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ABSTRACT: In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular
dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We
combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine
pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD
simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches. To our knowledge,
this represents the first implementation of aMD on GPUs and also the longest aMD simulation of a biomolecule run to date. Our
implementation is available to the community in the latest release of the Amber software suite (v12), providing routine access to
millisecond events sampled from dynamics simulations using off the shelf hardware.

■ INTRODUCTION

Conventional molecular dynamics allows one to access time
scales on the order of tens to hundreds of nanoseconds;
however, many biological processes of interest occur on longer
time scales of up to milliseconds or more.1−6 Efforts to explore
these long time scales have led to the development of several
advanced sampling techniques such as conformational flood-
ing,7,8 hyperdynamics,9,10 metadynamics,11−13 and the adaptive
biasing force method.13−15 Inspired by Voter, accelerated
molecular dynamics (aMD) is an additional enhanced
conformational sampling method that provides access to events
beyond those obtainable with conventional molecular dynamics
(cMD).9 Here, we emphasize one of the great advantages of
aMD, which is that no prior knowledge of the potential energy
landscape needs to be known and, consequently, no reaction
coordinate needs to be defined prior to running the simulation.
In addition to advances in algorithms to achieve dynamics on

longer time scales, recent efforts by D. E. Shaw Research have
focused on building a specialized computer, Anton, with the
sole purpose of simulating protein dynamics.16 With this great
engineering achievement, simulation time scales have been
pushed into the range of hundreds of microseconds to
milliseconds using unbiased brute force cMD.17,18 While time
on an Anton machine has been generously granted to the
scientific community, access is still limited, and many
researchers are stuck waiting in queues on crowded super
computers or local clusters. Recently, the advancement of
computational science on conventional graphic processing units
(GPU) has allowed researchers efficient and inexpensive access
to microseconds of simulation time on just a single desktop
computer.18−21 By combining the advanced sampling method
of aMD and the inherent power of the GPU, we present the

synthesis of a tool that allows researchers access to inexpensive
efficient exploration of long time scale events. Here, we point
out that a time scale cannot be directly determined from an
aMD simulation, but we can correlate events which occur on
long time scales from either experimental results or long
conventional molecular dynamics simulations. However, future
work using the conformational space explored by aMD as a
seed for other methods, namely, Markov models,22 would allow
one access to time dependent properties, such as NMR
relaxation data, which was shown can be computed directly
from the Anton millisecond trajectory.23

In its original form, the aMD method modifies the potential
energy landscape by raising energy minima that lie below a
defined threshold level, while leaving those areas lying above
the threshold unmodified. As a result, barriers separating
adjacent energy basins are effectively reduced, providing the
simulation access to conformational space that cannot be easily
accessed in a cMD simulation. Historically, aMD was first
implemented by Hamelberg et al. within the framework of the
sander module in the AMBER 7 package and used to study
several small peptide and protein systems.24,25 Since the
original implementation, there have been several notable
variations of the aMD method,26−28 but no official
implementation has been released. However, Wang et al.
recently ported the aMD method to NAMD,29 and following
this approach, we have ported aMD to the three main MD
engines included in Amber 12:30 the CPU versions sander and
pmemd and the GPU version pmemd.cuda. The performance
enhancements for cMD on GPUs obtained with pmemd.cuda
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alone are remarkable and can be found on the Amber Web site
(ambermd.org) and in the following publications.21,31 For this
work, we have used our implementation of aMD in the
pmemd.cuda MD engine and will refer to it simply as aMD.
Bovine pancreatic trypsin inhibitor (BPTI) is a small protein

with 58 residues that has been extensively studied exper-
imentally, being the first subject of NMR experiments to
characterize individual hydration water molecules in proteins,32

and also the first protein to be simulated with molecular
dynamics.33 D. E. Shaw Research reported in 2010 a remarkable
1.03 ms MD simulation of BPTI in explicit water.34 Using our
aMD implementation in pmemd.cuda, we have performed a
500 ns aMD simulation of BPTI in explicit water, maintaining
the same conditions as the simulation on Anton. In order to
mimic the force field used in the Anton simulation, we modified
the ff99SB-ILDN force field removing the modifications to
leucine, aspartic acid, and asparagine, which we refer to as
ff99SB-I.
Using the 1.03 ms simulation of BPTI provided by D. E.

Shaw Research throughout our analysis, we have shown that
both methodologies sample the same conformational space.
Additionally, we performed a 500 ns cMD simulation to use as
a measure of the amount of sampling attainable by conventional
MD with the same computational effort. To the best of our
knowledge, our aMD implementation is the first to support
GPU acceleration, and the work presented here represents the
longest single aMD simulation of a biomolecule run to date.
Both Amber simulations were completed in two weeks on
individual desktop computers containing single $500 GTX580
GPUs. Details of the simulations can be found in the
Supporting Information.

