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A B S T R A C T   

In biomedicine, the expansive scientific literature combined with the frequent use of abbrevia-
tions, acronyms, and symbols presents considerable challenges for text processing and summa-
rization. The Unified Medical Language System (UMLS) has been a go-to for extracting concepts 
and determining correlations in these studies; hence, the BioGraphSum model introduced in this 
study aims to reduce this UMLS dependence. Through adoption of an innovative perspective, 
sentences within a piece of text are graphically conceptualized as nodes, enabling the concept of 
“Malatya centrality” to be leveraged. This approach focuses on pinpointing influential nodes on a 
graph and, by analogy, the most pertinent sentences within the text for summarization. In order to 
evaluate the performance of the BioGraphSum approach, a corpus was curated that consisted of 
450 contemporary scientific research articles available on the PubMed database, aligned with 
proven research methodology. The BioGraphSum model was subjected to rigorous testing against 
this corpus in order to demonstrate its capabilities. Preliminary results, especially in the 
precision-based and f-score-based ROUGE-(1–2), ROUGE-L, and ROUGE-SU metrics reported 
significant improvements when compared to other existing models considered state-of-the-art in 
text summarization.   

1. Introduction 

Information on biomedicine and healthcare has been expanding at an exponential rate. However, the enormous volume and di-
versity of textual data in this field can result in information overload for those seeking to digest this information, which also reduces 
their productivity and prevents them from learning new things properly. The increased cognitive demands and mental effort caused by 
this information overload may make it more difficult for healthcare professionals to adequately grasp their patients’ medical problems 
and thereby affecting their ability to make the best medical judgments. Clinical researchers are required to expend a considerable 
amount of time and energy accessing the necessary and pertinent information from the vast amount of regularly updated biomedical 
data that is now available. 

According to Ref. [1], the effects of information overload an even be lethal since the workflow of today’s healthcare professionals 
now includes accessing textual data and interacting with computer-based technologies. Through automatic text summarization studies 
performed on biomedical data, this scenario of information overload can be significantly reduced, with document summary a crucial 
component of resolving this issue. Text summarization can aid clinical decision making and raise the standard of patient treatment by 
enabling healthcare professionals to concentrate on the more essential facts. However, despite recent improvements in document 
summarization, certain issues still require improved solutions. Automated document summarization seeks to develop techniques that 
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can identify the most crucial elements of information from a piece of text, and then condenses it in a way that is of benefit to readers. 
However, certain aspects must be obtained via data processing in order to reduce the time needed to acquire the desired information, 
hence the field of automatic text summarization systems has received increased attention as a result [2]. 

Automatic text summarization systems can be divided into extractive, abstractive, and hybrid approaches [3]. In extractive 
summarization systems, the most relevant and consistent statements are selected consecutively from the text being summarized, and a 
summary is then created [4], whereas abstractive summarization algorithms can change the document’s actual content, word order, 
and semantic representation in order to express it using different words. In contrast to extractive summaries, abstractive summaries use 
sentences distinct from those found in the main text(s) [5]. The third group, hybrid document summarization, combines both infer-
ential and abstractive methodologies in order to produce a summary [3]. Text summarization can also be classified as either 
single-document summarization (SDS), or multi-document summarization (MDS), depending on how many source papers were uti-
lized to produce the final summary. SDS creates a summary from a single text document and aims to condense any given input text 
whilst preserving the most crucial information [6], whereas a multi-document summary is based on a set of input documents [4]. The 
summary document may fall under the generic or query-based categories, depending on the information it contains. In order to provide 
a general knowledge summary of a document’s content, a generic text summarizer pulls the essential information together from one or 
more input texts. In query-based summarizing, a large corpus of uniform documents is culled based on a query and used as input to a 
multi-document summarizer, and the information about the query then subsequently produced in summary form. A general summary 
aims to offer a broad overview of a document’s content, whereas a query-based summary provides the information that is considered 
most pertinent to the initial search query. Additionally, there are controlled and unsupervised methods for document summarization. 
By classifying the units in the text that need to be summarized according to whether or not they are included in the summary, the 
classification problem of choosing relevant phrases in supervised summarization can be demonstrated. Unsupervised algorithms 
frequently assign grades to textual sequences based on specified standards and attributes. However, whilst unsupervised techniques do 
not require the use of educational data, supervised approaches do. Promising outcomes can be gained by transferring learning using 
trained word-embeddings within a supervised learning framework. 

The primary goal of this paper is to present a brand-new system aimed at successfully and efficiently selecting summary sentences 
from biomedical texts based on their familiarity with the key topics and subthemes of the text. BioGraphSum is a novel, graph-based 
model designed specifically for the purpose of biomedical text summarization. Its design utilizes an innovative approach that in-
tegrates Malatya centrality, a concept derived from graph theory, to prioritize the most influential sentences within a set of biomedical 
texts. In order to take links between different sequences into consideration, a source document is proposed as an undirected weighted 
graph. With the modeling steps, the details of which are provided in this paper, similarities between sentences in the text are trans-
ferred to the graph according to maximum representation. After having transferred the source texts to the graph, an effective and 
simple multi-document generic unsupervised document summarization system is used to advance graph-based biomedical text 
summarization one step further by using the vertex cover algorithm. The vertex cover algorithm served as a source of inspiration for 
the current study since it represents only a portion of the vertices that can cover an entire network. In real world problems such as text 
summarization, as in vertex cover, the mainstay of sentence selection is common word groups. This approach determines the level at 
which a successful and comprehensive summary contains golden information and how often it contains repetitive concepts. As known, 
a comprehensive and high-quality summary should contain the maximum amount of information possible whilst keeping repetitive 
information to an absolute minimum. 

