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A B S T R A C T

Corona virus disease 2019 (COVID-19) testing relies on traditional screening methods,

which require a lot of manpower and material resources. Recently, to effectively reduce

the damage caused by radiation and enhance effectiveness, deep learning of classifying

COVID-19 negative and positive using the mixed dataset by CT and X-rays images have

achieved remarkable research results. However, the details presented on CT and X-ray

images have pathological diversity and similarity features, thus increasing the difficulty

for physicians to judge specific cases. On this basis, this paper proposes a novel coronavirus

pneumonia classification model using the mixed dataset by CTand X-rays images. To solve

the problem of feature similarity between lung diseases and COVID-19, the extracted fea-

tures are enhanced by an adaptive region enhancement algorithm. Besides, the depth net-

work based on the residual blocks and the dense blocks is trained and tested. On the one

hand, the residual blocks effectively improve the accuracy of the model and the non-linear

COVID-19 features are obtained by cross-layer link. On the other hand, the dense blocks

effectively improve the robustness of the model by connecting local and abstract informa-

tion. On mixed X-ray and CT datasets, the sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), area under curve (AUC), and accuracy can all reach

0.99. On the basis of respecting patient privacy and ethics, the proposed algorithm using

the mixed dataset from real cases can effectively assist doctors in performing the accurate

COVID-19 negative and positive classification to determine the infection status of patients.
� 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

The director-general of the World Health Organization

announces [1] that the 2019 infectious coronavirus is named
corona virus disease 2019 (COVID-19) on February 11, 2020. As

of August 31, Beijing time, China, 219millionpeopleworldwide

havenovel coronaviruspneumoniaand4million 480 thousand

deaths have been reported [2]. Medical imaging [3] has become
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an indispensable part of disease diagnosis and treatment. The

latest research shows that with the development of medical

imaging [4,5], computed tomography (CT) [6–9], and X-ray

images [10–12] can effectively assist doctors to judge the

COVID-19 infection status. Here, the CT images are the sensi-

tive positive COVID-19 diagnostic method, which has good

timeliness. Conversely, X-ray images with fast imaging speed

and low radiation damage have becomemore andmore impor-

tant in the process of the COVID-19 diagnosis [13,14].

Recently, because deep learning [15] can be used to assist

doctors in medical image processing, significant research

results have been achieved in the classification of negative

and positive COVID-19 [16]. At present, the existing deep

learning models [17] for negative and positive COVID-19 clas-

sification include Alexnet [18], Vgg [22], Resnet [26], and Den-

senet [27]. The traditional deep learning model mainly

includes the following issues:
� As the network deepens, the gain in model performance is

not visible, and major network degradation problems may

develop as a result of the overzealous pursuit of network

depth and the expression capabilities of the non-linear

model.

� The feature maps in the convolution kernel with different

scales are coupled to improve the feature dimension of the

single layer, resulting in a considerable amount of dupli-

cated information. The computational complexity has

increased exponentially as the number of network levels

has grown.

� To increase the model’s fitting speed, a large-scale kernel is

utilized to retrieve the lesion’s local feature. Meanwhile,

the feature maps cannot be separated precisely during

the convolution phase, resulting in a loss of coherence in

the retrieved feature.

� Due to the means of the sudden drop in the feature dimen-

sion, information loss may occur in some traditional net-

works, which reduces the accuracy of the model.

Here, Maghdid et al. [19] combine the Alexnet model with

transfer learning, which can effectively classify negative and

positiveCOVID-19onmixedX-rayandCTimages. Then,Turko-

glu et al. [20] caneffectively improve the classificationaccuracy

through mitigation feature selection algorithms and support

vector machine (SVM). However, this structure contains more

layers and increasesmemory consumption. To solve this prob-

lem, Loey et al. [21] combine the Generic Advantageous Net-

work (GAN) with the Alexnet model. The above networks [19–

21] improve the Alexnet model through preprocessing and

transfer learning, which use dropout randomly inactivated

neurons in the full connection layer to prevent the over-

fitting phenomenon. However, due to the non-differentiable

points in the Alexnet model, some neurons are not activated

after updating the parameters. On this basis, the Vgg model

replaces the receptive domain with the same size by reusing

the convolution kernel with the same size. Sitaula et al. [23]

propose a novel Vgg model using the attentionmodule, which

can effectively fine-tune the parameters in the classification

process by capturing the spatial relationship. Shibly et al. [24]

can effectively detect COVID-19 patients from the chest X-ray

images by fast regions with a revolutionary neural networks

framework. Lee et al. [25] use the deep convolution neural net-
work to optimize the parameters of the Vgg network and fine-

tune each backbone network. However, because most of the

training parameters come from the first full connection layer,

the storage cost of the Vgg network training may be large.

Resnet model realizes feature connection across layers

through bottleneck convolution, which can directly transfer

the weight without any intermediate transformation to the

next layer. To reduce the impact of weight noise on the clas-

sification accuracy, Zhou et al. [28] input the regrouped

images into the residual blocks for feature extraction and

then input the extracted features into the support vector

machine for recognition. Sakib et al. [29] classify negative

and positive COVID-19 by using Gan and general data

enhancement methods. Hira et al. [30] effectively obtain the

low-level features of COVID-19 by using the pre-trained net-

work weights and fine-tuning the whole model at an appro-

priate learning rate. The Resnet model obtains more

features based on the residual blocks to deepen the network

and avoids network degradation through the cross-layer link.

