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Abstract

Deception detection can be of great value during the juristic investigation. Although

the neural signatures of deception have been widely documented, most prior studies

were biased by difficulty levels. That is, deceptive behavior typically required more

effort, making deception detection possibly effort detection. Furthermore, no study

has examined the generalizability across instructed and spontaneous responses and

across participants. To explore these issues, we used a dual-task paradigm, where the

difficulty level was balanced between truth-telling and lying, and the instructed and

spontaneous truth-telling and lying were collected independently. Using Multivoxel

pattern analysis, we were able to decode truth-telling versus lying with a balanced

difficulty level. Results showed that the angular gyrus (AG), inferior frontal gyrus

(IFG), and postcentral gyrus could differentiate lying from truth-telling. Critically, lin-

ear classifiers trained to distinguish instructed truthful and deceptive responses could

correctly differentiate spontaneous truthful and deceptive responses in AG and IFG

with above-chance accuracy. In addition, with a leave-one-participant-out analysis,

multivoxel neural patterns from AG could classify if the left-out participant was lying

or not in a trial. These results indicate the commonality of neural responses sub-

served instructed and spontaneous deceptive behavior as well as the feasibility of

cross-participant deception validation.
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1 | INTRODUCTION

Deception is a complex cognitive activity that usually occurs when

people attempt to convince others to accept incorrect beliefs. Decep-

tion could come in many different forms, such as outright lies, exag-

gerations, omissions, and subtle lies (DePaulo, Kashy, Kirkendol,

Wyer, & Epstein, 1996; Vrij, Edward, Roberts, & Bull, 2000), and it

affects various aspects of life, including politics, marketing, and per-

sonal relationships. Given that human society is trust-based, decep-

tion may hamper communication and destroy the relationship, leading

to negative consequences such as loss of property and sometimes

even life. Therefore, deception detection has attracted researchers’
attention for decades and human society has long sought scientific

methods for detecting deceptive behaviors.

Polygraph is one of the pioneering techniques in measuring

peripheral responses such as blood pressure, pulse rate, respiration,

and electrodermal responses (Lykken, 1981; Saxe, Dougherty, &

Cross, 1985). However, the use of polygraphs could be problematic,

since measured physiological responses tend to correlate closely with

emotional reactions like anger, fear, and anxiety. These unspecified
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responses may not necessarily be associated with lying behavior

under real-world interrogations, which can result in false positives in

deception detection (Steinbrook, 1992).

Over time, the traditional measures have been supplemented by

electroencephalographic (EEG) and functional magnetic resonance

imaging (fMRI). Prior fMRI studies on deception fall into two catego-

ries. On the one hand, researchers have been focusing on detecting

deception in each and every individual. For instance, indexed by

whole-brain resting-state functional connectivities (RSFC), a prior

study demonstrated that brain networks involving executive con-

trolling (dorsolateral prefrontal cortex, middle frontal cortex, and

orbitofrontal cortex), social and mentalizing (the temporal lobe,

temporo-parietal junction, and inferior parietal lobule), and reward

(putamen and thalamus) could predict participants’ deceptive

behaviors in an independent task (Tang et al., 2018). Also, it has

been demonstrated that within a single individual, lying can be dif-

ferentiated from truth-telling with an accuracy of 78% (Langleben

et al., 2005). All aforementioned works demonstrated the values of

the utilization of fMRI in distinguishing deceptive from truthful

responses.

On the other hand, scientists attempted to detect deceptive

behaviors by exploring neural mechanisms underlying deception at

the group level. Relevant results showed that in comparison with

truth-telling, lying elicited higher activations in the ventral medial pre-

frontal cortex (VMPFC), the prefrontal cortex (PFC), the prefrontal

motor cortex (PMC), and the orbital frontal cortex (OFC) (Giorgio

Ganis, Kosslyn, Stose, Thompson, & Yurgelun-Todd, 2003; Kozel

et al., 2005; Kozel, Padgett, & George, 2004; Phan et al., 2005;

Spence, 2004; Spence et al., 2001). Based on these findings, it appears

that lying may necessitate additional executive functions such as

working memory, inhibition, and task switching (Christ, Van Essen,

Watson, Brubaker, & McDermott, 2009). However, with identical con-

trast (truthful vs. deceptive responses), apart from regions related to

high-level cognitive functions, other studies also showed that regions

related to perception such as cuneus, precuneus, and cerebellum had

greater activations during lying (Lee et al., 2002, 2005; Nuñez, Casey,

Egner, Hare, & Hirsch, 2005). These discrepancies may result from the

heterogeneity in experimental tasks and protocols (e.g., playing cards,

autobiographical knowledge, rehearsal scenario, or mock-crime

scenario).

Even though tasks and protocols differed from one another, they

could be roughly classified into two groups: the Control Question

Task (CQT) and Conceal Information Task (CIT), also known as Guilty

Knowledge Test (GKT). These two techniques are different in terms

of their basic assumptions. CQT assumes that deceptive responses/

activities can be identified by directly comparing truth-telling against

lying. Thus, CQT usually employs forced-choice methods, during

which participants were required to give “Yes” or “No” answers to

questions related to personal information or general knowledge

involving truths or deceptive responses (e.g., The earth is round). As

for CIT/GKY, the underlying assumption is that lying behaviors/

responses are only observable in concealers who hide the truth. Thus,

during CIT/GKT, both concealers and innocents will be asked to

answer relevant, irrelevant, and neutral questions (usually served as

distractors) and deceptive responses can be revealed by comparing

the reaction differences between these three types of questions

between two groups of participants (concealers and innocents).