Building upon the graphical expression of a text set, the current study aimed to produce summaries with a high level of coverage 
that can be accessed from the nodes subset of each edge in the vertex cover problem. Another innovation of the BioGraphSum model is 
the first use of Malatya centrality [7] in a text summarization problem since the algorithm offers a polynomial solution for the 
minimum vertex-cover problem. One of the essential advantages of this method is that in each iteration of the Malatya algorithm, the 
node carrying the most information can be selected in a polynomial time. Next, the inclusion of the selected node in the summary is 
removed from the diagram by deleting all edges belonging to the relevant node, and these erased edges represent common text groups. 
Thus, in the next step, it becomes possible to detect text groups from the main text that are not included in the abstract. Since common 
edges are deleted prior to new sequences being included in the summary in the following iteration, sequences with only minimal 
repetition are included in the summary. A quality and comprehensive summary should avoid word and concept repetitions, and this 
model allows for very comprehensive golden summaries to be created. The BioGraphSum model then selects and combines the most 
pertinent and instructive sentences from all of the clusters in order to construct the final summary, which covers all of the text’s current 
subtopics. In many studies in the literature on biomedical summarization, UMLS ready-made normalization tools such as MetaMap and 
OGER have been used [8]. However, in the BioGraphSum model, the outputs from OGER and MetaMap-style tools are not utilized at 
any stage, meaning that this former dependency on ULMS has been removed. 

The current study then tested the effectiveness of the BioGraphSum text summarization approach by generating biomedical 
summaries based on different dimensions using datasets from NLM’s PubMed. The results, based on the Recall-Oriented Understudy 
for Gisting Assessment (ROUGE) [9] metric, show that the proposed BioGraphSum model achieved scores of 0.2942, 0.1031, 0.1829, 
and 0.07498 for ROUGE-1, ROUGE-2, ROUGE-S, and ROUGE-SU, respectively. Overall, superior results were reported compared to 
other competitive state-of-the-art methods. The outcomes presented in the pertinent tables and figures in this paper demonstrate the 
BioGraphSum model’s superiority. 

The primary contributions of the current study are as follows.  

• Innovative approach: An unparalleled and effective method is introduced for summarizing unstructured documents in the realm of 
biomedical text summarization. 
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• Pioneering application: The utilization of Malatya centrality marks a first in addressing text summarization challenges, offering a 
polynomial-time solution to the minimum vertex-cover problem. 

• Training-free model: The proposed BioGraphSum model operates without need for any training or test data, enhancing its appli-
cability and versatility.  

• Distinct independence: Despite the uniqueness of biomedical texts, the BioGraphSum model operates independently of domain- 
specific tools such as UMLS, underscoring the significance of eliminating dependencies on tools such as OGER and MetaMap. 

The remaining sections of this paper are presented as follows: The essential work on text summarization is covered in Section 2, 
whilst the purpose and goals of the study are further explained in Section 3. Section 4 outlines the methodology and each step of the 
process before Section 5 discusses the corpus, evaluation metrics, and experimental findings of the study, including comparisons with 
existing cutting-edge techniques. Finally, Section 6 provides comprehensive summary information regarding the study’s findings. 

2. Related research 

2.1. Extractive summarization 

Extractive text summarization methods select and extract the sentences and words that are considered to have the most meaning 
and value from the raw text data, and are then used in order to create valid, comprehensive, and meaningful summaries. These 
summaries are formed using statistical and heuristic algorithms that review the sentences considered the most essential and valuable in 
the texts; an approach that can be achieved without first gaining a deep understanding or semantic analysis of the text [10–13]. 

Inferential text summarization techniques can be categorized into distinct classes based on the techniques employed. These 
techniques comprise TF-IDF approaches, as well as methods based on artificial neural networks, clustering, queries, machine learning, 
graphs, and those that utilize fuzzy logic. In fuzzy logic-based text summarization approaches, each feature of a text is used as input to 
then detect and extract essential sentences from the text. The methods used in fuzzy text summarization can vary according to dif-
ferences in the feature extraction, fuzzy rules, linguistic variables, membership functions, blurring, and defuzzification methods used 
[14]. In the first stage of the current research, clustering algorithms were employed to group text phrases before using a 
teaching-learning-based optimization strategy in the second stage to determine the best weights for the text fragments. In order to 
compute the final score of the sequences, a fuzzy inference method was simultaneously combined with a comprehensive 
human-generated knowledge base [15]. 

