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Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases
have been revealed. However, it is unclear what role a putatively impaired neuronal
transport with respect to altered mechanical properties of neurons play in the initiation
and progression of such diseases. The biochemical aspects of intracellular axonal
transport, which is important for molecular movements through the cytoplasm, e.g.,
mitochondrial movement, has already been studied. Interestingly, transport deficiencies
are associated with the emergence of the affliction and potentially linked to disease
transmission. Transport along the axon depends on the normal function of the neuronal
cytoskeleton, which is also a major contributor to neuronal mechanical properties.
By contrast, little attention has been paid to the mechanical properties of neurons
and axons impaired by neurodegeneration, and of membraneless, phase-separated
organelles such as stress granules (SGs) within neurons. Mechanical changes may
indicate cytoskeleton reorganization and function, and thus give information about the
transport and other system impairment. Nowadays, several techniques to investigate
cellular mechanical properties are available. In this review, we discuss how select
biophysical methods to probe material properties could contribute to the general
understanding of mechanisms underlying neurodegenerative diseases.

Keywords: neurodegenerative disease, amyotrophic lateral sclerosis, cell mechanics, phase separation, stress
granules, atomic force microscopy, Brillouin microscopy, optical diffraction tomography

INTRODUCTION

Neurons contain three different types of cytoskeletal filaments: microtubules (MTs), actin
filaments, and neurofilaments (NFs) (Figure 1A). These cytoskeletal components fulfill important
physiological functions during nervous system development and maturation and account for the
neuronal structural organization (Franze et al., 2013). For instance, the neuronal cytoskeleton is
involved in migration, pathfinding (Bearce et al., 2015), and axonal transport (Maday et al., 2014).
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The organization of the cytoskeleton, in particular the MT
network, determines axonal transport dynamics (Maday et al.,
2014). Axonal transport is crucial for neuronal function and
strictly depends on an active transport machinery able to
move cargoes including but not limited to organelles such as
mitochondria, synaptic vesicles, proteins, and RNA along the MT
network. Biosynthesis of molecules in the neuron’s soma and
their transport across long axons (up to 1 m in adult humans)
is pivotal for the physiology and survival of neurons. The active
axonal transport of molecules along the MTs is carried out by
the molecular motors kinesin and dynein, thereby providing
anterograde and retrograde transport, respectively. Also, the actin
cytoskeleton is involved in transport, but on shorter length scales
compared to MTs (Rogers and Gelfand, 1998).

The cytoskeleton is also chiefly important for determining
the mechanical properties of neurons and their axons. This link
between physiological transport and pathological processes on
the one hand, and these mechanical properties on the other, can
be exploited to acquire additional and new information using
appropriate measurement techniques. Advanced biophysical
methods to investigate cellular mechanics such as atomic
force microscopy (AFM) (Figure 1), traction force microscopy,
and micropillar arrays have significantly contributed to the
understanding of cytoskeletal mechanics, forces acting on and
generated by isolated adherent cells in vitro, as well as their
intrinsic material properties (Rodriguez et al., 2013). These
methods quantify cell mechanical properties such as elasticity
and viscosity, surface tension, or traction forces. These properties
differ for distinct cell types and can, in combination with
various microscopy techniques, be attributed to certain cellular
compartments and cellular functions (Lammerding, 2011; Haase
et al., 2015).

Neurodegenerative diseases such as amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD), or frontotemporal
dementia (FTD) are serious afflictions and can cause a dramatic
decrease in quality of life and lifetime. Such diseases lead to
impaired neurological structure and function with manifold
neurological symptoms. A well-known common feature is the
accumulation of toxic aggregates within the neurons (Taylor,
2002). Also, transport processes, which are tightly bound to
the structure and function of the cytoskeleton, are altered
(De Vos et al., 2008). For example, cytoskeletal components
have been found to accumulate in neurons of ALS patients.
These components can be NFs within the cytoplasm (Julien
and Beaulieu, 2000), as well as spheroids composed of NFs
and peripherin (an NF-associated protein; Chadwick and
Goode, 2006). In some cases, axonal transport processes are
disrupted as a direct consequence. However, more common
are pathological aggregates that include RNA-binding proteins
(RBPs) and form when a physiological protective measure goes
wrong, either through prolonged stress or disease-associated
mutations.