However, because the convolution kernel of the Resnet model

can not be divided by the corresponding upper feature map,

the problem of feature loss will occur.

To solve this problem, the Densenet model based on the

dense blocks connects the non-linear extracted information

by comprehensively using the shallow features. Tabrizchi

et al. [32] and Zhang YuDong et al. [33] improve the Densenet

model and transfer learning to improve the classification

accuracy of COVID-19. Chowdhury et al. [34] use the pre-

trained deep learning model to automatically detect COVID-

19 from chest X-ray images. It can overcome the problem of

feature loss by dense blocks and fine-tuning the pre-trained

network. The Densenet model connects the lesion features

to obtain a decision function with good generalization perfor-

mance. However, a large amount of redundant information

will appear in the connection process, which can change fea-

ture dimensions through bottleneck convolution.

Thus, a novel coronavirus pneumonia classification model

based on the mixed dataset by X-ray and CT images is pro-

posed in this paper. The adaptive region enhancement algo-

rithm then enriches the COVID-19 features. By using a

cross-layer link, the residual blocks can yield non-linear

COVID-19 properties. Besides, the robustness can be

improved by the dense blocks by connecting abstract and

local properties. The mixed COVID-19 dataset can be classi-

fied using the proposed COVID-RDNet model. Its main contri-

butions are as follows:
� The proposed COVID-RDNet model may successfully

tackle the problem of network degradation in conventional

deep learning by obtaining a network with the ability to

represent local and global features.

� Based on a mixed dataset of public X-ray and CT images,

the proposed model can identify negative and positive

COVID-19.

� The proposed method can effectively assist doctors in the

diagnosis and treatment of COVID-19 patients.

The paper is organized as follows. In Section II, the struc-

ture and research significance of the proposed model are

introduced. Section III presents the adaptive region enhance-

ment algorithm and the proposed COVID-RDNet model. Sec-
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tion IV analyzes the experimental results. The proposed

model is compared with state-of-the-art classification algo-

rithms. Finally, the conclusion is given in Section V.

2. Methodology and theory

2.1. Related work

2.1.1. The Resnet model
To effectively solve the network degradation in traditional

deep learning, the Resnet model [26] obtains local and global

feature expression by adjusting the number of channels and

stacking layers in the residual block. The Resnet model [27–

30] connects an across the layer to the next layer directly

without any change of intermediate weight matrix. Besides,

it can make the connection and propagation of local and glo-

bal features of lesions smoother. Because the local feature of

COVID-19 can be directly transmitted to the corresponding

abstract information without any intermediate weight matrix

transformation, the Resnet model has strong depth adaptive

ability. The corresponding structure is shown in Fig. 1.

By connecting the extracted abstract features with the cor-

responding upper features maps, the gradient vanishing

problem can be effectively overcome. For the layer Lay

XIL ¼ XIl þ
PLay�1

c¼l FðXIc;WcÞ of the Resnet model, its partial

derivative is as follows:

@Loss
@XIl

¼ @Loss
@XILay

@XILay

@XIl
¼ @Loss

@XILay
1þ @

@XIl

XLay�1
c¼l

F XIc;Wcð Þ
 !

ð1Þ

When the Lay-th layer and the corresponding XIl contain kc
coefficient, the Lay-th layer can be expressed as:

@Loss
@XIl

¼ @Loss
@XILay

YLay�1
c¼l

kc

 !
þ @

@XIl
F̂ xc;Wcð Þ

 !
ð2Þ

However, the Resnet model uses convolution kernels with

odd sizes for feature extraction. When the kernel size set by

the model cannot be completely divided by the step size, it

is very easy to increase the redundancy information of fea-

ture maps and result in the uneven overlap. Especially for

the COVID-19 images, due to the small gray difference
Fig. 1 – The structure o
between the COVID-19 region and the normal region, this

overlapping redundancy can be enlarged. Therefore, the pro-

posed algorithm uses the residual blocks to extract COVID-19

local information, which can not only effectively obtain the

non-linear features of lesions, but also overcome the problem

of feature loss caused by a convolution operation.

2.1.2. The Densenet model
With the increasing number of deep network layers, batch

normalization can alleviate the problems of gradient vanish-

ing. However, because the model calculation increases with

the increase of network depth, the training efficiency is low

and there is still the problem of network degradation. The

Resnet model superimposes the output of identity mapping

and non-linear transformation by numerical addition, which

destroys the information flow in the network to a certain

extent. To solve the above problems, the Densenet model

[31] proposed in 2017 deepens the number of network layers

to improve performance, as shown in Fig. 2. It alleviates the

network degradation problem extent by l reusing local fea-

tures and adding dimension. The Densenet model [32–34]

can effectively enhance the combination of COVID-19 infor-

mation by connecting local and abstract features. Besides,

the network can extract more features from relatively fewer

data.