The definition of TF-IDF-oriented techniques is the assessment of the textual relevance of each word in a string or dataset. In 
Ref. [15], an inferential artificial text summarization system was introduced for the Turkish language that combined the 
statistically-based TF-IDF and graph-based PageRank algorithms. In the clustering approach, another inferential text summarization 
approach calculates the similarity of sentences according to similarity criteria between sentences in the text [13]. Summaries produced 
by considering the scope of the summaries to be created are classified as query-based or general summaries. Summaries created in 
query-based summarization systems take into account essential words provided by the user [2]. For a Chinese query-based document 
summarizing challenge, the Query-Based document summarization (QBSUM) dataset was introduced, and several solutions were 
provided within the scope of [16]’s study. Summarization models based on machine learning mostly classify the sentences within the 
given text using popular machine-learning methods such as SVM, DT, LR, RF, and KNN [13]. It is also possible to use a specific 
variation of KNN (K Nearest Neighbor), in which the similarity between feature vectors is determined by taking into account the 
similarity between value features. In the current research, both attributes and attribute values were taken into account, and modified 
by adapting to KNN for use in the text summarization task [17]. 

Graph-based approaches are also commonly used in inferential text summarization systems. For example, in Ref. [2], graphs 
consisting of sentences were used to represent the document set, and an automated text summarization system was introduced based 
on entropy and graphs. In addition, in Ref. [8], a multi-layered graph modeling and text summarization study was conducted for the 
purpose of biomedical text summarization. Numerous productive studies with similar assumptions are also evident in the current 
literature [6,18–22]. 

Latent semantic analysis (LSA) techniques are unsupervised and therefore do not require external information or training data, 
which is similar to graph-based techniques. The primary goal of text summarization is to ascertain how phrases and words relate to one 
another in terms of context. In order to overcome the performance problems of previous LSA-based solutions, an innovative approach 
was introduced that combined the syntactic and semantic information of the text using statistical and algebraic approaches [23]. When 
the available training data is abundant, neural-based models perform better than conventional models and require less human 
intervention. However, in order to extract more significant features from phrases using deep learning models, a significant amount of 
data is first required in order to train the systems using pre-trained models [24]. As a result, very rich summaries can be obtained with 
approaches in which document summarization is handled as an optimization problem. Hark et al. [4] introduced the multi-objective 
saplings growing-up algorithm (MO-SGuA) for extractive and generic summaries. In their study, they discussed document summari-
zation as a multi-objective optimization problem, and the reported results clearly demonstrated the success of their approach. 

The current research proposes a graph-based, unsupervised, generic, multi-document system to summarize Biomedical texts. 

3. Motivation and objectives 

A finite set of sentences that encompasses all the concepts addressed by each and every sentence of the input texts was first selected 
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according to the extractive multi-document summary procedure. Since more than one input document contributing to a summary may 
contain significant equivalent information, the summary drawn from the main text may contain a certain level of information already 
covered. Whilst it is an undesirable result to have such conflicts in a summary, the proposed multi-document text summarization 
system is able to overcome this problem. For the first time, within the scope of the current study, the Malatya algorithm, which is the 
subject of a real-world problem, provides complete content information and diversity. At the same time, information containing 
minimum repetitions is included in the summary due to application of the working principles of the Malatya algorithm. Despite having 
the moniker “vertex cover algorithm,” it has served as a source of inspiration for the current study since it only represents a portion of 
the vertices that can cover the entire network. A finite vertex-cover set of a graph is a collection of chosen vertices such that each edge 
in the graph coincides with at least one of the chosen vertices, as is detailed in the relevant section. In this way, in order to obtain rich 

Fig. 1. High-level design of proposed BioGraphSum model.  

Fig. 2. Example biomedical content.  
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text summaries, the common opinion and content of the textual diagram are preserved while also achieving minimal repetition. The 
main source of inspiration for the experimental approaches used in the current study were conceptual parallels drawn between the 
vertex-cover problem and the multi-document summarization problem. 

4. Proposed method 

This study proposes an extractive, multi-documented, and generic text summarization system. The performance of this innovative 
method was tested against real published biomedical text data. Fig. 1 illustrates the proposed biomedical text summarization system 
which consists of four main stages. The first stage entails preprocessing and/or conversion of unstructured texts. Removing stop-words, 
lemmatization, and punctuation steps are vital in order that the documents may be used effectively in the subsequent steps. The second 
stage provides the mathematical and graphical transformations of each sentence that makes up the texts. At this stage, common word 
intersections between sentences are taken into account. 

The third and main stage is where the Malatya algorithm, used for the first time in a text summarization task, is run repeatedly and a 
subset of the most effective nodes is created to cover all edges. This step is where rich summaries of a desired size are created. The final 
stage is where post-processing operations are performed such as arranging the selected sentences according to their order in the main 
document so as to create a more fluent summary. This paper also reports on the performance and efficiency of the proposed Bio-
GraphSum model according to various recognized performance metrics. 