In this article, we describe AFM, Brillouin microscopy (BM),
and optical diffraction tomography (ODT) as current biophysical
techniques utilized to investigate neuronal mechanics. We
discuss how they can be applied to study the link between
the cytoskeleton and axonal transport-deficient neurons, as

well as to quantify pathological aggregates in neurological
diseases.

CYTOSKELETAL MECHANICS AND
AXONAL TRANSPORT

Filamentous actin (F-actin) is a helical ubiquitous protein which
consists of globular actin (G-actin) subunits. Actin filaments are
highly dynamic and the polymerization or depolymerization of
G-actin molecules depends on the G-actin concentration. Actin
dynamics is highly regulated in vivo. Proteins such as profilin,
filamin, and the Arp2/3 complex regulate the process of assembly
and disassembly which is controlled by enzymes and G-proteins.
The functions of actin can be manifold, including mechanical
stabilization of the cell and transport processes (Kuznetsov et al.,
1992). Especially for complex shaped structures such as neurons,
the actin network is not homogeneously distributed through the
cell but can form several structures as reviewed by Leterrier et al.
(2017) (Figure 1A). The density of F-actin differs throughout the
neuron; for instance, it is particularly high in the growth cone.
Such local variations in the actin network can also modify local
mechanical properties.

Actin filaments can be described as semi-flexible polymers
(MacKintosh et al., 1995). This means there is a certain filament
length, called the persistence length, over which they do not bend
much due to thermal fluctuation. The persistence length for actin
is about 15 µm (Howard and Clark, 2002). The elastic modulus
has been measured to be 1.8 GPa using in vitro nanomanipulation
with microneedles (Kojima et al., 1994). The filaments can form
actin networks when they are linked by proteins. Those proteins
are called crosslinkers and the final actin structure depends
on their size, binding properties, and concentration (Gardel
et al., 2008). Such networks can be described using different
models, which all have in common that the structure can be
characterized by mesh size, elastic modulus, persistence length,
and the characteristic length of the network or the distance
between cross-links for cross-linked networks (MacKintosh et al.,
1995; Pujol et al., 2012). F-actin and crosslinkers can be mixed
in vitro to form a homogenously crosslinked actin network to
be used in deformation experiments. In such investigations,
the response to small stresses is generally viscoelastic. Details
depend on the experimental timescale or the frequency, the
applied stress and again the model (Stricker et al., 2010; Wu
et al., 2018). Furthermore, experiments have been done in vitro
on actin network models which are able to actively change
and therefore mimic the in-cell behavior (Gardel et al., 2008;
Fletcher and Geissler, 2009). These models are often based
on the well-studied bacterial pathogen Listeria monocytogenes
(Tilney and Portnoy, 1989). The elastic modulus determined
by AFM-based microrheology for dendritic actin networks is
about 1 kPa (Chaudhuri et al., 2007). By comparison, the elastic
modulus of an axon has been measured to be about 9.5 kPa
using AFM indentation measurements (Ouyang et al., 2013).
Of note, an earlier study, using a less pointed, spherical AFM
indenter reported values much closer to the situation in vitro
(Lu et al., 2006). The discrepancy can probably be explained by
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FIGURE 1 | Neuronal cytoskeleton and selected methods to quantify mechanical properties. (A) Schematic representation of potential changes of axonal
cytoskeleton organization during progression of motor neuron diseases caused by transport deficiencies, microtubule depolymerization, and aggregation of
intermediate filaments or impaired actin dynamics. (B) Schematic representation of techniques to assess biophysical changes in the living neuron such as atomic
force microscopy (AFM), Brillouin microscopy, and optical diffraction tomography (ODT). For details of the different techniques, see text.

the different levels of stress applied with the two different probes
(Wu et al., 2018). It has been shown that actin can also show
mechanosensing behavior (Hayakawa et al., 2012). This has to
be taken into account for measurement methods which directly
interact with the cell such as AFM.