Different from the Resnet model, the Densenet model lim-

its the realization of convolution operation by combining all

relevant outputs before layer Lay (from layer 0 to layer

Lay� 1):

XILay ¼ HLayð½XI0;XI1;XI2; :::;XILay�1�Þ ð3Þ
In the Densenet model, the dense blocks contain two con-

volution operations and the kernel size is 1*1@128 and

1*1@32. Through 1*1 convolution operation, it can effectively

realize the fusion of local features, which can enhance the

classification accuracy of the model. In each dense block,

assuming that the feature dimension of each non-linear

transform H isM, the layer Lay isM0 þ ðLay� 1Þ �M. Because

the local features extracted from each layer are connected

with the previous ones, the training weights are learned

through the current global information, which ensures the
f the Resnet model.



Fig. 2 – The structure of Densenet model.
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amount of information updated by the global state. Therefore,

compared with the traditional depth model, the Densenet

model can adopt fewer feature maps as the output of the net-

work layer through the extreme utilization of extracted

features.

However, because the Densenet model reduces the size of

the current feature map to the next stage by average pooling,

the feature dimension is half of the size of the previously

extracted one. With the increase in model depth, the dimen-

sion of the small-size feature map is larger and the model

adopts 1*1@128 and 1*1@32. The sudden drop of feature

dimension and the sudden rise of connection dimension, it

may lead to the lack of robustness of the COVID-19 features.

Therefore, to enhance the ability of feature extraction, the

proposed algorithm obtains COVID-19 local information

through the dense blocks, in which the minimum amount

of data is used through continuous bottleneck convolution

operation.

2.2. The proposed network

This paper proposes a COVID-19 classification model COVID-

RDNet based on the mixed X-ray and CT images. The experi-

mental process contains three steps: acquisition of the mixed

dataset, enhancement of the adaptive COVID-19 feature, and

establishment of the proposed COVID-RDNet model, as

shown in Fig. 3. Firstly, a mixed COVID-19 dataset with the

X-ray images and the CT images is built through multiple

image sources, which can ensure the authenticity and effec-

tiveness of the proposedmodel in detecting novel coronavirus

pneumonia cases. Then, the region containing the COVID-19

feature is enhanced and separated from the background by

an adaptive threshold algorithm. Next, the COVID-RDNet

model proposed in this paper is constructed. By combining

the advantages of residual blocks and dense blocks, the

non-linear connection between local features and global ones

is realized.

2.2.1. Acquisition of the mixed dataset
The imaging features of X-ray and CT images will change

with the severity and duration of infection [35,36], as
shown in Fig. 4. In general, the lesions of early COVID-19

patients mostly occur at the bottom of the lung and below

the pleura, mainly in the peripheral zone of the lung. It

may present as a single or double lung multiple patchy

ground-glass shadows, sometimes accompanied by a slight

bronchial inflation sign, as shown in Fig. 4(a) [37,38]. With

the further progress of the lesion, consolidation changes

may occur. The scope and types of inflammatory lesions

increase, which can begin to spread to multiple lung lobes.

At this time, the patient’s images show a mixture of

ground glass shadow and solid change shadow. Besides,

some patients will also have mild cord shadow and a small

amount of pleural effusion, as shown in Fig. 4(b) [39,40].

Severe novel coronavirus pneumonia patients have larger

lesion regions and diffuse interstitial changes will appear.

The symptoms of the white lung will appear at the later

stage, often accompanied by a solid change shadow, which

will always endanger the patient’s life and health, as

shown in Fig. 4(c) [41].

To effectively improve the detection of the novel coron-

avirus pneumonia, the mixed dataset is established by X-ray

and CT images. Here, the X-ray images [42] are from the public

dataset provided by GuangzhouWomen’s and children’s med-

ical center [43], as shown in Fig. 5(a). The images are from the

routine clinical examination of children aged 1 to 5 years.

They are screened by removing all low-quality or unreadable

X-ray images for quality control. To ensure the authenticity

and effectiveness of the results, all the negative and positive

are classified by two experts. The evaluation set is also

checked by a third expert. There are 8447 images in the X-

ray image dataset, which is composed of 1583 negative

images and 6864 positive images. It is divided into three parts

for training, verification, and testing. The CT images are from

an open-source COVID-CT dataset [44], as shown in Fig. 5(b).

Some researchers from the University of California at San

Diego select images of clinical symptoms by artificial screen-

ing. The CT images of 333 cases with the positive detection of

COVID-19 and 397 cases with the positive detection are

provided.

The dataset used in this paper is a mixed public X-ray and

CT images. The established database contains 5216 images,



Fig. 3 – The flow chart of the proposed algorithm.
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which consist of 1341 non-novel coronavirus pneumonia and

3875 novel coronavirus pneumonia. Here, 70 % is used for

training, 20 % for testing, and 10 % for validation, as shown

in Table 1. To facilitate the training of the proposed

COVID-RDNet model, the image size in the dataset is set to

224*224.
Due to the complex and diverse features of COVID-19, this

paper uniformly preprocessed CT and X-ray images through

matrix normalization. It can not only increase the ratio of

the brightest to the darkest location while maintaining the

original gray-scale distribution features of the COVID-19

images. Meanwhile, it can also effectively overcome the prob-



(a) (b) (c)

Fig. 4 – Imaging features of COVID-19 in different periods.