Based on CQT or CIT the neural substrates of the deceptive

responses have been investigated to some extent, yet several issues

remained unresolved. First, when searching neural activities for

deceptive responses, most prior studies directly compared the differ-

ences between truth-telling versus lying conditions. However, the

cognitive burden for lying is heavier than that for truth-telling: lying

may require more engagement of working memory, exogenous,

endogenous attention, and cognitive control (Sánchez, Masip, &

G�omez-Ariza, 2020; Vartanian et al., 2013). Usually, when people

attempt to lie to a question, they need to intentionally suppress the

default truthful response and then make a reverse reaction, which

may therefore increase the difficulty of lying. Although prior studies

attempted to control for the cognitive resources between truth-telling

and lying (Spence, Kaylor-Hughes, Farrow, & Wilkinson, 2008), the

effect of different difficulty levels remained to be tested.

Second, few studies ever investigated the generalizability of lie

detection across instructed deception and spontaneous deception

albeit the neural mechanism underlying spontaneous lying have been

examined (Yin, Reuter, & Weber, 2016; Zhang, Liu, Pelowski, &

Yu, 2017). In most of the prior fMRI studies, participants were

instructed to tell the truth or lie in the laboratory settings which

lacked a key ingredient of real-life deception, namely spontaneous

behaviors. Therefore, whether the results of prior studies can be gen-

eralized to deception in real life remain unclear.

Lastly, one critical hurdle for a practical deception detector has

been to overcome individual differences. Although prior brain imaging

studies with cross-validation analysis have successfully utilized brain

activity patterns gathered from a group to predict the left-out partici-

pants (Mason, Just, Keller, & Carpenter, 2003; Wang, Hutchinson, &

Mitchell, 2004) the feasibility of this approach remains to be tested in

deception detection.

In sum, to address the aforementioned questions, there are three

specific aims for the current study. As a first step, a dual-task para-

digm, consisting of Task1 and Task2, was created based on CQT,

which is simpler and easier to control in comparison with CIT. To

resolve the concern with regard to difficulty when attesting to decep-

tive behaviors, truth conditions in Task1 will be further divided into

two groups: truth-telling-easy (T1Te) and truth-telling-difficult (T1Td)

(details provided in the Methods). With this control, we aimed to

explore neural signatures exclusive for deceptive responses by com-

paring lying versus truth-telling-difficult conditions and establish a

physiological database for the followed-up analysis.

Second, to resolve the concern with regard to the generalizability

of truthful and deceptive acts, we aimed to test how well the

instructed responses predict participants’ spontaneous behaviors in

another task. More specifically, within-participant cross-task classifier

accuracies will be attested during which neural patterns from Task1

will be recorded and served as a baseline to predict neural patterns

from Task2.
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Third, we aimed to explore the feasibility of training classifiers to

distinguish truthful and deceptive responses across participants.

Cross-participant cross-task classifier accuracies will be examined by

first establishing a database of instructed truth and lie responses from

a group of participants, and then used to predict left-out individuals’
spontaneous truth and lying acts.

2 | METHODS

2.1 | Participants

Twenty-five healthy volunteers (male = 12) were recruited from a

local community to participate in the study. Their ages ranged from

20 to 32 years (Mean age = 25.33; SD = 3.38). Before the main

experiment, the process and instructions were clearly explained to the

participants who were then asked to sign an informed consent form.

All recruited participants had a normal or corrected vision and they

were screened for any history of neurological or mental disorders.

They were also assessed by the Edinburgh Handedness Inventory

(Oldfield, 1971) as being right-handed. After the study, all participants

were reimbursed with USD $25 for participating in a 60-min scanning

session. This study was non-invasive, performed in accordance with

the ethical standards of the Declaration of Helsinki, and approved by

the Institutional Review Board of the National Taiwan University.

To ensure the quality of the following image analyses, there are

two exclusive criteria. First, at the run level, if the success rate of fol-

lowing the task instructions (to tell the truth/lie) in Task1 is lower than

75% the whole run will be excluded. Second, at the individual level, if

the included number of runs is less than two then images from that

particular participant will be fully excluded during the analysis. Follow-

ing these criteria, images from four out of 25 participants were fully

excluded. All the included participants had more than two runs and

the average success rate in following the given task instructions

(to tell the truth/lie) was higher than 75% (Figure S2). In this study,

the number of included participants is comparable with prior fMRI

studies testing on deceptions (Bhatt et al., 2009; Ganis, Rosenfeld,

Meixner, Kievit, & Schendan, 2011; Nuñez et al., 2005; Yin &

Weber, 2019; Zheltyakova, Kireev, Korotkov, & Medvedev, 2020).

2.2 | Stimuli

All experimental stimuli were created with Matlab. In Task1, eight

types (2 � 2 � 2) of visual stimuli were included: two shapes (triangle,

square) overlaid with different orientations of lines (horizontal, verti-

cal) and in different colors (blue, red) (Figure 1a). As for Task2, a mate-

rial database, comprising 120 visual stimuli, was created from

overlaying six shapes (diamond, pentagon, hexagon, heptagon, octa-

gon, dodecagon) with either left- or right-tilted lines (vertical lines

tilted by 30� in a clockwise or counterclockwise direction) and each of

them had 10 different colors (Figure 1b). Notably, Task1 stimuli and

Task2 stimuli were different in terms of shape, orientation of imbed-

ded lines and color. Statements also varied depending on conditions.

