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Bone modeling is a biological process of bone formation that adapts bone size and 
shape to mechanical loads, especially during childhood and adolescence. Bone model-
ing in cortical bone can be easily detected using sequential radiographic images, while 
its assessment in trabecular bone is challenging. Here, we performed histomorphomet-
ric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and 
we proposed the criteria for histologically identifying an active modeling-based bone 
formation, which we call a “forming minimodeling structure” (FMiS). Evidence of FMiSs 
was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was 
significant higher in specimens displaying FMiSs compared with the specimens without 
these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p < 0.05). Osteoid parameters 
were raised in FMiS-containing bone specimens (OV/BV, 2.1  ±  1.6 vs. 0.6  ±  0.3%; 
p < 0.001, OS/BS, 23.6 ± 15.5 vs. 7.6 ± 4.2%; p < 0.001, and O.Th, 7.4 µm ± 2.0 vs. 
5.2 ± 1.0; p < 0.05). Our results showed that the modeling-based bone formation on 
trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histo-
logical evidence of modeling-based bone formation, understanding of this physiology in 
relation to bone homeostasis is crucial.

Keywords: modeling-based bone formation, forming minimodeling structures, femoral head, bone 
histomorphometry, femoral neck fracture, rheumatoid arthritis, hip osteoarthritis

inTrODUcTiOn

Despite significant effort over recent decades, the histological finding of modeling-based bone 
formation on trabecular bone still remains elusive. Bone modeling is the biological process that 
shapes and sizes bone in response to physiological influences or mechanical forces encoun-
tered by the skeleton, and is essential especially during skeletal growth (1, 2) and reaction to 
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FigUre 1 | Specimen preparation. A bone block of 
10 mm × 10 mm × 10 mm was excised from the central region of the 
femoral head as indicated by the squared area.
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mechanical loading (3, 4). In bone modeling, bone resorption 
and bone formation are not necessarily coupled in a site-
specific manner, as they are in the process of remodeling-based 
bone formation (3–7).

Frost first proposed that the process of modeling-based bone 
formation could be identified in trabecular bone under the micro-
scope, and termed this “minimodeling” (2, 8). Some authors have 
reported the phenomenon of minimodeling in postmenopausal 
women during teriparatide (PTH) treatment (9, 10), in uremic 
patients (11–15), and in rats treated with prostaglandin E2 (16) 
and vitamin D3 (17, 18). These were from the histological evi-
dence of bone formation upon a smooth cement line. However, 
we propose that the definition of modeling-based bone formation 
should not rely on the characteristics of the cement line (smooth 
or scalloped). This is because cement lines are typically associated 
with the resorption of primary or secondary bone corresponding 
to the extent of osteoclastic Howship’s lacunae at the periphery of 
secondary osteons (19), which is not appropriate when consider-
ing the process of modeling-based bone formation.

In this study, we clarified the definition of the structure for 
modeling-based bone formation and defined this histological 
appearance as a “minimodeling structure” (MiS), because the 
original description of minimodeling referred to the process 
of bone formation (2). We further proposed the term “forming 
minimodeling structure” (FMiS) for the MiS covered with an 
osteoid seam, which represents an active state in bone formation 
(20). We then performed histomorphometric analyses in bone 
biopsies from the femoral heads of patients with femoral neck 
fracture (FN), rheumatoid arthritis (RA), and osteoarthritis 
(OA). In particular, we investigated bone histomorphometric 
parameters in specimens with and without FMiSs to evaluate 
the histological differences between these groups, which could 
provide a better understanding of the underlying mechanism of 
trabecular bone modeling.

MaTerials anD MeThODs

specimens
Our analysis was performed on 21 femoral heads obtained from  
20 Japanese adults who underwent total hip arthroplasty or 
femoral head replacement at Niigata University Hospital and 
Niigata Rehabilitation Hospital. Written informed consent was 
obtained from each patient in accordance with the ethics com-
mittee of Niigata University Medical and Dental Hospital, and 
Niigata Rehabilitation Hospital. This study was in compliance 
with the standard guidelines for human research (Declaration of 
Helsinki).