The MT network (Figure 1A) contributes to the maintenance
of the cell structure and is almost entirely responsible for the
physiologically crucial axonal transport in neurons. Due to their
contribution to maintaining the cell shape, MTs are permanently
exposed to internal and external forces such as shown by the
curvature of MT filaments in living cells (Odde et al., 1999;
Brangwynne et al., 2006). Gittes and colleagues studied in vitro
the flexural MT rigidity using thermal fluctuations to bend
filaments in solution. They showed that MTs are rigid filaments
and can withstand large deformation forces (Gittes et al., 1993).
Other approaches to study the flexural MT rigidity include
optical traps and beads (Felgner et al., 1996; Kikumoto et al.,
2006) as well as bending of filaments via hydrodynamic flow
(Gittes et al., 1993; Hawkins et al., 2010). Although the obtained
results differ among implemented methods (Kasas and Dietler,
2007), the accumulated data indicate that MT filaments are
stiff filamentous proteins and show significantly higher stiffness
values compared to actin filaments (Gittes et al., 1993; Hawkins

et al., 2010). Interestingly, optical tweezers (Felgner et al., 1997).
Mechanical probing of isolated MTs utilizing AFM (Schaap et al.,
2007) have shown that neuronal MTs can modify their stability
increasing their resistance to rupture, which depends on their
association with microtubule-associated-proteins (MAPs) such
as tau. Furthermore, phosphorylation of MAPs has been shown
to affect MT stability and therefore axonal transport (Dixit
et al., 2008). In addition, mutations in tau might be associated
with axonal transport deficiencies and were found in patients
with neurological disorders such as FTD and atypical Parkinson
syndromes (Hutton et al., 1998). Another mechanism that might
contribute to the mechanical properties of neuronal cells might
include MT post-translational modifications such as tubulin
detyrosination, A2-tubulin generation, polyglutamylation, and
acetylation among others (Janke and Bulinski, 2011; Song et al.,
2013). It has been suggested that MT acetylation is required
for MT mechanical stabilization in vivo and in vitro, whereas
depletion of the enzyme acetyltransferase significantly increase
MT breakage in cells (Xu et al., 2017).

In the cell mechanics field, the contribution of the MT network
to the overall cell elasticity has been studied in several non-
neuronal cell types utilizing different biophysical tools (Rotsch
and Radmacher, 2000; Hoffman et al., 2006; Mietke et al., 2015).
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Kubitschke et al. (2017) have shown that the actin and MT
networks contribute differently to the cell elasticity when exposed
to different types of strains. Due to their long axons and the
need for axonal transport machinery, which relies on MT stability
and associated proteins, neuronal cells are excellent candidates
to investigate the connection between mechanical properties of
MTs and axonal transport in vivo (Tang-Schomer et al., 2010;
Magdesian et al., 2012).

The intermediate filament (IF) network (Figure 1A)
provides the cell with remarkable stability. Different biophysical
approaches have been utilized to investigate IF mechanical
properties in vitro (Köster et al., 2015; Scekic-Zahirovic
et al., 2016). For instance, using AFM-based mechanical
measurements to stretch various types of isolated IFs, Kreplak
et al. (2005) showed that IFs can stretch up to 3.6-fold before
they rupture, and suggested that NFs, the specific IFs found in
nerve cells, may act as mechanical shock absorbers in living cells.
In addition, other types of IFs such as desmin and keratin show
similar stretching behaviors when compared to NFs (Kreplak
et al., 2005). Neurons express different types of IFs proteins
depending on the developmental stage or the localization in
the nervous system (Toivola et al., 2005). NFs are abundant
in the mature nervous system along large myelinated axons
where their main function is the maintenance of axon caliber
(Perrot et al., 2008; Yuan et al., 2012). Inside the axons, NFs are
organized in heteropolymers composed of four subunits called
heavy (NFH), medium (NFM), light (NFL), and α-internexin
(Yuan et al., 2012). NFs have become of recent interest in
clinical neuroscience since increased concentrations are found
in different body fluids under diverse disease conditions (Khalil
et al., 2018).

The three cytoskeletal filaments together form a structurally
coupled network which contributes to the mechanical resilience
that is important in cellular processes such as structural integrity,
growth, and transport. The heterogeneous composition of the
cytoskeleton in eukaryotic cells results in interesting emergent
mechanical properties that cannot be explained by the simple
mechanical contribution of its isolated components. There are
evidences showing direct physical interaction between actin
filaments, MTs, and NFs both in vivo and in vitro (Huber
et al., 2015). For instance, Esue et al. (2006) have shown that
actin and the IF vimentin directly interact via a tail domain in
the vimentin molecule, and that cross-link may contribute to
the mechanical stability of cells. Similar molecular interactions
were found between NFs and MTs. Hisanaga and Hirokawa
(1990) reported that dephosphorylation of NFs plays a role in
the interaction between MTs and the NFH subunit. The latter
might suggest that the cytoskeleton cross-talk and its intrinsic
dynamic regulation mechanisms via cross-linking proteins could
ultimately affect the mechanical properties of neurons.