During the scanning, all the stimuli, as well as statements, were rear-

projected to the center of the visual field using a video projector

viewed through a head coil-mounted mirror (roughly 10–15 cm away

from the participants).

2.3 | Task design

A dual-task paradigm, including two independent tasks namely Task1

and Task2, was employed in the current study. Task1 consisted of

F IGURE 1 (a) An illustration of used visual stimuli in Task1. (b) An illustration of the material database created for Task2
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three conditions: truth-telling-easy (T1Te), truth-telling-difficult

(T1Td), and lying (T1L). Task2 consisted of two conditions: truth-

telling (T2T) and lying (T2L). Notably, instructed lying was involved in

Task1while spontaneous lying was in Task2. In each run, the stimuli

were presented in 4 blocks (3 blocks of Task1 and 1 block of Task2),

each containing 8 trials. Each block began with a probe specifying the

upcoming block as Task1 or Task2 and the duration for this period

(probe duration) varied between 8 to 12 s.

Both Task1 and Task2 followed a similar trial procedure. Each trial

consisted of four phases: the presentation of (1) instruction, (2) visual

stimuli, (3) statements, and (4) feedbacks. Each phase lasted for 2, 3,

2, and 1 s, respectively, leading to 8 s per trial (Figures 2b,c). However,

there were four main differences between Task1 and Task2, one for

each phase. First, in Task1 participants were explicitly instructed to

tell the truth or to lie with regard to the presented visual stimuli

whereas in Task2, participants were allowed to make a response

(either tell the truth or lie) of their free will. Second, in Task1, each

type of stimuli created for Task1 was presented once. As for Task2,

4 out of 8 trials contained items randomly selected from 8 types of

stimuli used in Task1, and the other 4 trials contained items randomly

selected from the material database created only for Task2. Third, to

control for difficulties between truth-telling and lying, simple and

complex statements were created: simple statements were applied in

both truth-telling-easy (T1Te) and lying (T1L), whereas complex state-

ments were used in truth-telling-difficult (T1Td). All the simple state-

ments directly described one of the visual features characterized by

presented visual stimuli whereas all the complex statements described

the presented visual stimuli in an indirect manner (Table 1). In con-

trast, the statement in Task2 was always identical. Lastly, in Task1,

feedback with regard to whether participants successfully sticking to

a prior instruction was presented in each trial (“Correct”/“Incorrect”).
Whereas in Task2, either caught information (“I Got You”/“Sorry I

was wrong”) or blank was presented during the feedback phase. Nota-

bly, during Task2, participants were randomly caught two times.

Additionally, due to the task statement (i.e., “This figure has been

presented in Task1”) used in Task2, the first block in the first run was

always Task1, leading to the pseudo-randomized order of the task

(Figure 2a). It is, therefore, important to note that for each run, Task1

always appeared before Task2 despite the fact that it could have been

any condition from Task1.

2.4 | Task instruction

As per each of the phrases mentioned above, participants were

instructed as below.

F IGURE 2 An illustration of
the run and trial procedure.
(a) Each run consisted of four
blocks, three designed for Task1
and one for Task2 (in a pseudo-
randomized order). (b) In each
block, a probe specifying
upcoming task was presented
from 8 to 12 s. Next, in each trial,
four phases were presented
successively (i.e., the presentation
of instruction, visual stimuli,
statement, and feedback). In both
T1Te and T1L conditions, simple
statements were utilized.
Whereas in the T1Td condition,

simple statements were replaced
with complex statements.
(c) During Task2, participants
were free to tell the truth or lie
on specific trials. The used
statement was modified
according to task requirements.
The timeline for each phase was
identical to other conditions from
Task1. Abbreviations: T1L, lying
condition from Task1; T1Te,
truth-telling-easy condition from
Task1; T1Td, truth-telling-difficult
condition from Task1; T2L, lying
condition from Task2; T2T, truth-
telling condition from Task2
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“In each run, you will experience two different tasks, namely

Task1 and Task2. The presentation order of Task1 and Task2 was ran-

domized. During Task1, you will be explicitly instructed to tell the

truth or lie and the, and your response should be in line with the pres-

ented instruction. The aim of Task1 is to follow the presented instruc-

tions as closely as possible. As for Task2, you are free to either tell the

truth or lie during which the computer algorithm will randomly detect

whether you are lying or not. The goal is to deceive but avoid being

detected as much as possible.”

2.5 | Image acquicition

MRI scanning was performed on a 3-Tesla Siemens Prisma scanner at

the Imaging Center for Integrative Body, Mind, and Culture Research.

Functional data was collected with a Blood Oxygenation Level Depen-

dent (BOLD) sequence (TR/TE = 2000/32 ms, FOV = 256 mm,

matrix = 74 � 74, slice- thickness = 3.4 mm). For anatomical refer-

ence, registration and normalization of functional data to a standard

T1 template (Montreal Neurological Institute, MNI) a T1 magnetiza-

tion prepared, rapid-acquisition gradient echo (MPRAGE,

TR/TE = 2000/2.28 ms, FOV = 256 mm, matrix = 256 � 256, slice-

thickness = 1 mm) sequence was used to collect a high-resolution

image of each participant’s brain. Task stimuli were presented via a

projector and refracted to the subject’s visual field with a head-coil

mounted mirror. X slices were collected with a 20-channel head coil.

