</i> deletion mutant of PH-1	(Seong et al., 2009)	
tri10	The tri10 deletion mutant of PH-1	(Seong et al., 2009)	
TRI6 ^{AD}	Deletion of the promoter of antiTRI6 in PH-1	This study	
tri5	The tri5 deletion mutant of PH-1	This study	
RAT1	P _{RP27} -anti <i>TRI5</i> transformant of PH-1	This study	
RAT2	P _{RP27} -anti <i>TRI5</i> transformant of PH-1	This study	
L3F	RNA5P-3×FLAG-T _{CaWV} transformant of PH-1	This study	
EF1	ESA1-3×FLAG transformant of PH-1 (Jiang et al., 2		
T5P	Deletion of the promoter of TRI5 in PH-1	This study	
$RNA5P^{M}$	Transformant with a nucleotide inserted in the	This study	
	RNA5P		
PT12	P _{TRI12} -TRI5 transformant of T5P	This study	
LT7	P _{RP27} -RNA5P-T _{CaWV} transformant of PH-1	This study	
LT10	P _{RP27} -RNA5P-T _{CaWV} transformant of PH-1	This study	
TR1	P _{TrpC} -RNA5P transformant of T5P	This study	
TR2	P _{TrpC} -RNA5P transformant of T5P	This study	
ATR1	P _{TrpC-inverted} -RNA5P transformant of T5P	This study	
ATR3	P _{TrpC-inverted} -RNA5P transformant of T5P	This study	
TM6	Transformant with GTGA to TGAG mutation in	This study	
	the promoter of RNA5P		
TM66	Transformant with GTGA to TGAG mutation in	This study	
	the promoter of RNA5P		
AT6	The tri6 deletion mutant of PH-1 with the	This study	
	replacement by reverse-transcribed hph cassette		
AT10	The tri10 deletion mutant of PH-1 with the	This study	
	replacement by reverse-transcribed hph cassette		
$TRI6^{\mathrm{ME}}$	Transformant of <i>TRI6</i> ^{AD} with the mutation on the	This study	
	splicing sites of antiTRI6		

Supplementary Table 2. DEGs up- or down-regulated in both the *tri6* and *tri10* mutants. Up-regulated DEGs

Up-regulated DEGs Gene ID Annotation					
FG1G13350	Hypothetical protein				
FG1G17480	Hypothetical protein				
FG1G36450	Nik-1 protein				
FG1G36460	Isoprenylcysteine carboxyl methyltransferase				
FG1G50780	Hypothetical protein				
FG2G10860	Hypothetical protein				
FG2G12010	Glucose-repressible protein Grg1				
FG2G12090	MFS transporter				
FG2G13970	Cryptochrome DASH				
FG3G19710	Extracellular serine-rich protein				
FG3G21560	Heam oxygenase-like protein				
FG3G30990	Kes1 protein				
FG4G20830	Allergen Fus c 3 protein				
FG4G23950	Hypothetical protein				

Down-regulated DEGs						
Gene ID	Annotation					
FG1G00280	O-methylsterigmatocystin oxidoreductase					
FG1G01160	TRI1					
FG1G02270	Hypothetical protein					
FG2G09410	Phosphoenolpyruvate carboxykinase					
FG2G20970	Aminoglycoside phosphotransferase protein					
FG2G26160	TRI3					
FG2G26190	TRI5					
FG2G26220	TRI11					
FG2G26240	TRI12					
FG2G26260	TRI14					
FG3G00040	Integral membrane protein PTH11					
FG3G04840	Pyridoxine biosynthesis protein PDX1					
FG3G04850	Glutamine amidotransferase					
FG4G08380	Aurora protein kinase					
FG4G21810	Hypothetical protein					
FG4G22230	Omega-6 fatty acid desaturase					
FG4G22330	TRI101					

Supplementary Table 3. The TPM (Transcripts Per Million) values of RNA5P, *TRI5*, anti*TRI5*, *TRI6*, anti*TRI6*, and a housekeeping gene *ACTIN* in PH-1.

RNA5P	TRI5	anti <i>TRI5</i>	TRI6	anti <i>TRI6</i>	ACTIN
1.68	175.55	3.81	27.92	8.66	203.98