4.1. Text preprocessing 

Preprocessing steps are often necessary for datasets that lack a specific structure. For this, maximizing representation in the textual 
presentation step is the primary objective. The system’s performance is anticipated to improve with the removal of extraneous in-
formation from the biomedical text documents used. Prior to processing the natural language text, pronouns, prepositions, and 
conjunctions, etc. are first removed since these terms do not represent sentences nor make sense on their own and are therefore 
eliminated from the original datasets. By processing just words with categorical significance, the workload of the whole process is 
significantly decreased. Next, lemmatization and stemming processes were performed on the texts, where the purpose is to convert 
words into common basic forms. Since the data used in the current study consisted of actual PubMed articles, this stage was critical 
because the published articles in the dataset may contain items with vague conceptual meanings [2,4,5,25]. The BioGraphSum text 
summarization system proposed in this study starts with a text preprocessing phase. 

4.2. Textual graph modeling 

Different facets of the subject being reported should be included in order to generate a comprehensive summary. The process aims 
to provide convenience for readers by concentrating the information at the maximum level. Therefore, it is first necessary to remove 
certain features in order to minimize the time spent accessing information. Representing the texts mathematically and with maximum 

Fig. 3. Selection stages of nodes using the Malatya algorithm.  
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information is another critical step of text summarization. The textual diagrams to be modeled should be able to derive various re-
lationships as a result. Within the scope of the current study, an effective textual diagram creation process was conducted so as to 
present the maximum level of representation in light of the analyses performed. The proposed BioGraphSum model creates graphs 
from input texts that represent various sorts of sentence relationships. The procedures listed in Algorithm 1 are then used to create the 
textual diagram. 

The next step is to model a biomedical text as a weighted, undirected graph, where each text sequence is a node and the edges 
denote different sentence associations. This is phase 4 of the proposed BioGraphSum architecture. Fig. 2 represents an exemplary 
Biomedical manuscript [26] and its corresponding diagram. 

Algorithm 1. CreateGraph 

4.3. Vertex cover via Malatya algorithm 

Many real-world problems can be successfully solved using graph theories, and the vertex cover problem is one such hypothesis. It 
is considered a strong hypothesis which searches for a subset of vertices that can represent an entire network since it is an optimization 
problem and optimal solutions are not easy to find. Different approaches have been used in the literature to address the vertex cover 
problem or to offer near-optimal solutions. One such approach recently introduced the Malatya algorithm [7], which offers practical 
solution sets to the NP-hard minimum vertex cover issue, and was selected for use in the current study. The Malatya algorithm’s rough 
code is represented as shown in Algorithm 2. 

Algorithm 2. Apply Vertex Cover 

4.4. Proposed biomedical document summarization 

The Malatya algorithm has not previously been used to resolve any real-world problem, hence the current study presents the first 
such approach. In this study, the algorithm’s effectiveness was tested against a significantly important and challenging problem, that of 
biomedical text summarization. 

While calculating the centrality values of the nodes in the diagram, the Malatya algorithm is not affected by local weights. Since the 
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degrees of all nodes adjacent to the relevant node are included in the calculation, this approach makes the Malatya algorithm 
significantly effective. All nodes are visited by taking into account both local and neighborhood weights. As a result, it may be possible 
to look at how inclusive the candidate summary’s sentences are. At the end of the first step, the node with the highest node score is 
added to the minimum vertex cover subset. By deleting the node added to the subset and the edges connecting to this node from the 
diagram, the same procedure is performed. At the end of the specified steps, the minimum number of nodes with the maximum 
coverage of nodes is obtained using the Malaya algorithm. The steps of an example biomedical diagram using the Malatya algorithm 
are schematized as illustrated in Fig. 3, which is based on the example biomedical content presented in Fig. 2 (biomedical text sourced 
from the corpus used in the current study). 

Fig. 3 illustrates the direct proportionality between the centrality value of Malatya and the node sizes. According to the Malatya 
algorithm, the more valuable nodes are pictured larger in order that the working steps of the algorithm can be more easily understood. 
For example, in Stage 1, the highest Malatya centrality node score belongs to Node 7. As shown in Fig. 2, Node 7 reads; “The amnion is 
an elastic and semi-permeable tissue made from 5 layers (Fig. 1A); the most inner layer represents the sentence Nearest to the fetus and in direct 
contact with the amniotic fluid are epithelial cells.” Thus, the most comprehensive sentence worth including in the summary was 
determined. In the subsequent steps, this process is repeated based on the basic principles of the algorithm. This approach ensures that 
summaries of the desired size can be obtained within the scope of any given study, and dynamic subsets can be obtained according to 
the length of the summary generated. 

Algorithm 3. Proposed BioGraphSum Algorithm (Generate Summarized Text) 

Algorithm 3 outlines the fundamental steps of the biomedical document summarizing method. The weight of the nodes on the 
overall graph that represent the sentence is first determined using the Malatya algorithm. The subsequent phases of the technique then 
involve removing the pertinent node from the graph in order to identify the candidate summary that is most similar to the golden 
summary. 

The proposed BioGraphSum algorithm in the current study takes the Biomedical Document Corpora as input and provides sum-
marized biomedical texts. 

The first stage obtains the sentences that make up the Biomedical Document Corpora (line 2). 
After the sentence list is created, lines 3–10 of Algorithm 3 are performed as an iterative step, where all sentences in the corpora are 

first stripped of alphanumeric characters (line 4). Then, in order to avoid unnecessary repetition and to prevent meaningless stop 
words from creating unnecessary edges, all stop words in the sentences are deleted (line 5). 