Undecalcified histology
After fixing with 70% ethanol, a bone block of 10  mm  ×   
10  mm  ×  10  mm was excised from the central region of the 
femoral head, encompassing purely trabecular bone (Figure 1). 
Villanueva bone staining was performed according to a previ-
ously reported protocol (21). Thereafter, the excised tissue was 
dehydrated in ascending grades of ethanol and acetone, and 
subsequently infiltrated and embedded in methylmethacrylate 

without decalcification. The resulting blocks were then sectioned 
at a thickness of 5 µm by microtome (Leica RM2255). A single 
10 mm × 10 mm section from the sagittal midplane was selected 
from each sample.

Quantitative conventional static 
histomorphometry
Bone histomorphometric measurements were performed as pre-
viously described (7, 22, 23). Briefly, the bone structural unit was 
identified under the polarized light microscope. Measurements 
were then performed using a semiautomatic image analyzing 
system (Histometry RT CAMERA, System Supply, Nagano, 
Japan) with a 20× objective lens and one set of 10× oculars, and at 
200× magnification. Analyses of the structural parameters [bone 
volume/tissue volume (BV/TV, %), trabecular thickness (Tb.
Th, μm)], the static formation parameters [osteoid volume/bone 
volume (OV/BV, %), osteoid surface/bone surface (OS/BS, %),  
osteoid thickness (O.Th, μm)], and the static resorption param-
eter [eroded surface/bone surface (ES/BS, %)] were carried out 
according to the standards of the American Society for Bone and 
Mineral Research (24, 25).

Forming Minimodeling structure
We referred to the histological finding of the modeling-based 
bone formation on trabecular bone with no evidence of previ-
ous resorption as a MiS. We proposed the following histological 
criteria for the definition of the MiS: (a) the base of the MiS is 
a smooth lamellar bone surface, and (b) the lamellar pattern 
of the MiS is different from that of the base of the bone surface 
(Figures 2A–D). We suggested the following histological criteria 
to define a “FMiS” (Figures 2E–H): (a) the surface of the MiS is 
covered with an osteoid seam of at least 3-µm thickness under 
polarized light microscopy (Figure  2F), and (b) the degree of 
fluorescent signal in bone in the MiS is different and lower than 
that of older adjacent bone as observed in Figure  2G (arrow-
heads). This is due to its relatively lower mineralization, which 
was confirmed by comparison with contact micro-radiograph 
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FigUre 2 | Histological findings in minimodeling with and without osteoid seam. A minimodeling structure (MiS) without an osteoid seam (a–D). Arrowheads 
indicate the representative MiS. The base of the MiS is a smooth lamellar bone surface without any evidence of previous osteoclastic Howship’s lacunae. The 
lamellar pattern of the base is different from that of the MiS. A forming minimodeling structure (FMiS) (e–h). An osteoid seam was detected on the MiS surface as 
purple under polarized light microscopy [(F), arrowheads], and red under fluorescent microscopy [(g), arrowheads]. The degree of fluorescent signal in the FMiS was 
lower than that of the base (g). An analysis of consecutive sections [(i–K); I → J → K]. An FMiS was detected on the smooth bone surface without evidence of 
previous bone resorption (i), which showed growth (J) and connection to the adjacent trabecular bone as indicated by an asterisk (K). Bright-field microscopy  
(a,e); polarized light microscopy (B,F); fluorescent microscopy (c,g,i–K); diagram of the MiS (D,h). Scale bars: 100 µm.
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(Figure S1 in Supplementary Material). To visualize the FMiS in 
3D, we performed an additional analysis of 30 consecutive sec-
tions in 1 specimen with evident FMiSs, focusing on the FMiS. 
In histomorphometric analysis, we investigated the number of 
FMiSs/total bone surface (N.FMiS/μm), and the bone volume 
[BV (FMiS)] and bone surface [BS (FMiS)] of FMiSs in each 
FMiS-containing specimen. Using the result of conventional 
static histomorphometry, BV (FMiS)/BV (%), BV (FMiS)/OV 
(%), BS (FMiS)/BS (%), and BS (FMiS)/OS (%) were calculated.