(The first row is the X-ray images and the second one is the

CT images. The red region indicates the position of the

COVID-19 signs.) (a) early stage; (b) middle stage; (c) later

stage.

Positive CO

Negative CO

(a)The X-ray images

Fig. 5 – The negative and positive COVID-19 of the X-ray images

COVID-19).
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lem of too slow running speed caused by the same increase

and subtraction of the connected weights, so that the opera-

tion efficiency of the algorithm can be accelerated when the

mean of all signals is infinitely close to zero.

2.2.2. The adaptive enhancement algorithm of the COVID-19
region
Fig. 6 shows the image features of different lung diseases tak-

ing the X-ray images as an example [45]. From this figure, one

can see that the novel coronavirus has very similar image fea-

tures to other diseases. Besides, there is no clear boundary

between the lesion region and normal lung tissue, where it

is in a gradual transition state. To improve the negative and

positive COVID-19 classification accuracy, the proposed algo-

rithm enhances the contrast between the COVID-19 region

and the normal region by an adaptive enhancement algo-

rithm [46–49].

To effectively enhance the COVID-19 region, the proposed

algorithm firstly divides the image I into the COVID-19 region

r1 and normal region r2 through thresholdT. Here, the

obtained region is represented byRðx; yÞ:
VID-19

VID-19

(b)The CT images

and the CT images (Red arrows indicate the location of the



(a)Normal (b)Cardiomegaly (c)Infiltration

(d)Mass (e)Nodule (f)Emphysema

(g)Atelectasis (h)Pleural_Thickening (i)COVID-19

Fig. 6 – Imaging features of different lung diseases (The red region indicates the position of the lesion signs).

Table 1 – The dataset structure distribution.

Training(70 %) Testing(20 %) Validation(10 %) Total(100 %)

Negative COVID-19 939 268 134 1341
Positive COVID-19 2713 775 387 3875
Total 3652 1043 521 5216
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Rðx; yÞ ¼ r1; Iðx; yÞP T

r2; Iðx; yÞ < T

�
ð4Þ

Algorithm 1 Adaptive threshold algorithm

Input: ImageI, ðx; yÞ is used to represent the coordinates of
the pixel. wt0 and wt1 represent the number of pixels in the
COVID-19 region and the normal region, respectively. ut0

and ut1 represent the average gray levels of the two
regions, respectively.
Output: Threshold T
Initialization: t=0
1 while t<=255
2 if maxfwt0 �wt1 � ðut0 � ut1 Þ2g
3 T=t;
4 bleak;
5 else t=t + 1;
6 end

To obtain the thresholdT, the weighted average value of the

adjacent region around each pixel is calculated by the adap-

tive threshold algorithm. It can better process the images

with large light and dark differences, which can retain more

lesion features. The basic idea is to calculate the average

value of each pixel by traversing the images under the current

cyclic variablet. When the variance between the COVID-19

region and the normal region is the largest, the current t value
is the thresholdT. The calculation process is shown in Algo-

rithm 1. Here, wt0 and wt1 represent the number of pixels in

the COVID-19 region and the normal region, respectively. Sim-

ilarly, ut0 and ut1 represent the average gray levels of the cor-

responding regions.

Then, the COVID-19 images are enhanced by enlarging the

feature difference between the COVID-19 region and the nor-

mal region [50–52]. The proposed algorithm segments the

COVID-19 region r1 into½rmin;m0�; ½m0;m1�; :::½mi;miþ1�; :::;
½mn; rmax�. Here, m0;m1; :::;mn represent the pixel value, rmin

and rmax are the minimum and the maximum pixel value of

the image, respectively. For½mi;miþ1�, the i-th histogram is

mapped to the new dynamic range½Rsi;Rei�:

Rsi ¼
Xi�1
k¼1

Rk þ 1 ð5Þ

Rei ¼
Xi�1
k¼1

Rk ð6Þ

Here,

Rk ¼ ðL� 1Þ � FkPnþ1
c¼1Fc

¼ ðL� 1Þ �Highk � Lowk � lgMkPnþ1
c¼1Fc

ð7Þ

where Highk and Lowk represent the maximum and the mini-

mum pixel value in each histogram, respectively. M is the cor-

responding number of pixels and L represents the gray level.
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For½Rsi;Rei�, the corresponding equalized histogram is

obtained:

r1i ¼ Rsi þ ðRei � RsiÞ
Xi

c¼Rsi

nc

M
ð8Þ

where nc represents the number of current pixels toRsi. Thus,

the final output r01 is obtained:

r01 ¼
Mi

M0
r1 ¼ Mi

M0

Xi

c¼1
r1i ð9Þ

where Mi and M0 represent the average brightness of the

COVID-19 region r1 before and after equalization, respectively.

The corresponding enhancement results are shown in Fig. 7.

The proposed adaptive enhancement algorithm converts

the COVID-19 region r1 into an output r01 with the same num-

ber of pixels at each gray level, which can effectively improve

the dynamic range of pixel gray value by balancing the gray

level distribution in the COVID-19 regionr1. Besides, it can

make the difference between the COVID-19 region and the

normal region larger, as shown in Fig. 8.