Axonal transport relies predominantly on MTs. But especially
for short distance, movement of mitochondria also actin plays an
important role (Rogers and Gelfand, 1998). Osmotic pressure and
motor proteins mediate the transport by generating endogenous
forces (Guo et al., 2018). Without doubt, the cytoskeleton has
the biggest influence on the mechanics, but other components
of the cell contribute as well. These can be physiological

(e.g., organelles) or pathological such as protein aggregates as
they occur in many neurodegenerative diseases. Although the
in vitro experiments described have significantly contributed
to the understanding of the cytoskeleton and its mechanical
properties, a cell is still much more complex. Especially polarized
cells such as neurons are highly dynamic cellular machines
which constantly experience and induce mechanical changes.
The complex interaction of regulation processes involving a
large number of proteins inside the cell can currently only be
investigated utilizing in vivo models. This is particularly the case
for diseased neurons.

While most studies on neurodegeneration so far have focused
on the biochemical signals that lead to axon degeneration, little
is known about the mechanical properties of diseased neurons
and how the alterations in the axonal transport machinery
and cytoskeletal architecture affect their mechanical resistance.
There is strong evidence linking transport deficiencies and
the emergence of ALS (Kreiter et al., 2018; Naumann et al.,
2018). These changes are associated with several mutations in
genes encoding proteins for MTs (Smith et al., 2014), actin
(Wu et al., 2012), and NFs (Al-Chalabi et al., 1999). For
instance, phosphorylation of MAPs has been shown to affect
MT stability and therefore axonal transport (Dixit et al., 2008).
Also, PD is associated with aberrant MT function (Pellegrini
et al., 2017). In addition, mutations in tau, which regulates MT
assembly, are associated with axonal transport deficiencies and
were found in patients with neurological disorders, including
FTD (Hutton et al., 1998; Wolfe, 2009) Alterations in the
structural organization and transport of NFs in CNS neurons
have been associated with many neurological disorders including
ALS (Al-Chalabi et al., 1999; Cairns et al., 2004; Omary,
2004). Furthermore, a well-investigated pathological hallmark
for several human neurodegenerative diseases including ALS, is
the accumulation of hyper-phosphorylated NFs in the proximal
axon of large motor neurons as an impairment in the axonal
transport machinery (Manetto et al., 1988; Liu, 2011; De Vos
and Hafezparast, 2017). The contribution of axonal cytoskeletal
components to the overall elasticity of neurons has previously
been investigated. Ouyang and colleagues carried out AFM nano-
indentation measurements on isolated axons after treatment with
several cytoskeleton destabilizing agents to test the contribution
of these components to axon elasticity. It has been shown that
the major contributors of axonal elasticity are the MTs, followed
by NFs and F-actin (Ouyang et al., 2013). Multiple studies
have shown that cytoskeleton disruption using cytochalasin D,
nocodazole, paclitaxel, and other substances strongly affect the
mechanical properties of various cell types (Reynolds et al.,
2014; Golfier et al., 2017; Kanda and Gu, 2017). In neurons,
the disruption of MTs significantly affects the cell mechanical
properties (Ouyang et al., 2013) as well as axonal transport, e.g.,
slow component-b cargo transport (Roy et al., 2008).

In light of the aforementioned aspects, there is likely a
connection between transport and cell mechanics which are
linked via the cytoskeletal network. For example, the mechanical
properties of central and peripheral healthy neurons and their
ability to withstand compression while monitoring axonal
transport has been investigated by Magdesian et al. (2012). They
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found pressure limits from which the axonal transport cannot
recover without axonal damage. Loverde et al. (2011) has shown
that mitochondrial transport diminishes as the axon is stretched.
The combination of stretch and paclitaxel treatment has an
especially strong effect on the axonal transport (Bober et al.,
2015). Any study that investigates changes in the mechanical
properties of degenerating neurons will likely also uncover
mechanisms related to altered transport and can, thus, help to
better understand the progression, causes, and consequences of
the disease.