analysis of the specimens from Patients
Age, body mass index (BMI), diagnosis for hip surgery, therapies 
for osteoporosis (OP) and RA, respectively, were analyzed in each 
patient. In patients with RA, we also analyzed disease activity 
score (DAS) 28-ESR3 (26, 27), blood serum level of C-reactive 
protein (CRP) and matrix metalloproteinase-3 (MMP-3), and 
dose of prednisolone (PSL). We conducted three analyses with 
conventional static histomorphometry: (a) comparison between 
the specimens with (n  =  9) and without FMiSs (n  =  11), (b) 
comparison between the RA specimens with (n = 7) and without 
FMiSs (n  =  6), and (c) among specimens from patients with 

RA who had hip surgery due to joint destruction, comparison 
between these with (n = 6) and without FMiSs (n = 3).

statistical analysis
Mann–Whitney sum rank tests were used. Data are expressed 
as the mean  ±  SD. All the analyses were performed by using 
GraphPad Prism software (GraphPad, La Jolla, CA, USA). 
p-Value < 0.05 was considered statistically significant.

resUlTs

characteristics of the Patients
This study included 21 specimens from 20 patients (Table 1). Of 
these, 1 patient underwent bilateral hip surgery (Case 3, No. 14, 15),  
and 1 femoral head specimen from a male patient with RA 
was excluded from our analysis due to the unreliability of the 
histomorphometric analysis from the extent of joint destruction 
(Case 9, No.  21). Patients included in the analysis ranged from 
27 to 90  years of age (mean  ±  SD, 69.3  ±  16.2  years), with 16 
women (84%) and 3 men (16%). There were eight patients using 
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FigUre 3 | Comparison between FMiS-positive and -negative specimens. 
FMiS-positive group (FMiS+) showed significantly higher values in bone 
histomorphometric data (BV/TV, OV/BV, OS/BS, and O.Th) compared with 
FMiS-negative group (FMiS−). Data are mean ± SD. Abbreviations: FMiS, 
forming minimodeling structure; BMI, body mass index; BV, bone volume; TV, 
tissue volume; Tb.Th, trabecular thickness; OV, osteoid volume; BV, bone 
volume; OS, osteoid surface; BS, bone surface; O.Th, osteoid thickness; ES, 
eroded surface.

TaBle 1 | Characteristics of the patients.

FMis-negative group FMis-positive group

Therapies for Therapies for

case no. sex age Diagnosis OP ra case no. sex age Diagnosis OP ra

1 1 F 64 RA, FN MTX, TAC 1 12 F 27 OA; trauma
2 2 F 87 RA, OP BP BUC 2 13 F 43 RA, OP BP ETN, MTX, PSL
3 3 F 76 RA, FN, OP BP MTX, SASP 3 14 F 57 RA TCZ
4 4 M 78 RA BUC, PSL 3 15 F 57 RA TCZ
5 5 F 77 RA, FN, OP BP SASP, PSL 4 16 F 62 RA PSL
6 6 F 55 RA, OP BP MTX, BUC, PSL 5 17 F 73 RA, FN PSL
7 7 M 56 FN 6 18 F 77 FN, OP BP
8 8 F 86 FN, OP Vit.D 7 19 F 80 RA, OP BP BUC, PSL
9 9 F 75 FN, OP 8 20 F 82 RA, OP BP ETN, MTX, PSL

10 10 M 83 FN, OP 9 21 M 60 RA; excluded MTX
11 11 F 90 FN, OP

FMiS, forming minimodeling structure; No., number of specimens; F, female; M, male; RA, rheumatoid arthritis; FN, femoral neck fracture; OA, osteoarthritis; OP, osteoporosis; BP, 
bisphosphonate; Vit.D, vitamin D; MTX, methotrexate; TAC, tacrolimus; BUC, bucillamine; SASP, sulfasalazine; PSL, prednisolone; IFX, infliximab; ETN, etanercept;  
TCZ, tocilizumab.
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bisphosphonate therapies for OP (No. 2, 3, 5, 6, 13, and 18–20). 
Among 13 specimens from 12 patients with RA, 4 specimens were 
from femoral head replacement as a treatment for FN (No. 1, 3, 5, 
and 17), and 9 were from total hip arthroplasty performed due to 
RA-related destruction of the hip joint (No. 2, 4, 6, 13–16, 19, and 
20). The remaining seven specimens were obtained from FN in 
patients with OP (No. 8–11 and 18), trauma (No. 7), and secondary 
OA due to a traumatic hip joint dislocation (No. 12).

histomorphometric Data in FMis-Positive 
and -negative groups
At least 1 FMiS was identified in 9 of our 20 specimens (45%), 
and we called this group FMiS-positive. These nine specimens 
were from eight individuals. The analysis of consecutive sections 
among one of this group showed that the FMiS grew and con-
nected to the adjacent trabecular bone (Figures 2I–K; Video S1 
in Supplementary Material).