In sentences where there is similar and/or the same meaning, these are transferred to the textual diagram as a single element (line 
6). A node is then created for each preprocessed sentence (line 7). 

Lines 4–6 must offer a strong textual depiction. However, in order to include the most pertinent sequences in the summary in the 
same order at the end of the process, they must be correctly stored (line 8). 

Control is then transferred to Algorithm 1, and highly representative textual graphs are created (lines 12–14). 
The final stage adds the nodes (representing the sentences) selected by the Malatya algorithm to the summary according to the 

order in the biomedical text corpora, based on the steps determined in Algorithm 2. 
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5. Experimental evaluations 

This section presents an assessment of the BioGraphSum algorithm as well as describing the evaluation corpus and evaluation 
metrics used in the study. Reports are made regarding the performance of the introduced model and then its performance evaluated in 
comparison to state-of-the-art models from the current literature. 

5.1. Evaluation corpus 

To the best of the authors’ knowledge, no publicly available dataset exists that is frequently used for summarizing biomedical text, 
with studies using collections of published articles from the biomedical field [27–32]. Gold/reference abstracts are accepted as 
standalone article abstracts in biomedical libraries, whilst parts of articles other than the abstract are accepted as the texts to be 
summarized. In order to test the performance of the introduced BioGraphSum text summarization model, a corpus was created 
consisting of 450 current scientific research articles from the PubMed corpus in accordance with previous studies. The BioGraphSum 
model was then tested using this 450-article corpus [33]. 

5.2. Evaluation metrics 

The ROUGE (Recall Oriented Understudy of Gisting Evaluation) [9] metric was used to assess the effectiveness of the summari-
zation system. The ROUGE recall-based evaluation approach calculates n-gram-based recall for the candidate text in relation to the 
references for the text generation task. The following metrics were used to assess the model’s performance: ROUGE, f-score (Flcs), recall 
(Rlcs), and precision (Plcs). The recall metric tests the extent to which the system is covered, with its accuracy quantified according to 
the level of accurate information supplied by the system. The current study employed the ROUGE-N, ROUGE L, ROUGE-W-1.2, and 
ROUGE-SU metrics to assess the BioGraphSum model. ROUGE-N was used to assess the n-gram number of the summary generated by 
the BioGraphSum model. 

ROUGE − N=

∑

C∈{Reference Summaries} gramn∈S

∑
Countmatch(gramn)

∑

C∈{Reference Summaries} gramn∈S

∑
Count(gramn)

(1)  

Rlcs =
LCS(X,Y)

m
(2)  

Plcs =
LCS(X,Y)

n
(3)  

Flcs =

(
1 + β2)RlcsPlcs

Rlcs + β2Plcs
(4) 

The recall metric is based on the number of correct sentences in the candidate summary (LCS(X, Y)) and the total number of 
sentences in the model summary (m). The precision metric uses the number of correct sentences in the candidate summary (LCS(X,Y)), 
whilst the total number of sentences in the candidate summary (n), and Flcs uses parameter β to determine the balance between the 
recall and precision metrics. 

Countmatch, where n is the length of the n-gram, or the number of n-grams that cross paths in both the draft summary and the 
reference summary. 

5.3. Experimental results 

The current study’s experimental procedures were conducted using Python on a desktop computer with 16 GB of memory and an 
AMD Ryzen 7 PRO 4750U CPU with Radeon Graphics running at 1.70 GHz. 

Since the texts utilized to gauge the performance of the proposed BioGraphSum model are actual published articles, the application 
of data pretreatment and preparation phases were considered essential. The performance of the developed innovative paradigm 
critically depends on high quality representation. During the data preprocessing and preparation stages, stop words and punctuation 
were first removed from the texts, then Lemmatization etc., transactions were applied. After the preprocessing stage, the relationships 
between the word units were accurately transferred to textual graphics, with source documents modeled in the form of weighted and 
undirected graphs. As a result, graphs with a high level of textual expression representation were created by the model. 

Next, the Malatya algorithm was applied, which is an approach not previously used to resolve any real-world problem, with each 
step of the algorithm followed. Through application of the algorithm’s iterative steps, all nodes were scanned to cover all edges 
forming the representative graph. A subset containing the most efficient nodes was then obtained. In the experimental studies, the most 
information-bearing node of each iteration was selected in polynomial time, since the Malatya algorithm, unlike prior algorithms, 
offers solutions in polynomial time. By including the selected node, in summary, all adjacent edges to the relevant node were then 
deleted and removed from the graph. Erased edges represent common text groups; thus, in the next stage, text phrases in the main text 
were determined that had yet to be included in the abstract, thereby preventing repetitious addition of the same text phrases to the 
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summary. At this stage, the units (sentences) that made up the text were selected according to the level of their content. As such, very 
rich extracts were obtained at the desired compression ratios of 90 %, 80 %, 70 %, and golden summary size. After expressing a text set 
using a graph, the fact that every feature was accessible from a subset of nodes in the vertex cover problem enabled the production of 
summaries with a high level of coverage. Finally, the generated summary sentences were arranged according to their order in the main 
text so as to ensure their integrity and the overall fluency of each generated summary. In order to cover all of the text’s existing 
subtopics, the most informative sentences were chosen and combined to generate the final summary. 