PHASE SEPARATION AND AGGREGATE
FORMATION

Apart from cytoskeletal deficiencies linked to transport, there
is another, more recently discovered phenomenon associated
with many neurodegenerative diseases including PD, Alzheimer’s
disease (AD), Huntington’s disease (HD), ALS, and FTD (Sin
and Nollen, 2015), which also has a mechanical component.
RBPs contain a low sequence complexity, prion-like domain
with a high content of glycine, which accounts for their
tendency to aggregate (Han et al., 2012). Studies have shown
that ALS-associated mutations of TDP-43 largely occur within
this low-complexity domain, thereby increasing the tendency to
aggregate even further (Wolozin and Collection, 2014). Under
physiological conditions, RBPs can accumulate together with
mRNA, the 40S ribosomal subunit, and other proteins into
membraneless compartments called stress granules (SGs) (Dewey
et al., 2012; Mateju et al., 2017). This occurs, for example, in
order to halt the translation of specified proteins under stress
conditions and focus on the production of protective proteins
necessary for cell survival. This is in line with the finding that
SGs form when translation is at the initiation step. For this
purpose, eukaryotic elongation factor 2 alpha is phosphorylated,
which prevents assembly of the ternary complex (eIF2α-GTP-
tRNAMet). It then no longer binds to the 48S pre-initiation
complex, and translation is stalled (Dewey et al., 2012).

This process of aggregation can create large macromolecular
complexes of RBPs. However, if mutated RBPs are integrated into
these structures, they can undergo a pathological low-complexity
domain-driven liquid-to-solid phase transition, thereby resulting
in solidified SGs (Bowden and Dormann, 2016). These solidified
granules have lost their dynamic properties and hence the
ability to fulfill their physiological functions. This may result
in impaired stress response and mRNA transport, altered local
translation, and the formation of pathological aggregates, all
of which may contribute to neuron dysfunction and ultimately
neurodegeneration (Bowden and Dormann, 2016). The duration
of stress, and possibly other factors such as the efficiency of the
protein quality control system, greatly changes the composition
of SGs in time and space (Mateju et al., 2017). SGs also gain
size by MT instability (Chernov et al., 2009; Dewey et al., 2012).
Additionally, the formation of SGs is largely dependent on
the concentration of a respective protein. There is a sensitive
equilibrium of molecules localized in the cytoplasm and in the
nucleus, and anything that shifts this equilibrium will also shift

the amount of aggregation (Wolozin and Collection, 2014). This
is best described in the FUS-ALS pathology, where mutated FUS
is mislocalized out of the nucleus into the cytoplasm, where
it accumulates and colocalizes with SG markers (Wolozin and
Collection, 2014). While proteins with ALS-associated mutations,
such as TDP-43 and FUS, are non-essential for the formation of
SGs, they are closely associated with these pathological aggregates
(Dewey et al., 2012).

The physical properties of SGs have also been studied in vitro.
It has been shown that wild-type recombinant RBPs demix
from an aqueous solution and form liquid-like droplets. The
intrinsically disordered prion-like domains of RBPs have been
found to be sufficient for this so-called liquid-liquid phase
separation. These two phases then coexist stably, while one is
enriched for RNAs and RBPs, forming a compartment, which
allows diffusion of molecules within, but is separated from the
surrounding milieu by a free energy potential barrier. This is
an essential process for the formation of multiple membraneless
organelles involved for instance in RNA metabolism (Boeynaems
et al., 2017). Another example is the formation of P bodies, where
its components have a higher affinity with each other than they do
with respect to cytoplasmic molecules. This inequality in affinities
is what drives the phase separation and distinction of the P body
from the cytoplasm (Hyman et al., 2014).

Over time, and especially during disease, these liquid-like
droplets can mature to more fibrillary states, a process which
is accelerated by proteins with disease causing mutations like
those found in neurological disorders (Boeynaems et al., 2017).
Specifically, the arginine-rich dipeptide repeats in C9orf72 are
associated with ALS and FTD (Boeynaems et al., 2017). Larger
SGs will attract even more misfolded proteins, which further
adds to the transformation into solid compartment (Mateju et al.,
2017). In addition, misfolded proteins expose their aggregation
prone domains to the cellular environment – domains that would
otherwise be structurally concealed – enhancing their cumulative
properties (Sin and Nollen, 2015). Consequently, pathological
aggregates may either form directly through the accumulation
of mutated protein, potentially including RNA and RBPs, or
from SGs which undergo a pathological liquid-to-solid phase
transition.