There were no significant differences in age (62.0 ± 18.4 vs. 
75.2 ± 12.0; p = 0.12) and BMI (21.2 ± 2.8 vs. 23.3 ± 6.5; p = 0.90) 
between FMiS-positive and -negative groups. In histomorpho-
metric data, the FMiS-positive group showed that BV/TV and the 
static formation parameters were significantly higher than those 
of FMiS-negative group [BV/TV 31.7  ±  10.2 vs. 23.1  ±  3.9% 
(p  <  0.05); OV/BV, 2.1  ±  1.6 vs. 0.6  ±  0.3% (p  <  0.001); OS/
BS, 23.6 ± 15.5 vs. 7.6 ± 4.2% (p < 0.001); and O.Th, 7.4 ± 2.0 
vs. 5.2 ± 1.0 µm (p < 0.05)]. However, there were no significant 
differences between FMiS-positive group and -negative group in 
Tb.Th (186.1 ± 49.2 vs. 156.2 ± 21.0 µm; p = 0.11) and ES/BS 
(1.9 ± 1.4 vs. 1.6 vs. 1.2%; p = 0.86) (Figure 3). The N.FMiS and 
N.FMiS/BS ranged from 1 to 10 and 2.1 × 10−6 to 3.0 × 10−5/μm, 
respectively, which did not show significant correlation with 
histological variables of osteoid parameters (OV/BV, OS/BS, and 
O.Th) in FMiS-positive group (data not shown). The average 
values of BV (FMiS)/BV and BS (FMiS)/BS were 0.1% (1.7 × 10−2 
to 0.2%) and 0.8% (0.1–1.5%), while the average values of BV 
(FMiS)/OV and BS (FMiS)/OS were 5.4% (0.7–9.1%) and 3.8% 
(1.4–10.9%), respectively.

histomorphometric Data in ra specimens
Forming minimodeling structures were identified in 7 of our 
13 specimens (54%) from 6 of 12 individuals. Comparing 
FMiS-positive with -negative groups, there were no significant 
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FigUre 4 | Comparison between FMiS-positive and -negative specimens 
from patients with RA. FMiS-positive (FMiS+) group showed significantly 
higher values in bone histomorphometric data (OV/BV, OS/BS, and O.Th) 
compared with FMiS-negative group (FMiS−). Data are mean ± SD. 
Abbreviations: FMiS, forming minimodeling structure; BMI, body mass index; 
BV, bone volume; TV, tissue volume; Tb.Th, trabecular thickness; OV, osteoid 
volume; BV, bone volume; OS, osteoid surface; BS, bone surface; O.Th, 
osteoid thickness; ES, eroded surface.
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differences in age (64.9 ± 14.1 vs. 72.8 ± 11.4; p = 0.42), BMI 
(21.1  ±  1.7 vs. 22.9  ±  7.1; p  =  0.82), DAS28-ESR3 (2.9  ±  0.5 
vs. 3.1  ±  1.0; p  =  0.42), CRP (0.6  ±  0.7 vs. 0.6  ±  0.7  mg/dL; 
p  =  0.81), MMP-3 (136.0  ±  115.4 vs. 170.9  ±  186.3  ng/mL; 
p = 0.99), and PSL intake (5.0 ± 5.2 vs. 2.7 ± 3.9; p = 0.99). In 
histomorphometric data, FMiS-positive group showed that sta-
tistic formation parameters were significantly higher than those 
of the FMiS-negative group: OV/BV, 2.4  ±  1.7 vs. 0.3  ±  0.1% 
(p <  0.01); OS/BS, 26.6 ±  16.5 vs. 5.0 ±  1.6% (p <  0.01); and 
O.Th, 7.8 ± 1.9 vs. 5.7 ± 1.1 µm (p < 0.05). However, there were 
no significant differences between FMiS-positive and -negative 
groups in BV/TV (31.4 ± 8.7 vs. 25.3 ± 2.2%; p = 0.10), Tb.Th 
(180.8 ± 44.6 vs. 169.8 ± 19.5 µm; p = 0.53), and ES/BS (2.4 ± 1.2 
vs. 2.0 vs. 1.5%; p = 0.95) (Figure 4). Six out of 7 in FMiS-positive 
specimens showed that the reason for hip surgery was hip 
joint destruction (86%). Of the 9 RA specimens from hip joint 
destruction patients, 6 (67%) were positive for FMiSs (Table 1). 
The comparison between this FMiS-positive (n = 6) and -nega-
tive groups (n = 3) showed that OV/BV (1.7 ± 1.5 vs. 0.4 ± 0.1%; 
p < 0.05) and OS/BS (29.3 ± 16.3 vs. 5.5 ± 1.7%; p < 0.05) were 
significantly increased in FMiS-positive group, while there were 
no statistically significant differences in age, BMI, DAS28-ESR3, 
CRP, MMP-3, PSL intake, BS, BV, TV, BV/TV, Tb.Th, O.Th, and 
ES/BS (data not shown).