2.2.3. Establishment of the proposed COVID-RDNet model
To overcome the problems in traditional deep learning, the

proposed COVID-RDNet model is shown in Fig. 9 and its inno-

vations are as follows:

� Model construction: this paper constructs a depth COVID-

19 classification model COVID-RDNet. The proposed model

uses residual blocks to adjust the dimension of the feature

maps, which can effectively broaden the depth of local and

global feature extraction. To obtain a network with strong

generalization ability, the proposed model connects the

non-linear transformation extracted by the upper layer

with the extracted features of the lower layer. It can over-

come the network degradation problem caused by overfit-

ting and improves the robustness of the algorithm.

� Model performance: To enhance the non-linear extended

ability of the proposed model, this paper uses continuous

3*3 expansion convolution to achieve the depth extraction
Fig. 7 – Results of adaptive local COVID-19 region r1
enhancement. (Each row corresponds to a group of images.

The first and second columns represent the images before

and after enhancement, respectively).
operation. It can obtain more abstract local features

through the superposition of convolution layers. Mean-

while, to effectively utilize the local features with relatively

low shallow complexity, the feature reuse in the proposed

model is realized by continuously using 1*1 bottleneck

convolution, which greatly reduces the calculation param-

eters and improves the generalization performance.

� Data training: the proposed network can effectively train

and test a mixed dataset containing both public X-ray

and CT images, which can meet the actual needs of novel

coronavirus detection in terms of diagnosis cost and deter-

mination speed.

In the proposed algorithm, each convolution block con-

tains three 3*3 expansion convolutions. After each convolu-

tion layer, a batch normalization layer and a correction

linear unit layer are added to correct the weight of single-

layer input. Thus, it alleviates the decline of model accuracy

caused by the extraction of lesion features in the convolution

process. To speed up the training and reduce the sensitivity to

network initialization, the proposed model uses a batch nor-

malization layer between the convolution layer and non-

linear features:

YIi  cX̂Ii þ b ð10Þ

X̂Ii  XIi � lBffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
B þ e

p ð11Þ

lB  
1
m

Xm
i¼1

XIi ð12Þ

r2
B  

1
m

Xm
i¼1
ðXIi � lBÞ2 ð13Þ

where m represents the size of the batch. lB and r2
B represent

the average and variance of batch data, respectively. c and b

are training parameters, initially, c ¼ 1 andb ¼ 0. Through

batch normalization, the original dense data distribution is

more uniform and the non-linear transformation function

falls into the region sensitive to input, which can avoid the

problem of gradient disappearance. Then, the threshold oper-

ation is performed on each element through the non-linear

activation layer, which effectively improves the accuracy of

the COVID-19 negative and positive classification network.

The proposed COVID-RDNet model has the following

advantages:

First, the proposed model obtains the local lesion feature

by continuously reusing 3*3 expansion convolution of the

same size, which effectively enhances the generalization abil-

ity of the proposed model. The novel coronavirus pneumonia

feature reuse is achieved through the bottleneck convolution

of 1*1 in four dense blocks and the computation amount of

the training process is reduced to a great extent by means

of dimension reduction in the proposed COVID-RDNet model.

Second, because the difference between the COVID-19

region and the normal region is not very significant, the tradi-

tional Resnet model adjusts the depth and width by adding

cross-layer values. However, in the convolution process, the

input of the upper layer cannot divide the convolution kernel,



Fig. 9 – The structure of the proposed COVID-RDNet model.

(a) (b)

Fig. 8 – Results of adaptive enhancement algorithm (Red regions indicate the lesion before and after the enhancement).

(a) Before enhancement; (b) After enhancement.
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which results in the loss of the feature details. The proposed

model overcomes the loss of details by cross-layer links.

Next, because it is used every time 1*1@128 and 1*1@32,

the convolution kernel for feature extraction leads to the sud-

den drop and rise of the convolution layer scale with large

dimensions of the subsequent feature maps, which are not

conducive to the stability of the model. The proposed model

uses the cross-layer link to gradually improve the extracted

feature dimension, realizes the non-linear connection

between local features and global features, and overcomes

the problem of network degradation caused by the increase

of model depth.

Finally, the 1*1 bottleneck convolution operation is used to

map multiple feature components into two categories of

labels. Thus, the mixed dataset can be classified, which

makes the COVID-19 detection of the proposed COVID-

RDNet model more accurate. Besides, the initial epochs,

learning rate, and corresponding decay factors of the pro-

posed model are set as 30,1� 10�4, and 0.1, respectively. The

gradient moment estimation is calculated by the adaptive

moment estimation optimizer to stabilize the parameters in

a dynamic range. The final output is obtained by

softmaxðy0Þ ¼ eyPN

i¼1
PH

j¼1
PW

k¼1e
yijk
.