Slices were oriented roughly parallel to the AC-PC with whole-brain

covered.

2.6 | Image analysis

To fit more precisely with the experimental purpose, the analytical

scope was narrowed as the analysis progressed. Therefore, we first

adopted whole-brain analysis to investigate brain areas associated

with (1) difficulty processing and (2) deceptive behaviors, respectively.

Then, to control for potential confound as well as to increase statisti-

cal power, we turned to ROI analysis. Our primary concerns in the

ROIs analyses were: (1) whether an SVM trained with Task1 would be

able to differentiate between truth-telling and lying in Task2 (cross-

task validation) and (2) whether such cross-task validation occurs

across all participants. The following sections provide details for each

step of analyses, including preprocessing, within-task validation

(whole-brain analysis), ROIs determination, and cross-task validation

(ROI analysis).

2.7 | Preprocessing

The preprocessing of fMRI data was conducted with SPM12. After

converting all data from DICOM to NIfTI format, the following steps

were performed on each experimental run. First, for each participant,

the first volume in each run was aligned to the first volume of the first

run (realigned) and then registered each image in each run to the first

volume of that run (registered), using SPM 12. Second, realigned

and registered images were being normalized to MNI space (ICBM

152 Nonlinear Asymmetrical template version 2009c) (Fonov

et al., 2008).

After being processed with realigned, registered, and normaliza-

tion, the general linear model (GLM) analysis was performed. Regres-

sors of interest corresponded to the experimental condition: T1Te,

T1Td, T1L. Each regressor was convolved with hemodynamic

responses function (HRF). Notably, T1Te, T1Td, and T1L were

modeled with the onset at the beginning of a new trial and the dura-

tion is 8 s. That is, the model was based on time series data collected

during the entire trial rather than part of data derived from the state-

ment. In addition, six motion parameters obtained from the realign-

ment state were also included and served as nuisance regressors.

With a high-pass filter of 128 s, we applied the default SPM12

options of grand mean scaling and auto-correlation modeling. On a

voxel-by-voxel basis, a two-tailed t-test was then performed to test

the null hypothesis that the BOLD signal was not explained by the

experiment design. For each participant, beta values of regression

coefficients were estimated, and t-contrasts between these values

for regressors of interest and baseline BOLD signals were calculated

(T1Te > baseline, T1Td > baseline, T1L > baseline). During the

MVPA, the T-maps were then served as inputs for the training

of SVM.

TABLE 1 Statements and feedbacks used in each condition

Task Condition Statements Feedbacks

Task1 T1L “Red”, “blue”, “triangle”, or “square”, “horizontal”, or
“vertical”

“Correct” or “incorrect”

T1Te

T1Td “The complimentary color is green”
“The complimentary color is yellow”
“Rotate 90� = horizontal”
“Rotate 90� = vertical”
“+1 edge = square”
“�1 edge = triangle”

Task2 T2T/T2L “This figure has been presented in Task1” “You are lying. I got you”
“You are lying, sorry I am wrong”

FENG ET AL. 3261



2.8 | Multivariate pattern analyses

The T-maps were then used as inputs for the multivariate analysis,

which was conducted independently for each participant. During the

MVPA, supervised Support Vector Machine (SVM), with a linear ker-

nel, was employed in two separate stages, namely within-task classifi-

cation and 2 sets of cross-task validations (within-participant and

cross-participant), using the CoSMoMVPA package (http://www.

cosmomvpa.org/) (Oosterhof, Connolly, & Haxby, 2016).

2.9 | Within-tasks validation

Two sets of whole-brain binary decoding were conducted to identify

brain regions that differentiated experimental conditions within

Task1: T1Td versus T1Te, and T1L versus T1Td. In both sets of

decoding, the following procedures were followed.

First, using a searchlight method, a sphere with a radius of 3 mm

was defined and centered over each voxel. Across the whole brain, a

pattern of responses in each sphere is strung out in a vector for each

condition. Next, for each participant, we split all runs into a training

set (R-1 runs, R denotes the number of all runs) and a testing set (the

remaining run). Using the aforementioned feature vectors, two feature

matrices representing the spatial patterns of the two sets of data were

derived (one for training and one for testing). Following normalization

of the training set data, an SVM model was constructed to solve

two two-class problems. After repeating this process for all gray

matter voxels (i.e., searchlight analysis) (Kriegeskorte, Goebel, &

Bandettini, 2006) using the n-fold principle (leave-one-run out cross-

validation), a three-dimensional accuracy map intended to represent

the discriminating ability of classifying designated conditions was gen-

erated. (i.e., T1Te vs. T1Td & T1Td vs. T1L). To convert the accuracy

map into a p-value map, a binomial distribution was tested, with the

null hypothesis that no difference existed between the two groups.

With a threshold of FWE-corrected p < .001 and cluster size >5

voxels, significant clusters to classify different groups were finally

identified.

2.10 | ROIs determination

Even though the difficulty level between telling true (T1Td) and lying

(T1L) were controlled behaviorally, it is still uncertain that Td and L

are completely identical. Accordingly, during image analysis, we used a

subtraction method and searched for brain areas purely related to

deception. To achieve this, for each participant, the accuracy matrix

obtained from the comparison of T1Te and T1Td was subtracted from

the accuracy matrix obtained from the comparison of T1Td and T1L.