In addition, the performance and efficiency of the BioGraphSum model were also measured according to various recognized 
performance metrics. ROUGE 1–4, ROUGE-L, ROUGE-W, ROUGE-S, and ROUGE-SU measures were used to thoroughly analyze the 
BioGraphSum model’s performance and accuracy based on system recall, precision, and f-score values. Since the average size of the 
abstracts were between 15 % and 35 % of the original text size, the experimental method was repeated in order to produce summaries 
of various sizes, with four distinct compression ratios [8,25,30]. Thus, the variation of the introduced model’s performance according 
to compression ratio could also be reported. The results achieved confirm the authors’ hypothesis that successful biomedical text 
summarization can be achieved without use of a domain-specific database such as UMLS, SemRep, MetaMap, or OGER. 

It is generally accepted that summarizing biomedical texts can be very challenging due to the regular use of abbreviations, ac-
ronyms, and symbols. However, as can be seen from the current study’s experimental procedures, use of the Malatya centrality al-
gorithm on biomedical texts can generate high-quality summaries through accurate extraction of the most meaningful sentences in the 
text. In the current study’s experimental process, the success of the BioGraphSum model was replicated for the golden summary size, 
and for compression ratios of 90 %, 80 %, and 70 %. The ROUGE performance metrics were used to gauge the model’s effectiveness, as 
shown in Table 1 and Table 2. Separate findings are presented for the ROUGE-1-2-3-4, ROUGE-L, ROUGE-W, ROUGE-S, and ROUGE- 
SU metrics, with recall, precision, and f-score measures also presented for each metric. In Tables 1 and 2, the performance metric is 
displayed in the first column, while the scores returned by the BioGraphSum model at the 95 % confidence interval are displayed in the 
other columns according to summary size (golden summary and 90 % compression ratio in Tables 1 and 80 % and 70 % compression 
ratios in Table 2). 

As can be seen from Table 1 and Table 2, the highest ROUGE (1–4), ROUGE-L, ROUGE-W, ROUGE S, and ROUGE-SU scores were 
calculated as 0.77344, 0.3117, 0.1332, 0.0666, 0.5165, 0.1131, 0.5847, and 0.58666, respectively (recall-based). The most successful 
results based on recall were obtained without exception when the compression ratio was 70 %. Again, in Table 1 and Table 2, the 
highest precision-based ROUGE (1–4), ROUGE-L, ROUGE-W, ROUGE S, and ROUGE-SU scores obtained were 0.3722, 0.1025, 0.04, 
0.0195, 0.2135, 0.12888, 0.1356, and 0.13812, respectively. The highest performance values based on precision were reported for the 
golden summary size dimension. In Table 1 and Table 2, an f-score-focused evaluation also reported ROUGE (1–4), ROUGE-L, ROUGE- 
W, ROUGE S, and ROUGE-SU scores as 0.3709, 0.105, 0.0434, 0.0225, 0.2103, 0.0759, 0.133, and 0.13513, respectively. 

Upon examining these performance results in general, it can be seen that the most successful results in terms of recall scores were 
obtained for the compression ratio of 70 %, without exception. Although high-performance values were reported for all summary 
dimensions based on an f-score evaluation, most were obtained for the golden summary size. In the precision-based evaluation, 
without exception the most successful results were obtained for the golden summary size. 

In general, the recall results improved when there were more sentences in the output. As can be seen in the related tables, the recall 
value showed a net increase as the size of the summary grew. There was an inverse relationship established between the summary sizes 
of the BioGraphSum model and the precision and f-score values. As the compression ratio decreased (summary size increased), the 
precision and f-score values were seen to decrease. 

5.4. Comparison with state–OF–the-art methods 

State-of-the-art methods techniques were then compared to the performance outcomes obtained using the introduced Bio-
GraphSum model. In addition, comparisons were made between summaries generated with an 80 % compression ratio in order to 
provide a fair comparison with previous similar summarization approaches reported in the literature. 

There are other current and successful studies on biomedical texts in the literature that are graph-based and that provide good 
results [2,4]. However, these studies were excluded from the current study’s comparison in order to provide a fair and realistic 

Table 1 
ROUGE scores of BioGraphSum summaries for 90 % compression ratio.  

ROUGE evaluation methods BioGraphSum summaries (95 % confidence interval) 