DiscUssiOn

The establishment of a definition for the histological finding 
of modeling-based bone formation is important for evaluating 
bone histology. Here, we clarified the definition of minimodeling 
structures (MiS), and described new histological criteria for 
identifying them in their active forming state, which we now 
define as, “forming minimodeling structures” (FMiS). Trans 
iliac biopsies from postmenopausal women were previously 
examined for evidence of modeling-based bone formation, 
which we call MiSs in this study. The percentage of patients with 
MiSs varied from 0 to 63% (7, 9, 10), and in those treated with 
human PTH it was 0.4–40.0% (9, 10). This confirms a wide range 
probably due to the vague definition of minimodeling in histo-
logical findings and the difficulty in MiSs to be distinguished 
from the old lamellar bone. In contrast the demarcation of an 
FMiS which is covered with an osteoid seam is clear. Therefore, 
an important aspect of the present paper is to define these FMiSs, 
where ongoing surface osteoid gives additional information on 
forming surfaces. Our findings identified the presence of FMiSs 
in 9 out of 20 specimens (45%), providing strong evidence for 
modeling-based bone formation on trabeculae in loaded femo-
ral head bone even in the elderly. Moreover, we demonstrated 
that FMiSs were highly prevalent in specimens with high static 
formation parameters. The cause of hip surgery in FMiS-positive 
was joint destruction in 7 out of 9 (78%) in total specimens, and 6 
out of 7 (86%) in RA specimens (Table 1). This suggests that the 
appearance of FMiSs may associate more with joint destruction 
than with femoral neck fracture. Therefore, we conducted the 
subsequent analysis in specimens from patients with RA who 
had hip surgery due to joint destruction. Again these results 
showed higher values of OV/BV and OS/BS in FMiS-positive 
than in -negative group. FMiS-positive specimens showed 
that the average of BV (FMiS)/OV and BS (FMiS)/OS were 5.4 
and 3.8%, which were 50 times and 4 times higher in that of 
BV (FMiS)/BV and BS (FMiS)/BS, respectively. This was also 
compatible with FMiSs being associated with higher values of 
osteoid parameters.

This finding of FMiSs is quite different from that seen 
in pathological conditions such as osteomalacia (28, 29) or 
hypophosphatasia (30); all of our specimens showed a lamellar 
pattern in the FMiS itself, distinct from the underlying trabecular  
bone. The histological analysis revealed the normal range of 
osteoid thickness (<12  µm), and no scalloped appearance in 
specimens with FMiSs.

The analysis of consecutive sections with FMiS-positive 
clearly showed that new bone grew from a bone surface with-
out previous bone resorption and connected with the adjacent 
trabecular bone (Figures  2I–K; Video S1 in Supplementary 
Material). We consider this connection process is the 
mechanism  for the increase in connectivity as an adaptation 
to increased mechanical stimuli, as others hypothesized for the 
process of minimodeling (2, 31, 32). Although we did not meas-
ure the connectivity of trabecular bone in each sample with μCT 
images (33, 34) in this study, Kazama et al. (35) reported that 
trabecular bone volume (BV/TV) is correlated with trabecular 
bone connectivity. In our study, FMiS-positive group showed a 
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high value of BV/TV compared with -negative group (Figure 3) 
and a tendency in RA specimens (Figure 4), indicating FMiS-
positive specimens are associated with an increase in connectiv-
ity of trabecular bone.