3. Experiment and analysis

3.1. Dataset and evaluation indexes

To verify the effectiveness of the proposed model, two open

datasets are used to train and test. Here, the X-ray images
are from the public dataset provided by Guangzhou Women’s

and children’s medical center. There are normal regions in

the X-ray images, while the images of patients with COVID-

19 usually show focal consolidation. Besides, the bilateral

lung regions with severe viral pneumonia show diffuse inter-

stitial. The CT images are from the open-source COVID-CT

dataset provided by some researchers at the University of Cal-

ifornia, San Diego. The chest CT images of the novel coron-

avirus pneumonia usually show patchy or segmental ground

glass density. Most of the lesions are gridded in shape and a

few cases are associated with a small amount of pleural effu-

sion or pericardial effusion. Because the image sizes in the

two datasets are different, for the sake of fairness, this paper

uniformly sets the size of all X-ray and CT images to 224*224.

For fairness, this experiment employs Intel(R)Core(TM) i5-

7200UCPU@2.50 GHz, 4 GB of memory, Windows 10 Profes-

sional, and 64-bit operating systems. Besides, to evaluate

the performance of the proposed COVID-RDNet model to clas-

sify negative and positive COVID-19 [53,54], sensitivity, speci-

ficity, positive predictive value (PPV), negative predictive value

(NPV), and accuracy [55,56] are used as follows:

sensitivity ¼ TP
TPþ FN

� 100% ð14Þ

specificity ¼ TN
TNþ FP

� 100% ð15Þ

PPV ¼ TP
TPþ FP

� 100% ð16Þ

NPV ¼ TN
TNþ FN

� 100% ð17Þ
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accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� 100% ð18Þ

TP ¼ P1 \ G1, FP ¼ P1 \ G2, FN ¼ P2 \ G1, and TN ¼ P2 \ G2. Pj

and Gj represent the classification results of the proposed

model and ground truth, respectively (j 2 f1;2g represents

normal people and COVID-19, respectively). The relevant code

of the proposed algorithm is available on the web: https://pan.

baidu.com/s/1bgwT-4k_5bmmBNYIaBKkww.

3.2. The results of the proposed model

3.2.1. The feature maps extracted by the residual block
The proposed algorithm contains two residual blocks, which

may successfully extract different lesion features by extend-

ing the depth and width, as shown in Fig. 10. The larger the

weight of the retrieved negative and positive COVID-19 fea-

tures, the lighter the hue in the feature maps. The residual

blocks can significantly reduce feature error and the likeli-

hood of network degradation by connecting feature maps

from different convolution layers. As a result of gradually

developing the network model, residual blocks can acquire

more and more negative and positive COVID-19 properties,

effectively improving non-linear expression ability.

3.2.2. The extraction feature by the dense block
Due to the particularity of medical image sampling, the

amount of medical images is limited and public datasets are

difficult to match the deep learning model’s feature extrac-
(a)

(b)

Fig. 10 – The COVID-19 feature maps extracted from the residua

layers 1–3 of the residual blocksfrom left to right). (a) The 1st re
tion requirements. The proposed model connects the non-

linear information gathered from each layer with dense

blocks to effectively handle this challenge. Thus, the pro-

posedmodel does not depend on the lesion features extracted

from the last layer in a small dataset. Meanwhile, the local

features with low shallow complexity can be comprehen-

sively used, which can better obtain the feature maps with

strong generalization performance and then improve the

classification accuracy. Besides, to alleviate the feature loss

caused by the sudden drop of the feature dimension, the pro-

posed algorithm uses the way of slowly rising the dimension

to ensure abstract information. The dimension is reduced by

a 1*1 convolution kernel simultaneously, which effectively

reduces calculation. Fig. 11 shows the results of COVID-19 fea-

ture maps extracted from different dense blocks (blue points).

Through the reuse and connection of feature maps, the cou-

pling of the obtained lesion information is reduced.

3.2.3. The classification results of the proposed model
The proposed network can effectively combine local informa-

tion with abstract features through the residual blocks and

dense blocks, which can ensure the classification accuracy

of negative and positive COVID-19. Meanwhile, the COVID-

19 features are reused through continuous bottleneck convo-

lution, which greatly reduces the calculation in network

training. Fig. 12 shows the COVID-19 visual features extracted

at each layer of the residual blocks and the dense blocks,

respectively. As can be seen from Fig. 12, the proposed net-
l blocks. (Columns 1–3 represent the convolution results of

sidual block; (b) The 2nd residual block.

https://pan.baidu.com/s/1bgwT-4k_5bmmBNYIaBKkww
https://pan.baidu.com/s/1bgwT-4k_5bmmBNYIaBKkww


Fig. 11 – The COVID-19 feature maps extracted from the dense blocks.
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work obtains color, edge, and other information in the resid-

ual blocks of layers 1–2. From the third layer of the dense

blocks, the proposed model starts to obtain advanced texture

features. With the increase of network depth, it can obtain

useful features to distinguish between negative and positive

COVID-19.

The proposed COVID-RDNet model can classify negative

and positive COVID-19, the average value of the accuracy,

AUC, sensitivity, specificity, PPV, and NPV can reach 0.99,

0.9998, 0.999, 0.995, 0.998, and 0.998, respectively, as shown

in Fig. 13. Here, Fig. 13(a) shows the loss rate and accuracy
of the proposed model. It can be seen that the accuracy and

loss rate with the number of iterations increasing can

improve the optimized classification weight, which has a

good convergence speed. Fig. 13(b) shows the testing results.