The formation of pathological aggregates is however not solely
regulated by its included proteins. HD is characterized by the
neuronal accumulation of mutant Huntingtin (mHtt), which
is a polyglutamine (polyQ) protein. One important regulator
specific for this protein class is the C-terminal Hsp70 (heat shock
protein 70)-interacting protein (CHIP), which has been identified
to mediate the solubility of mutant polyQ proteins through
its interaction with chaperones (Miller, 2005). By contrast, the
ubiquitin conjugating enzyme Ube2W has been found to have a
negative effect on aggregate formation and disease progression.
In cultured cells with deficient Ube2W activity, decreased mHtt
aggregate formation and increased levels of soluble monomers
has been observed (Wang et al., 2018).

As SGs increase in size during their transition to form
pathological aggregates, they may sterically impair cellular
processes such as cytoskeletal assembly or cellular transport, as
do other cellular components when they increase in size. This
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is in line with the finding that induced mitochondrial swelling
reduces organelle trafficking of mitochondria and lysosomes in
rat primary neurons (Kaasik et al., 2007). For lysosomes, the
degree of impairment was dependent on the neurite diameter: the
wider the neurite, the weaker the effect on lysosomal trafficking.
Interestingly, both transport defects were ATP independent, as
chemical modifiers affecting mitochondrial ATP production did
not have an effect on either organelle trafficking (Kaasik et al.,
2007), indicating that sterical hindrance by itself may already
influence cellular processes critically.

Although found in almost every neurodegenerative disease,
pathological aggregates are not identical in composition
or dynamics between them. For instance, in FUS-FTD,
we find amorphous, non-amyloidogenic aggregates. Yet a
common neuropathological feature of PD, AD, and HD is the
presence of an aggregation-prone disease protein that acquires
amyloidogenic properties, causing it to form intracellular
amyloid aggregates or extracellular amyloid plaques in the brains
of patients (Sin and Nollen, 2015).

The specificity of pathological SGs to neurons might be related
to their unique feature of having to constantly transport RNA
granules over large distances (long axons or broad dendritic
arbors), and hence contain a much higher amount of RNA
granules and RBPs. This process is very advantageous, as it is
much more convenient to transport small RNAs through narrow
cell compartments rather than large proteins. It allows for less
sterical hindrance and therefore faster transport in a viscous
environment such as the cytoplasm (Wolozin and Collection,
2014). On the other hand, it also renders this system very sensitive
and easily disrupted by alterations in each of the factors discussed
above.

Overall, the sustained translational arrest, the toxic loss
of function by trapping important regulatory proteins, and
the templated misfolding of RBPs contribute greatly to the
pathology of neurodegenerative diseases. Consequently, the study
of membraneless structures such as SGs and their regulators and
dynamics as a major hallmark in these pathologies is of great
importance in order to reveal the complete disease mechanisms.
In the following, we discuss several methods for the investigation
of the mechanical properties and dynamics of SGs, axonal
transport, and cell mechanics in vitro and in vivo.

SELECTED METHODS TO STUDY CELL
MECHANICS

Atomic Force Microscopy
Atomic force microscopy-based indentation measurements allow
the quantification of the viscoelastic properties of biological
materials (Vinckier and Semenza, 1998; Butt et al., 2005;
Figure 1B). The key component of the indentation setup is
the cantilever - a flexible spring leaf with a defined spring
constant. The cantilever is equipped with a sharp tip or spherical
bead that is mounted perpendicular to the cantilever axis.
The indentation setup comprises furthermore a laser that is
reflected from the very end of the cantilever to a four-quadrant
photodiode that detects the position of the reflected laser