Finally, we tested the differences in accuracy rate across all partici-

pants using one-sample t-test. Activations were considered significant

at uncorrected p < .001 and only clusters of 125 or more continuous

voxels are reported (k ≥ 125; Langleben et al., 2005).

2.11 | Cross-task validation

Two sets of cross-task ROI analyses were conducted: (1) within-

participant cross-task and (2) cross-participant cross-task. First, in the

within-participant cross-task analysis, we examined how well the

instructed responses can predict spontaneous responses. During this

analysis, the patterns of responses in each functional ROI are strung

out in a vector for each condition. Next, for each participant, feature

vectors from Task1 constituted a training set, whereas feature vectors

from Task2 constituted a testing set. Similarly, using the normalized

training set data, an SVM model was constructed to solve two two-

class problems (i.e., T2T vs. T2L). The same process was repeated for

all gray matter voxels using the four-fold cross-validation scheme. This

provided a three-dimensional accuracy map for representing the dis-

criminability of designated conditions. The performance of the within-

participant cross-task classifiers was evaluated based on the average

accuracy across 21 participants (Figure 3a).

Second, to investigate whether patterns from one participant can

predict that from another participant, the cross-participant cross-task

analysis was conducted. To minimize the biased selection of voxels,

the functionally defined ROIs were replaced with spherical ROIs

(radius 8 mm) centered on the centers of mass of the prior functional

ROIs, using the MarsBaR (http://marsbar.sourceforge.net). Accord-

ingly, during this analysis, a pattern of responses in each anatomical

ROI is strung out in a vector for each condition. In the next step, fea-

ture vectors of Task1 from N-1 participants (N denotes the number of

participants) were stacked and used as a training data set, while fea-

ture vectors of Task2 from the remaining participants were used as a

testing set. Similarly, a SVM model was constructed to solve two two-

class problems (i.e., T2T vs. T2L) following normalization of the train-

ing set data. After repeating this process for all gray matter voxels

using the four-fold cross-validation scheme, a three-dimensional accu-

racy map intended to represent the discriminating ability of classifying

designated conditions was generated. This procedure was repeated

based on the leave-one-participant-out (LOPO) scheme, resulting in

21 folds. The performance of the cross-participant cross-task classi-

fiers was attested on the average accuracy across 21 folds (Figure 3b).

The raw data and code used for data analysis are available from the

corresponding author upon reasonable request.

3 | RESULTS

3.1 | Behavior results

In order to obtain a clearer physiological database, in Task1, the suc-

cess rate in following the task instruction was calculated for each run.

For each of the included participants, the averaged success rate was

higher than 75% (mean = 0.89, SD = 0.05), and the number of

included runs ranged from 3 to 8.

To validate the manipulated difficulty level, a one-way ANOVA

(within-subject, T1Te, T1Td, and T1L) on accuracy rate was conducted.
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Results yielded a significant effect of condition in accuracy (T1Te:

0.95 ± 0.06; T1Td: 0.88 ± 0.08; T1L: 0.85 ± 0.09; F2,40 = 13.59,

p < .001, eta-square = 0.41). Post hoc comparisons indicated that the

average accuracy was significantly higher for T1Te than T1Td (p.

adjusted = .006) and T1L (p.adjusted < .001). Furthermore, there was

no difference between T1Td and T1L in terms of accuracy rate

(p = .219). Statistical values (p-value) were corrected with the

Bonferroni method. These results suggest that T1Te was easier than

both T1Td and T1L while T1Td and T1L were comparable in terms of

difficulty level (Figure 4).

3.2 | Imaging results

3.2.1 | Whole-brain analysis

Within-Task decoding

With the utilization of supervised SVM, coupled with searchlight

methods, two sets of binary decoding were conducted based on

Task1. First, we decoded T1Td versus T1Te to examine the effect of

difficulty. Results showed that brain regions including the left middle

occipital gyrus (MOG), left precuneus (PrCUN), left inferior frontal

gyrus (IFG), right lingual (LING), right middle occipital gyrus (MOG),

right parietal lobe, right supplementary motor area (SMA), right middle

temporal (MTG), right middle frontal gyrus (MFG), right frontal lobe,

and bilateral superior parietal gyrus (SPG) can distinguish T1Td from

T1Te (T1Td vs. T1Te, Figure S6a).

Second, we decoded T1L versus T1Td to explore the neural signa-

tures exclusive for deception. Results showed that the left precuneus

(PrCUN), left postcentral (PoCG), left rolandic operculum (RO), left

precentral (PrCG), right fusiform (FG), right middle temporal gyrus

(MTG), right supplementary motor area (SMA), right middle frontal

gyrus (MFG), right superior frontal gyrus (SFG), and right sup-

ramarginal gyrus (SMG) can differentiate T1L from T1Td (T1L

F IGURE 4 The accuracy of each condition in Task1. The accuracy
rate from T1Te was significantly higher than both T1Td and T1L.
There was no significant difference between T1Td and T1Te

F IGURE 3 (a) In the within-participant cross-task analysis, the classifiers were trained with T1Td and T1L and then used to distinguish T2T
from T2L for each participant. The performances of the within-participant crosstask classifiers were examined on the average accuracy across
21 participants. (b) Cross-participant crosstask analysis was conducted based on the leave-one-participant-out (LOPO) scheme, resulting in
21 folds. For each fold, classifiers were trained with T1Td and T1L collected from 20 participants and then used to distinguish T2T from T2L in
another participant who was left out for testing. The performance of the crossparticipant cross-task classifiers was attested to the average
accuracy across 21 folds
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vs. T1Td, Supplementary Figure S6b). To further minimize the con-

found of difficulty, the second level of contrast was made by sub-

tracting T1Td versus T1Te from T1L versus T1Td. The resulted ROIs

were then employed in the follow-up validation analyses.