Golden summary size Compression ratio 90 % 

recall precision f-score recall precision f-score 

ROUGE-1 0.3905 0.3722 0.3709 0.5479 0.284 0.3551 
ROUGE-2 0.1077 0.1025 0.1022 0.1587 0.085 0.105 
ROUGE-3 0.042 0.04 0.0398 0.0589 0.0337 0.0407 
ROUGE-4 0.0208 0.0195 0.0196 0.0282 0.0171 0.0201 
ROUGE-L 0.2208 0.2135 0.2103 0.3051 0.1649 0.2023 
ROUGE-W 0.0509 0.12888 0.0709 0.0677 0.09608 0.0751 
ROUGE-S 0.1545 0.1356 0.133 0.2942 0.0864 0.1139 
ROUGE-SU 0.15675 0.13812 0.13513 0.29676 0.08749 0.11532  
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evaluation. The selected state-of-the-art methods in the current study were biomedical and graph-based approaches similar to the 
proposed BioGraphSum model. Recent studies on biomedical summarization systems show that the LexRank algorithm produces 
superior outcomes to alternative graph-based techniques [8,25]. Therefore, the LexRank algorithm was included in the comparisons as 
a precursor to graph-based biomedical summarization methods [34]. By assigning points to sentences based on the LexRank method, 
inferential summaries were provided. In the framework of NLP, Erkan et al. suggested a stochastic and graph-based method to 
determine the relevance of text units. They assessed the significance of sentences in the representative graphs using an eigenvector 
centrality metric (based on node centrality). The authors showed that LexRank frequently outperformed both degree-based and 
centroid-based algorithms through their experimental approach. Another competitive and successful method is known as “Leveraging 
BERT,” where BERT and K-Means clustering are used together [35]. 

Additionally, the baselines used the unsupervised MultiRank algorithm, which successfully models networks by using word sim-
ilarity, semantic similarity, and common reference similarity. Using SemRep, MetaMap, and OGER, the MultiGBS algorithm extracts 
concepts and relationships from UMLS data [8]. 

The proposed BioGraphSum model was tested against a corpus created from 450 current scientific research articles published in 
PubMed. In Table 3 the highest value for each row is presented as bold text. Based on the values for the ROUGE-1, ROUGE-2, ROUGE-L, 
and ROUGE-SU metrics, the BioGraphSum model’s results with a compression ratio of 80 % were compared with state-of-the-art 
models for each performance parameter. When Table 3 and Fig. 4 are examined, it can be seen that LexRank produced the highest 
recall-based value for ROUGE-1, ROUGE-2, and ROUGE-L metrics, with the proposed BioGraphSum model producing the second 
highest results to LexRank for both ROUGE-1 and ROUGE-2. 

As can be seen from the corresponding graph presented as Fig. 5, the BioGraphSum model reported ROUGE-1, ROUGE-2, and 
ROUGE-L values with the highest precision focus compared to the state-of-the-art models. 

Similarly, the BioGraphSum model also reported the highest ROUGE-1, ROUGE-2, and ROUGE-L values focused on f-scores 
compared to the state-of-the-art models. 

As can be seen from Table 3 and Figs. 4–6, although the BioGraphSum model did not produce the highest results for every metric, 
the model achieved the most highest values in the comparisons, and the second-best values were generally achieved in cases where the 
highest values could not have been obtained in the experimental process applied that was. 

The comparison results show that the proposed and innovative BioGraphSum model generally outperformed the state-of-the-art 

Table 2 
ROUGE scores of BioGraphSum summaries for 80 % and 70 % compression ratio.  

ROUGE evaluation methods BioGraphSum summaries (95 % confidence interval) 

Compression ratio 80 % Compression ratio 70 % 

recall precision f-score recall precision f-score 

ROUGE-1 0.691 0.1985 0.2942 0.77344 0.1513 0.2439 
ROUGE-2 0.2417 0.0696 0.1031 0.3117 0.0608 0.098 
ROUGE-3 0.0961 0.0292 0.0426 0.1332 0.0271 0.0434 
ROUGE-4 0.0464 0.0148 0.0212 0.0666 0.0142 0.0225 
ROUGE-L 0.4242 0.1244 0.1829 0.5165 0.1024 0.1645 
ROUGE-W 0.0927 0.07152 0.0759 0.1131 0.05892 0.0734 
ROUGE-S 0.4673 0.0453 0.0742 0.5847 0.0271 0.0486 
ROUGE-SU 0.46956 0.04581 0.07498 0.58666 0.02734 0.04903  

Table 3 
ROUGE results for state-of-the-art methods.  

ROUGE evaluation methods Compression ratio 80 % 

summary methods 

Leveraging BERT LexRank MultiGBS Proposed BioGraphSum 

recall 
ROUGE-1 0.649 0.720 0.586 0.691 
ROUGE-2 0.176 0.256 0.151 0.2417 
ROUGE-L 0.403 0.559 0.452 0.4242 
ROUGE-SU 0.345 0.425 0.301 0.46956 
precision 
ROUGE-1 0.101 0.064 0.111 0.1985 
ROUGE-2 0.034 0.027 0.035 0.0696 
ROUGE-L 0.062 0.083 0.103 0.1244 
ROUGE-SU 0.045 0.033 0.052 0.04581 
f-score 
ROUGE-1 0.155 0.108 0.164 0.2942 
ROUGE-2 0.051 0.0455 0.052 0.1031 
ROUGE-L 0.095 0.129 0.146 0.1829 
ROUGE-SU 0.070 0.057 0.075 0.07498  
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studies. 
Precision-based ROUGE values provide information on the detection of redundancy in general in the text, whereas recall-based 

ROUGE values represent coverage, and f-score values reflect both redundancy and coverage at the same time. Therefore, a high f- 
score value signifies a lower level of repetition and more meaning (i.e., a higher quality summary). Upon examination of Tables 3 and it 
can be seen that the state-of-the-art methods need to be included in terms of f-scores (except ROUGE-SU), indicating that the 

Fig. 4. Comparison of BioGraphSum and state-of-the-art methods (recall-based ROUGE).  