How the process of FMiSs is regulated still remains unclear. 
Among nine specimens from patients with RA who underwent 
total hip replacement, 67% showed the modeling-based bone 
formation on trabecular bone surfaces (No. 13–16, 19, 20). 
Conversely, among five specimens from elderly patients with low 
impact hip fracture (No. 8–11, 18), only one specimen showed 
FMiSs (20%; No. 18) (Table 1). We did not observe statistical dif-
ferences in age and BMI between these two groups (63.5 ± 15.0 
vs. 78.0 ±  13.5; p =  0.18, 21.3 ±  2.0 vs. 20.0 ±  3.5; p =  0.19, 
respectively). Whether inflammatory arthritis is associated with 
ongoing modeling-based bone formation in the central femoral 
head is a challenging issue that needs to be addressed through 
a larger study of specimens from RA and non-arthritic condi-
tions. Various functions of osteocytes in bone metabolism have 
been revealed so far (36–40). There is accumulating evidence of 
the involvement of sclerostin in the anabolic response within 
trabecular bone, which is regulated by the mechanical loading 
through the reduction of sclerostin positive osteocytes (41, 42). 
From the analysis of serum bone turnover markers, the anti-
sclerostin antibody has been reported to increase bone forma-
tion via a process of modeling-based bone formation (43, 44). 
Although speculative, it is possible that the decrease in expres-
sion of sclerostin by osteocytes may play a key role in FMiSs. 
Nazarian et al. showed that femoral head trabeculae are highly 
loaded in habitual daily activities (45), however, it remains  to 
be elucidated how such high loading conditions translate into 
building FMiSs.

The reason why N.FMiS/BS did not show significant cor-
relation with the histological variables of osteoid parameters in 
the FMiS-positive group is probably due to the small number of 
specimens. We cannot exclude the possibility that FMiS would be 
a peripheral part of the remodeling-based bone structure, already 
reported as “spill over” (10), or of a mature phase of micro callus 
(46–51). To consider these theories, studies with larger numbers 
and use of consecutive sections are necessary. Other weaknesses 
of the present study include the lack of fluorescent double labels 
for assessing dynamic formation parameters, and of data about 
serum bone turnover markers (CTX and P1NP), 25(OH)D, and 
PTH as well as bone mineral density in each patient. The values 
of O.Th in our specimens were all within normal range, unlike 
osteomalacia, it would be useful to know 25(OH)D and PTH 
levels in order to exclude the possibility of mild insufficiency 
and secondary hyperparathyroid effects (52). Despite these 
limitations, we were able to confirm the presence of the FMiSs in 
individuals with higher values of static bone formation param-
eters. Further studies are needed to address the spatial location 
of the FMiSs with relation to their physiological and pathological 
microenvironment.

Our findings provide further evidence that modeling-based 
bone formation on trabecular bone, which is different from the 
process of remodeling-based bone formation, continues even in 

the elderly, and that FMiSs can be a predictive indicator in bone 
specimens for higher values of osteoid parameters.
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FigUre s1 | Comparison with contact radio micrograph. A figure of contact 
radio micrograph from the half cross-section of the second metatarsal bone, 
which was collected from a 72-year-old woman who underwent osteotomy due 
to hallux valgus deformity (100 μm in thickness with a polished section) (a). A 
figure of fluorescent microscopy after Villanueva bone staining from an adjacent 
bone area (25 μm in thickness with a polished section) (B). Low mineralization 
area (grey) in contact radio micrograph (a) corresponds with low fluorescent 
signal (green) area in secondary osteon by fluorescent microscopy analysis (B). 
Scale bar: 300 μm.

ViDeO s1 | Reconstructive video of FMiS from 30 consecutive sections.  
This video is a representation of the FMiS from 30 serial sections under 
fluorescence microscopy, which shows the FMiS grows and connects to 
adjacent trabecular bone to form a bridge. This video is from the same 
specimens as Figures 1I–K.
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