3.3 | ROI analysis

3.3.1 | Within-participant cross-task validation

The generalizability of deception detection was verified by examining

how well the classifiers trained with instructed behaviors can differen-

tiate spontaneous responses. Across all functional ROIs, our results

showed that after training with T1Td and T1L, classifiers from the

right angular gyrus (AG), right inferior frontal gyrus (IFG), but not left

postcentral gyrus (PoCG) can distinguish T2T and T2L (Figure 5a,

Table S1). The average accuracy was 0.54 ± 0.098 in the angular

gyrus, 0.56 ± 0.127 in the inferior frontal gyrus, and 0.52 ± 0.096 in

the left postcentral gyrus (PoCG).

3.4 | Cross-participant cross-task validation

In the cross-participant cross-task analysis, we trained classifiers to

distinguish T2T from T2L across participants, using a leave-one-partic-

ipant-out (LOPO) scheme. Here, each of the 21 participants was used

in turn as the test participant, while training on the remaining

20 participants. Then, using a t-test (one-tailed), the mean accuracy

for each anatomical ROI was compared with the chance level

(expected 0.50 accuracy).

In general, the average accuracy of validations for the left-out

participant was 0.58 ± 0.027 in the right angular gyrus (AG),

0.56 ± 0.029 in the right inferior frontal gyrus (IFG), and 0.46 ± 0.020

in the left postcentral gyrus (PoCG). Across three anatomical ROIs,

accuracy in the right angular gyrus (AG) is significant compared to the

null hypothesis that classification was by chance (p = .015, Cohen’s
d = 0.62). This result suggests that the classifier trained to differenti-

ate patterns between T1Td and T1L across participants allows for the

classification of T2T and T2L in new participants (Figure 5b and

Table S1).

4 | DISCUSSION

One of the long-lasting critiques for prior fMRI studies on deception

detection was that relevant results might not be easily applied to

forensic practices. To resolve this issue, researchers have focused on

how well true responses could be differentiated from deceptive

responses. For instance, using conventional univariate methods, it has

been demonstrated that lying response can be distinguished from

truth response within the same individual, with an accuracy of 78%

(Langleben et al., 2005). Furthermore, using MRI scanning and

multivoxel pattern analysis, the distinguishability between true and

false responses has been increased to 100%. In addition to identifying

F IGURE 5 (a) Within-participant cross-task validation was conducted in three functional ROIs, namely the right angular gyrus (AG), right
inferior frontal gyrus (IFG), and left postcentral gyrus (PoCG). Results showed that accuracy rates in classifying T2T and T2L from the right angular
(AG), right inferior frontal gyrus (IFG) but not left postcentral gyrus (PoCG) were significantly higher than chance level (50%). (b) Cross-participant
cross-task validation was conducted in three 8-mm spherical regions, centered on the coordinates of the prior functional ROIs. Results showed
that accuracy rates in classifying T2T and T2L from the right angular gyrus (AG) but not right inferior frontal gyrus (IFG) and left postcentral gyrus
(PoCG) was significantly higher than the chance level (50%)
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true and false responses within a single individual, results from cross-

validation using leave-one-subject-out also yielded an accuracy rate

of 88%, demonstrating the viability of cross-participant validation

(Davatzikos et al., 2005).

Based on prior research, this study examined whether the ability

to discriminate between true and false responses could be generalized

across different tasks and individuals, which has not been explored

previously. To our knowledge, the present study was the first attempt

to examine the validity of deception detection research with the utili-

zation of a dual-task paradigm, convolving two independent tasks.

More specifically, with the control of difficulty level, several major

findings were obtained. First, our decoding results showed that the

neural networks involved in difficulty and deception were highly over-

lapped. Thus, a secondary contrast was made ([T1L vs. T1Td] minus

[T1Td vs. T1Te]), and our results showed that the right angular gyrus

(AG), right inferior frontal gyrus (IFG), and left postcentral gyrus

(PoCG) were more activated for lying than for truth-telling responses.

Second, classifiers built with instructed lying and truth-telling can be

used to predict spontaneous lying and truth-telling in a separate, inde-

pendent task. Third, in the cross-participant analysis, classifiers trained

on a separate group of participants successfully distinguished sponta-

neous lying and truth-telling in the left-out participants (Table 2).

TABLE 2 Local maxima of BOLD changes while engaged in difficulty (T1Td vs. T1Te), deception (T1L vs. T1Td), and unbiased deception after
subtraction ([T1Td vs. T1Te] – [T1L vs. T1Td]). Pooled group results for all subjects (N = 21). Except for specifying, all clusters are significant at
FWE corrected p < .001, and the only cluster of 5 or more continuous voxels are reported