The ROC curve on the left can effectively express the influ-

ence of different learning rates on the generalization perfor-

mance. In general, the closer the ROC curve is to the upper

left corner, the less the total number of false positives and

negatives. The confusion matrix on the right can directly

get the data under different parameters and effectively assess

the COVID-19 classification.



(a)

(b)

Fig. 12 – The COVID-19 visualized features extracted from the proposed model: (a) The residual block (Columns 1–3 represent

the results of layers 1–2 of the residual blocks from left to right.); (b) The dense block.

(a) (b)

Fig. 13 – The results of the proposed COVID-RDNet model: (a) The accuracy and loss rate; (b) The testing results. (The left is the

ROC curve and the right is the confusion matrix).
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Fig. 14 – The performance comparison of the proposed

model under different datasets.

Fig. 15 – The performance of the proposed model under different

corner are sensitivity, specificity, PPV, NPV, AUC, and accuracy,
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3.3. Analysis and comparison

For fairness, all experiments are repeated 10 times in the

same environment. Besides, the average values are taken

while removing the maximum and minimum ones, thus

effectively measuring the effectiveness of the proposed

algorithm.

3.3.1. Analysis of the mixed datasets
The proposed COVID-RDNet model can classify the negative

and positive COVID-19 of individual X-ray images, CT images,

and mixed datasets, as shown in Fig. 14. It can be seen that

the proposed COVID-RDNet model has the best classification

performance in sensitivity, specificity, PPV, NPV, area under

curve (AUC), and accuracy on the mixed X-ray and CT data-

sets. Besides, the classification performance of the proposed

model using the X-ray images is slightly better than that of

the CT images and the corresponding AUC results can reach
learning rates. (From the upper left corner to the lower right

respectively).
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0.99 and 0.94, respectively. Therefore, the proposed algorithm

can operate on the individual or the mixed dataset, which has

good robustness and can obtain an assisted depth network

that meets the actual medical diagnosis of doctors.

3.3.2. Analysis of the learning rate
In general, the size of the learning rate setting will directly

affect the final classification accuracy of the proposed model.

If the learning rate is too large, it will lead to serious network

oscillation and the model can not get the global optimal

value. On the contrary, if the learning rate is too small, it will

easily lead to the slow decline of the loss rate, which will not

only reduce the classification accuracy, but also obtain the

local optimal weight. Therefore, the proposed model obtains

the COVID-19 local features through the residual blocks and

connects it with the abstract information of lesions through

the dense blocks, which can effectively reduce the impact of

learning rate on model training. Fig. 15 shows sensitivity,

specificity, PPV, NPV, AUC, and accuracy of the proposed

COVID-RDNet model under different learning rates. It can be
Fig. 16 – The performance of different models. (From the upper l

PPV, NPV, AUC, and accuracy, respectively).
seen that when the learning rate is in the range of 0.00004

to 0.00018, the accuracy of the proposed model can be main-

tained at 0.99 and the AUC can reach 0.9998. The average

results of sensitivity, specificity, PPV, and NPV are also rela-

tively stable. While maintaining a high classification accu-

racy, this model also has strong robustness and fault

tolerance. When the learning rate is greater than 0.00018 or

less than 0.00004, the performance of the proposed network

will decrease. Therefore, this paper selects the value in the

range of 0.00004 to 0.00018 as the initial learning rate. After

five rounds of model training, the learning rate [57–59]

decreases to 1/10 of the initial value.

3.3.3. Performance comparison of residual blocks and dense
blocks in different models
To further verify the performance of the proposed algorithm,

this paper measures the network by comparing the sensitiv-

ity, specificity, PPV, NPV, AUV, and accuracy of the mixed X-

ray and CT images by different models, as shown in Fig. 16.

There are no residual blocks or dense blocks in the Alexnet
eft corner to the lower right corner are sensitivity, specificity,
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[19] and the Vgg [22,23] models. The Resnet network contains

residual blocks and the values of adjacent feature maps are

added through the cross-layer link, which effectively

enhances the COVID-19 features and has high sensitivity

and PPV. However, the classification accuracy of the Resnet

[26] network is related to the initial learning rate and does

not have good stability, especially in the specificity and the

NPV. The Densenet model contains dense blocks, which effec-

tively enhance the stability of the network by connecting local

and global information. It performs smoothly in sensitivity,

PPV, and NPV. However, the Densenet [31] network reduces

the feature dimension in a sudden way, which results in the

loss of COVID-19 features. The Resnet and Densenet models

contain residual blocks and dense blocks, respectively, which

improve the performance compared with the Alexnet and the

Vgg models. To overcome the above problems, the proposed

COVID-RDNet model effectively improves the accuracy and

accuracy through the linkage reuse of the residual blocks

and the dense blocks, which can realize the efficient classifi-

cation of the negative and positive COVID-19.