beam, and thereby the bending of the cantilever (Figure 1B).
An indentation measurement commences with the cantilever
approaching the sample surface in a piezo-controlled fashion.
Upon establishing contact, the cantilever indents the sample
by a certain depth and is retracted thereafter. The interaction
between the tip and the sample causes the cantilever to deflect,
which results in a displacement of the laser beam on the
photodiode. During this approach and retraction process, the
cantilever deflection is recorded and plotted as a function of
the piezo height. An indentation measurement with a calibrated
cantilever yields a force-distance curve which describes the force
applied to the cantilever (measured as deflection) with respect
to the distance between indenter and sample. As the indenter
is pushed into the sample upon establishing contact (negative
distance), the force-distance curve assumes an increasingly steep
slope that is commonly referred to as the indentation segment.
This indentation segment is used to determine the resulting
indentation depth and the Young’s modulus of the probed sample
region by applying appropriate mechanical models (Hertz, 1882;
Sneddon, 1965; Johnson et al., 1971; Derjaguin et al., 1975; Tabor,
1977; Johnson and Greenwood, 1997).

While the aforementioned indentation measurements are
considered static and provide access to the elastic material
properties, dynamic measurements allow the quantification of
both elastic and viscous material properties (Mahaffy et al.,
2000, 2004; Alcaraz et al., 2003). During dynamic indentation
measurements, the cantilever is sinusoidally oscillating while in
contact with the sample thereby applying an oscillatory stress.
The sample is responding by displaying an oscillatory strain that
shows a phase lag with respect to the driving force. The phase
lag is used to determine the extent of viscosity in the sample,
i.e., 0◦ phase lag indicates a purely elastic solid-like material and
90◦ phase lag indicates a purely viscous liquid-like material. The
dynamic mode of testing allows quantifying the complex shear
modulus of the probed viscoelastic material, which is calculated
as the complex ratio in the frequency domain between applied
stress and resultant strain (Ferry, 1980). This modulus can be
used to determine the degree of solid- or liquid-like mechanical
behavior (Alcaraz et al., 2003).

As both static and dynamic measurements have been
performed with various cell types (Radmacher et al., 1996;
Rotsch and Radmacher, 2000; Alcaraz et al., 2003; Mahaffy et al.,
2004), including neurons (Lu et al., 2006), and under various
conditions (Chiou et al., 2013; Rother et al., 2014), it appears
likely that such measurements will also help to elucidate the
material properties of impaired motor neurons. Furthermore,
such indentation setups are usually equipped with inverted
(fluorescence) microscopes that allow for mechanical testing and
simultaneous (fluorescence) microscopy, which might provide a
direct correlation between mechanical properties and organelle
function in the course of neurodegenerative disease progression.

The indenter and parameter settings of the indentation setup
can be chosen to specifically target small structures to determine
local mechanical properties with high spatial resolution or
to deform entire cells and tissue regions to probe a global
viscoelasticity. Thus, AFM-based indentation measurements are
capable of covering a wide range of sample dimensions with great
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spatial and force resolution. However, indentation testing is a
surface method and cannot probe inside intact cells in order to
assign distinct mechanical properties to individual intracellular
structures. It requires physical contact between indenter and
sample, and can therefore necessitate an elaborate sample
preparation procedure, e.g., tissue dissection or cell isolation, that
might introduce structural damage and therefore measurement
artefacts (Schlüßler et al., 2018; Weickenmeier et al., 2018).
The physical contact between indenter and sample might
also provide mechanical cues to initiate intracellular structural
changes that give rise to changes in mechanical properties during
measurements. Such potential sources of artefacts can only be
eliminated by employing contact-free methods that allow in vivo
mechanical testing such as ODT or BM.

Optical Diffraction Tomography and
Brillouin Microscopy
Optical diffraction tomography (Figure 1B) is a label-free three-
dimensional (3D) imaging technique, which measures the 3D
refractive index distribution of transparent biological samples
including tissues and cells. The 3D refractive index distribution
is reconstructed by the Fourier diffraction theorem from the
2D complex optical fields measured under various incident
angles (Wolf, 1969; Müller et al., 2015). The technique provides
morphological and biochemical information and allows the
calculation of protein concentration, dry mass, cellular volume,
and sphericity of individual cells non-invasively with high spatial
resolution (∼100 nm in the lateral direction) (Barer, 1952;
Popescu et al., 2008; Kim et al., 2014; Yoon et al., 2015). ODT
has been used on neurons to study the dynamical behavior of
living dendritic spines (Cotte et al., 2013) and morphological
changes in early neurodegenerative progress in PD neurons (Yang
et al., 2017). Time-lapse measurements of dry mass of individual
cells and tissues from 2D quantitative phase microscopy (QPM)
reveal dynamics of the specimens, investigating the growth rate
and mass transport in neuronal networks (Cintora et al., 2017).
Furthermore, temporal correlation of the series of time-lapse
2D phase maps provides quantitative analysis of intracellular
diffusion and directed motion in glia and hippocampal neurons
(Wang et al., 2011) and Drosophila oocytes (Drechsler et al.,
2017). The principle of the temporal correlation analysis in 2D
QPM can be extended to the time-lapse ODT measurement due
to the fast tomogram acquisition rate of ODT (∼10 tomograms/s)
(Kim et al., 2013), which can detect region-specific dynamics and
viscoelastic properties in motor neurons in 3D.