Brain regions(AAL) Side BA

MNI coordinate

k Zx y z

T1Td vs. T1Te

Middle occipital gyrus R 18/19 25 �86 2 131 >8

Middle frontal gyrus R 10 42 9 39 77 7

Middle occipital gyrus L 18/19 �33 �82 8 112 6.65

Inferior frontal gyrus (orbital part) L 11 �43 16 �12 9 6.45

Frontal lobe R 29 33 19 5 6.44

Superior parietal gyrus L 5 �22 �69 53 24 6.39

Precuneus L 7 �12 �55 42 8 6.14

Superior parietal gyrus R 5 32 �72 49 21 6.13

Middle temporal gyrus R 21 49 �55 �2 7 6.1

Supplementary motor area R 6 8 �14 66 12 5.97

Parietal lobe R 32 �45 46 5 5.83

Lingual R 17 15 �55 8 7 5.73

T1L vs. T1Td

Fusiform R 37 25 �86 �2 2,383 >8

Precentral L 4 �50 3 36 99 7.14

Supplementary motor area R 6 5 6 49 167 7.1

Rolandic operculum L 43 �46 �8 5 29 6.91

Middle frontal gyrus R 10 49 23 32 162 6.88

Supramarginal gyrus R 40 63 �25 29 12 6.86

Postcentral L 1/2/3 �53 �21 25 15 6.41

Middle temporal gyrus R 21 52 �45 8 14 6.29

Supramarginal gyrus R 40 52 �25 36 22 6.23

Precuneus L 7 �5 �55 66 12 6.18

Superior frontal gyrus R 4/6/8 8 43 42 12 6.18

[T1L vs. T1Td] minus [T1Td vs. T1Te]a

Postcentral gyrus L 1/2/3 �56.4 �14.4 32.2 158 8.43

Inferior frontal gyrus R 11 52.2 6 22 325 7.46

Angular gyrus R 39 42.2 �55.2 22 191 6.46

aAll clusters are significant at uncorrected p < .001, and the only cluster of 125 or more continuous voxels are reported.

Abbreviations: T1Td, truth-telling-difficult condition from Task1; T1Te, truth-telling-easy condition from Task1; T1L, lying condition from Task1; R, right;

L, left.
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4.1 | The neural signatures for deception

In line with most of the previous fMRI deception studies, we found

that frontal (right superior frontal gyrus, right middle frontal gyrus,

right supplementary motor area, and left precentral gyrus), temporal

(right middle temporal gyrus, right supramarginal gyrus, and right fusi-

form), and parietal (left rolandic operculum, left postcentral gyrus, and

left precuneus) areas can distinguish deceptive from truthful

responses. These findings indicate that the neural processes involved

in lying and telling the truth may differ, at least in the Dual-Task Para-

digm. These large-scale activations suggest that deception required

several cognitive functions, including visual perception, linguistic

processing, working memory, inhibition, and intention.

To begin with, deception may require delicate visual and linguistic

processing, as evidenced by higher decoding accuracy rates in the

right middle temporal gyrus (MTG), right supramarginal gyrus (SMG),

and right fusiform gyrus (FG). The MTG and SMG have been associ-

ated with reading (Cummine et al., 2017; Freeman, 2006) while FG

has been associated with multisensory integration and perception

(Gerlach et al., 2002). Both visual and linguistic processing are impor-

tant components in working memory, which has been shown neces-

sary to deception (Ito et al., 2012; Jiang et al., 2013). In light of these

findings, we speculate that to deceive, one may need to retain rele-

vant information in the working memory through strategies such as

visual imagery or rehearsal.

Additionally, working memory could be modulated by executive

functions, such as inhibition and flexibility (i.e., the ability to switch

between tasks and demands) and even intention.

The inhibitory role of frontal regions in deception has been widely

documented (Ganis et al., 2003; Ito et al., 2012; Kozel et al., 2004).

For instance, in a study by Frank Andrew Kozel et al. (2004) partici-

pants were instructed to tell the truth as well as lie about whether the

money was hidden below predesignated objects. More specifically, in

the lying condition, participants were explicitly asked to indicate that

money was not hidden in the predetermined object, but the other

object. Therefore, lying participants were required to memorize the

relevant task information, inhibit the truthful response as well as

switch between tasks and demands. Together with frontal regions,

SMA also exhibits inhibition from the perspective of complex motor

control during deception (Ito et al., 2012; Frank Andrew Kozel

et al., 2004). Lastly, the intention is also an integral part of deception

(Lee, Leung, Lee, Raine, & Chan, 2013; Lissek et al., 2008). For

instance, a study by Lissek et al. (2008)) demonstrated that precuneus

was activated in both cooperation and deception conditions,

suggesting that from the perspective of social interaction, precuneus

may be involved in emotion and intentions, requiring for belief rea-

soning and comprehension of cooperation and deception.

Similarly, in the current study, participants were instructed to tell

the truth or lie in Task 1. To lie successfully, participants were

required to memorize and then access their working memory to recall

the details of what was presented. Additionally, they had to inhibit

their truthful responses and make reverse reactions. All these activi-

ties were accomplished through the cooperation of the frontal,

temporal, and occipital regions. Importantly, we believe that these

activities reflect lying-specific activities rather than the general differ-

ences between lying and truth-telling, such as different difficulty

levels, which have been carefully controlled in our study.

4.2 | Predictability of deception

To examine the generalizability of deceptive behaviors, we first per-

formed within-participant cross-task analyses to examine whether

classifiers trained with neural patterns from instructed deception

could predict spontaneous deception in a separate task. Among three

functional ROIs, activation patterns from the right angular gyrus

(AG) and right inferior frontal gyrus (IFG) successfully classified spon-

taneous truthful and deceptive behaviors from another task (Task2).

These results suggest that instructed deception bears some similarity

with spontaneous deception in the angular gyrus (AG) and inferior

frontal gyrus (IFG).