3.3.4. Comparison with the results of the state-of-the-art
algorithms
This paper compares the results of the proposed model with

the state-of-the-art networks under the same dataset, as

shown in Table 2. Here, Maghdid et al. [19] enhance the clas-

sification accuracy by combining the Alexnet model with the

CNN model of transfer learning. Besides, Turkoglu et al. [20]

and Loey et al. [21] enhance the ability to extract COVID-19

features by improving the Alexnet model. However, the step

size in the abovemodels is larger than the pooling size, which

may result in redundancy. To solve this problem, the Vgg

model replaces the large convolution kernel in the Alexnet

model by reusing a small kernel with equal size, which can
Table 2 – The proposed model results are compared with the st

Method Reference Evaluating in

Sensitivity

Alexnet Alexnet model [18] 0.86
Maghdid et al. [19] 0.92
Turkoglu et al. [20] 0.92
Loey et al. [21] 0.92

Vgg Vgg16 model [22] 0.92
Vgg19 model [22] 0.96
Sitaula et et al. [23] 0.96
Shibly et al. [24] 0.97
Lee et al. [25] 0.87

Resnet Resnet18 model [26] 0.98
Resnet50 model [26] 0.97
Resnet101 model [26] 0.97
Zhou et al. [28] 0.88
Sakib et al. [29] 0.89
Hira et al. [30] 0.96

Densenet Densenet121 model [31] 0.97
Densenet201 model [31] 0.98
Tabrizchi et al. [32] 0.87
Mangal et al. [33] 0.98
Chowdhury et al. [34] 0.99

Proposed 0.99
effectively enhance computational efficiency. Sitaula et al.

[23] obtain spatial features of lesions by adding an attention

mechanism to the Vgg model. On this basis, Shibly et al.

[24] and Lee et al. [25] enhance the efficiency of the Vgg net-

work by integrating a fast CNN network. However, most of

the parameters come from the first fully connected layer,

which may result in the need for large storage space. To effec-

tively improve the utilization of COVID-19 features, the Res-

net model can save space costs through cross-layer links.

Hira et al. [30] improved the classification accuracy through

transfer learning, but the stability of model training is slightly

insufficient. On the contrary, Sakib et al. [29] have good stabil-

ity, but at the expense of accuracy. Based on refs. [29,30], Zhou

et al. [28] input the regrouped images into the residual blocks

for lesion feature extraction, which can effectively improve

both robustness and accuracy. However, due to the improper

size of the convolution kernel in the Resnet model, the prob-

lem of feature loss occurs. To overcome the problem, Tabriz-

chi et al. [32] and Zhang YuDong et al. [33] connect abstract

features with local features by combining the Densenet

model and transfer learning. Chowdhury et al. [34] improve

the classification accuracy of the Densenet model through

image enhancement, but too many layers may lead to redun-

dancy. The proposed model can effectively solve the problem

of feature loss through residual blocks and dense blocks. The

accuracy of negative and positive COVID-19 classification can

reach 0.99.

4. Conclusion

In this paper, a deep learning network is proposed to effec-

tively improve the classification accuracy of negative and pos-

itive COVID-19. Firstly, to ensure the authenticity and

effectiveness of COVID-19 detection, a mixed X-ray and CT
ate-of-the-art network.

dexes

Specificity PPV NPV Accuracy

0.92 0.91 0.94 0.91
0.96 0.95 0.97 0.95
0.97 0.97 0.91 0.94
0.96 0.93 0.93 0.93
0.94 0.91 0.97 0.93
0.96 0.95 0.97 0.96
0.96 0.94 0.97 0.96
0.95 0.93 0.98 0.96
0.89 0.89 0.87 0.89
0.94 0.93 0.98 0.96
0.98 0.98 0.98 0.97
0.94 0.98 0.99 0.97
0.97 0.936 0.93 0.93
0.91 0.78 0.98 0.90
0.94 0.97 0.87 0.90
0.97 0.97 0.97 0.97
0.91 0.95 0.98 0.97
0.95 0.97 0.91 0.95
0.87 0.74 0.99 0.92
0.97 0.97 0.98 0.98
0.98 0.99 0.99 0.99

https://scholar.cnki.net/home/search?sw=6%26sw-input=Zhang%2520YuDong
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dataset are established through the published COVID-19

images. Then, the COVID-19 region features are effectively

enhanced by the adaptive region enhancement algorithm.

The non-linear COVID-19 features are obtained through the

cross-layer link of the residual blocks. The local and abstract

information is connected through the dense blocks. Com-

pared with the state-of-the-art COVID-19 classification mod-

els, the proposed COVID-RDNet model has good negative

and positive COVID-19 classification performance through

sensitivity, specificity, PPV, NPV, AUC, and accuracy on the

mixed X-ray and CT dataset. When the learning rate is in

the range of 0.00004 to 0.00018, the accuracy of the proposed

model can be maintained at 0.99 and the AUC can reach

0.9998.

Based on respect for patient privacy and ethics, the pro-

posed model obtains high accurate classification results by

manipulating the mixed dataset containing real cases, which

can effectively assist doctors to determine the infection sta-

tus of COVID-19 patients and has good application prospects.

However, the proposed algorithm can not guarantee the com-

putational complexity while improving the classification

accuracy, which is the next research focus. Meanwhile, this

paper also aims to overcome the problem that the number

of medical annotation images is insufficient and does not

meet the conditions of deep learning through unsupervised

or self-supervised models, which can further meet the actual

medical needs.
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