Confocal BM (Figure 1B) allows the measurement of the
viscoelastic properties of tissues and single cells in vivo. It is
based on an inelastic scattering process, the so-called Brillouin
scattering, between the incident light and periodic mass density
fluctuations due to travelling sound waves inherent to the
sample. The scattering results in a frequency shift depending
on the longitudinal modulus, the density and the refractive
index of the sample (Dil, 1982). BM achieves diffraction-
limited resolution similar to confocal fluorescence microscopy,
requires no labeling of the specimen and, in combination with
ODT, allows the calculation of a 3D map of the longitudinal

modulus of the sample. The technique has been used successfully
to measure mechanical properties of human cornea (Scarcelli
et al., 2011, 2014; Scarcelli and Yun, 2012), ruminant retina
(Courrol et al., 2007; Weber et al., 2017), murine carotid
arteries (Antonacci et al., 2015), rabbit bone tissue (Fukui,
2011), zebrafish embryos (Fujimura et al., 2007; Meng et al.,
2016), zebrafish larvae (Schlüßler et al., 2018) as well as single
fibroblasts (Scarcelli et al., 2015). BM and ODT are also be the
perfect pair to quantitatively study the physical properties of
phase-separated, membraneless compartments, and in particular
the liquid-to-solid transitions of SGs inside living neurons.
Together, these various techniques might be used to study all
mechanical changes in neurodegenerative diseases as discussed
above.

CONCLUSION

In the past years, knowledge about neurodegenerative
diseases has enormously increased, but the underlying disease
mechanisms still remain unknown. Since transport deficiencies
seen in neurodegenerative diseases are caused by an impaired
cytoskeleton, this is likely to affect the mechanical properties of
the cell. Also, aggregate formation and phase transition processes
can contribute to local mechanical property changes (Hyman
et al., 2014). Diffusion and active processes required for axonal
transport could be impaired due to the liquid-to-solid phase
transition of axonal proteins in the aforementioned pathological
conditions.

Using mechanical and optical measurement techniques, the
assessment of the mechanical properties of neurodegenerative
disease models (e.g., rodent and cell culture) presents a novel
approach to investigate their underlying mechanisms. These
techniques are especially well suited to explore the properties of
tissues, single cells as well as subcellular compartments. Hence,
global mechanical changes generated by the cytoskeleton and
associated proteins can be detected and quantified. While AFM
is a well-established technique to measure mechanical material
properties, it requires direct physical contact between probe
and sample. This could potentially trigger active cytoskeleton
change inside the sample during measurements and thereby
introduce artefacts. Optical methods such as BM and ODT
can be used to access mechanical properties non-invasively
which can be particularly interesting for phase separation
processes and protein aggregate formation as seen in models
for neurodegenerative diseases. By combining the presented
techniques with methods that allow the determination of
structural characteristics, a comprehensive picture that links
structure and function will emerge.

It can now be investigated how the mechanical properties
change during the course of neurodegeneration and which
neuronal components are affected most (e.g., proximal or distal
axon, growth cones, soma, etc.). Moreover, early cytoskeletal
damage might be reflected by mechanical properties which
can serve as an initial marker for neuronal degeneration and
death. It is also possible that certain structural changes occur
explicitly in order to change the mechanical properties for the
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benefit of the cell, e.g., to stabilize the cell and keep transport
processes running. Cell mechanics, since always coupled to
biochemical and physiological processes, can provide new insight
into the basic understanding of neurodegenerative diseases and
can help to identify mechanism involved in the emergence of such
disorders.
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