Furthermore, we demonstrated that it is possible to train classi-

fiers of lie-truth discrimination across participants. In the cross-

participant cross-task analyses, we discovered that the validation

accuracy of the classifier trained with the voxels in AG was signifi-

cantly greater than chance. Across two sets of cross-task analysis,

activities in both AG and IFG can predict deceptive behavior.

Related findings have been documented in prior literature. First,

AG is implicated in a number of processes in deception. For instance,

in a study by Chen et al. (2015), participants were asked to follow the

instructions and answer questions either honestly (i.e., “answering

correctly” condition), randomly (i.e., “answering randomly” condition)

or dishonestly (i.e., “feigned memory impairment” condition). During

the dishonest condition, participants were required to deliberately

and tactfully falsify memory impairment. Their results showed that in

comparison with the baseline, dishonest condition led to higher acti-

vation in AG. In addition, AG is also related to the intentional aspects

of deception in social settings (Volz, Vogeley, Tittgemeyer, Von

Cramon, & Sutter, 2015) and theory of mind (Aichhorn, Perner,

Kronbichler, Staffen, & Ladurner, 2006; Seghier, 2013). In fact, apart

from deception, AG is one of the centers for integrative semantic

processing and knowledge retrieval (Binder, Desai, Graves, &

Conant, 2009). It is proposed to be critical for the transfer and organi-

zation of multisensory information as well as for higher-level concep-

tualization (Wang, Baucom, & Shinkareva, 2013). Considering this, it is

not surprising that AG could effectively distinguish between

instructed truth and instructed lying, since these two activities may

represent completely different concepts to individuals. Similarly, the

discriminability of AG across two different tasks can also be explained

by the conceptual difference between instructed and spontaneous

deception. Together, these findings suggest that AG may be a good

practical candidate in distinguishing lie-truth behaviors.

Inferior frontal gyrus (IFG) also played a key role in deception in

prior reports (Hakun et al., 2008; Kireev, Korotkov, Medvedeva, Mas-

haripov, & Medvedev, 2017; Sánchez et al., 2020; Vartanian

et al., 2013). For example, a study conducted by Hakun et al. (2008)
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revealed that IFG activity was predictive of a concealed target during

a concealed information task (CIT). In addition, it has been demon-

strated that in comparison with low working memory conditions, suc-

cessful lying under high working memory conditions led to greater

activation in the IFG (Vartanian et al., 2013). Furthermore, another

study by the same team (Vartanian, Kwantes, & Mandel, 2012) also

demonstrated that in comparison with less-skilled liars, successful

ones had greater activation in IFG. More recently, it has also been

shown that the activation of IFG was positively correlated with lying

frequency across individuals (Yin & Weber, 2019) as well as memo-

rized stimuli (Gamer, Klimecki, & Bauermann, 2009). All these findings

suggest that individual differences in the ability to suppress the truth,

indexed by activations from the right inferior frontal gyrus, are impor-

tant in predicting lying.

In fact, using a single task, prior studies have demonstrated that it

is possible to classify true and false responses with excellent accuracy

(Langleben et al., 2005). This study, however, aimed to investigate

whether instructed lying can predict spontaneous lying, using two

tasks. Since responses from different tasks are independent, the accu-

racy rate is expected to be lower than prior reports, despite similar

brain areas having been identified. Moreover, in our study the cross-

participant analysis was conducted based on cross-task validation,

therefore, it is expected to have a lower accuracy rate than prior stud-

ies (Davatzikos et al. 2005). Typically, events that occur in a real-life

environment are far more complex than those occurring in a labora-

tory setting. Thus, to meet ecological validity, it is worthwhile to

examine the degree to which lying responses are differentiated from

true responses across multiple tasks. Although our approach only

achieves moderate accuracy rates, it can still be used by future studies

to gather large amounts of data from instructed lying to predict spon-

taneous lying.

5 | LIMITATIONS

The primary purposes of this study were to explore the neural signa-

tures exclusive for deceptive behaviors, as well as to bridge the gap

between instructed and spontaneous deception. Results from this

study may contribute to future studies in this research line. However,

we acknowledge that there are still several factors to be considered in

future studies, particularly in the direction of strengthening the eco-

logical validity of deception detection research.

First, it has been suggested that different types of deceptions

may be associated with different patterns of brain activation (Giorgio

Ganis et al., 2003). As a consequence, although our dual-task para-

digm provides a model for predicting deceptive responses, it may be

overly simplified. Second, the performances of the trained classifiers

were far from perfect, albeit relevant results were statistically signifi-

cant. Such results possibly pointed out the limitations of the current

stimuli and paradigm. In brief, future studies might need to take all the

aforementioned issues into account when attesting to deception

detection.

6 | CONCLUSION

In conclusion, our results not only replicated prior reports on the

underlying neural correlates of deception but further controlled for

the potential difficulty confound to better localize the critical regions

subserving deceptive responses. Furthermore, results from the

within-participant cross-task analyses showed that spontaneous lying

could be predicted using the classifier trained with the neural patterns

elicited by instructed lying, revealing the possibility of applying experi-

mental paradigms used in the laboratory settings to real forensic situa-

tions. Next, results from the cross-participant cross-task analyses

further demonstrated that such validation was robust across multiple

participants. Importantly, results from cross-task analyses may guide

future research toward attesting deception ecologically. Bearing the

aforementioned factors in mind, future studies in this research line

may be advanced using a similar paradigm and analytical rationales

introduced in the current study.
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