Fig. 5. Comparison of BioGraphSum and state-of-the-art methods (precision-based ROUGE).  
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BioGraphSum model produced only a low level of repetition and the most meaning. 

6. Discussion 

The innovative BioGraphSum model introduced in this scholarly article is assessed in this section for its efficacy as a novel 
biomedical text summarization method. The unique feature of the BioGraphSum model is that it has no reliance upon the use of 
conventional biomedical databases such as the Unified Medical Language System (UMLS). Instead, it utilizes the novel approach of 
Malatya centrality, which is based on graph theory. Text sentences are viewed as nodes on a graph, and in order to improve the quality 
of the summaries generated, the most influential nodes are given priority. According to the findings presented in this study, the 
BioGraphSum model performed noticeably better than state-of-the-art approaches such as LexRank in two important ROUGE mea-
sures: precision and f-score, which gauge the summary’s relevance and information redundancy, respectively. 

The presented findings have significant ramifications for the field of biomedical text summarization, with BioGraphSum showing 
adaptability and usefulness across different biomedical contexts by eschewing dependency on UMLS and other related tools. This 
innovative model could democratize text summary methods in settings where access to domain-specific databases is either scarce or 
nonexistent. Additionally, by avoiding the requirement for significant computational resources and domain-specific training, the 
BioGraphSum method helps in the scaling of text summarization applications. 

The model BioGraphSum does have certain limitations, though. The intricacy of biomedical language and the profusion of acro-
nyms within biomedical texts presents formidable obstacles that may periodically affect the summarization’s effectiveness. Therefore, 
future work should concentrate on improving the model’s capacity to comprehend and analyze the intricacies of biomedical language. 
Furthermore, there is significant advancement still required in order to handle redundancy and potential overlap in information 
content, especially in multi-document generated summaries. In addition, the abundance of biomedical terms and abbreviations found 
in biomedical texts was found to negatively affect the performance of the BioGraphSum model. Another limitation of the current study 
is that not all of the results for the BioGraphSum model (ROUGE 1-2-3-4-L-W-S-SU) could be compared to the state-of-the-art methods 
since their results were limited only to ROUGE 1-2-L-SU. However, despite these limitations, it is considered an important attribute 
that the BioGraphSum model does not require any training-test data, nor does it require heavy hardware infrastructure in order to 
summarize biomedical texts. 

The introduced BioGraphSum model offers a promising new direction for biomedical text summarization, suggesting a shift to-
wards more adaptable, resource-efficient technologies in natural language processing. Its success in leveraging graph-based meth-
odologies to produce high-quality summaries underscores its potential utility and marks a significant step forward in the ongoing 
evolution of text summarization techniques. 

Fig. 6. Comparison of BioGraphSum and state-of-the-art methods (f-score-based ROUGE).  
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7. Conclusion 

This article introduced a new and original graph-based approach for summarizing biomedical texts. The BioGraphSum model 
allows for summaries to be generated that include only effective and efficient sentences based on their similarity with the main 
subthemes of the overall text. In the proposed model, biomedical texts are modeled as undirected and weighted graphs based on the 
relationships between sentences. After transferring the texts to the graphs, a multi-document, generic, unsupervised document 
summary system takes graph-based biomedical text summarization one step further through use of the vertex cover algorithm. After 
expressing a text set with a graph, the fact that each edge can be accessed from the subset of the nodes in the vertex cover problem led 
to the production of summaries with high coverage. Contrary to other approaches to resolving the minimum vertex-cover problem, the 
Malatya algorithm, which solves in polynomial time, was used in the current study for the first time in a challenging real-world 
problem such as biomedical text summarization. The minimum vertex cover issue has a polynomial solution provided by the Mala-
tya algorithm. One of the essential advantages of the proposed method is that for each iteration of the Malatya algorithm, the node 
carrying the most information can be selected in a polynomial time. 

Whilst numerous prior studies utilized a domain-specific dictionary database, the BioGraphSum model did not use UMLS since it 
was considered important to remove dependency on OGER and MetaMap-style tools in domain-specific text summarization. The 
BioGraphSum model was then assessed using a collection of 450 biomedical publications. LexRank was also contrasted with other 
approaches such as MultiGBS and Leveraging-BERT. The results show that the BioGraphSum model performed better than rival tools in 
terms of certain ROUGE criteria. The vertex cover algorithm’s ability to access every edge from a subset of nodes is how the authors of 
the current study explain the superior performance of the proposed BioGraphSum model performs compared to other highly effective 
techniques like LexRank, MultiGBS, and Leveraging BERT. Whilst the BioGraphSum model was initially developed to produce text 
summaries with a high level of coverage and rich abstracts, the model’s robust infrastructure could also be used outside of the 
biomedical field in order to resolve similar issues in line with the needs of different fields. 

Finally, since the BioGraphSum model does not require any training or test data, there is no need for very large datasets or heavy 
hardware infrastructure. 
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