■ RESULTS
Structural Analysis. In the millisecond Anton simulation,

five long-lived structural states were identified that persisted for
6−26 μs with deviations of up to 3.5 Å from the crystal
structure, 5PTI.34,35 Using these same five structures and the
crystal structure as references, we calculated RMSD values
(heavy backbone atoms) along our 500 ns aMD simulation,
shown in Figure 1. We color each point according to which of
the five structures it is closest to in terms of RMSD, allowing
one to see the transitions from the different structural states.
RMSD results show we sample structures from all five states
but spend the majority of the time near the blue state and the
least amount of time close to the green state. The RMSD with
respect to the X-ray structure shows that the protein moves
away from the crystal structure 49 ns into the simulation and
achieves a maximum RMSD of 2.7 Å before coming back to
within 0.89 Å, emphasizing that the system is sampling states
both far from and near to the crystal structure, as was seen in
the long 1 ms cMD simulation. The largest deviation from the
crystal structure is 3.29 Å, which occurs at 195 ns.
To characterize the conformational states explored in more

detail, principal component analysis was carried out on the 1
ms simulation using Bio3D.36 Figure 2a displays the two-
dimensional representation of the structural data set as a
projection of the Boltzmann reweighted distribution onto the
subspace defined by the first and second principal component
vectors (PC1 and PC2) built from the C-α atoms spanning
residues 4 to 54. In this analysis, PC1 and PC2 describe 35%
and 21%, respectively, of the total variance of the motions in
the simulation (Movies S1 and S2). The five long-lived
structures and the crystal structure were then projected into

this space. The 500 ns cMD control simulation and the 500 ns
aMD simulation were also projected into the subspace defined
by the 1 ms simulation (Figure 2b,c). It is clear from Figure 2b
that the 500 ns cMD control simulation does not explore the
amount of conformational space that the aMD simulation does
and remains trapped in the basin localized around the crystal
structure.
The aMD simulation (Figure 2c) exhibits a rather broad

pathway from the crystallographic basin (0.0, −5.0) to the
region (−10.0, −5.0) which is not present in the 1 ms
simulation (Figure 2a). Flattening of the potential energy
surface in the two basins could promote transitions over a large
barrier separating them, but the 1 ms simulation may also not
have sampled these regions frequently enough to explore this
pathway. The 1 ms simulation spent the majority of the time in
the basin around (2.5, 1.0) which is ultimately responsible for
the observed populations in the 1 ms cMD simulation differing
substantially from experiment. In the Shaw et al. paper, this is
attributed to inaccuracies in the underlying force field, and
indeed we also spend a considerable amount of our 500 ns
simulation in the same basin, as one would expect using the
same force field. In future work, to determine accurately the
conformational changes mapped out by the PC space using an
aMD simulation, one could use the technique employed by
Wereszczynski and McCammon.37

NMR Observables. The recent analysis carried out by Xue
et al. examined in detail the χ1, χ2, and χ3 dihedral angles
associated with the disulfide bond formed between cysteine 14
and cysteine 38 during the course of the 1 ms cMD BPTI
simulation.23 In this manuscript, a similar analysis was
performed. Figure 3c shows the Boltzmann reweighted
χ1(C14) vs χ1(C38) free energy surface explored throughout
the 500 ns aMD simulation. In contrast, the 500 ns control
cMD simulation never visits the minima explored by the aMD
simulation and remains trapped in a state close to the crystal
structure (Figure 3b), as was seen in the PC projections.
Comparing the free energy surface explored by the 1 ms cMD
simulation (Figure 3a) to that of our aMD simulation, it is clear

Figure 1. RMSD of the aMD trajectory from the crystal structure. Red,
blue, green, purple, and black colors correspond to the kinetic clusters
identified in the 1 ms cMD BPTI simulation.34 For each frame, we
identify what cluster we are closest to and color it accordingly. Only a
handful of transitions to the green state were observed, and we
highlight them with diamond markers.
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the aMD simulation explores the same states as the unbiased
simulation.
The χ2 and χ3 dihedral angles associated with Cys14 and

Cys38 can be used to further describe isomerization
configurations of the disulfide bond: the major state M,
which consists of three substates (M1, M2, and M3), and the
two minor or excited states mC38 and mC14.

23 A detailed
description of these states is included in the Supporting
Information (Figure S1), which can be compared to those
analyzed by Xue et al. for the 1 ms cMD simulation. In contrast
with the 1 ms cMD simulation, which predicts the excited state
mC14 to be the most populated, we find the major state M to be
the most populated in the aMD simulations after Boltzmann
reweighting our distribution (Table S1); however, to fully
converge the population distribution would require a longer
simulation than was used in this study.
Structures from states M1, mC38, and mC14 were extracted

from the trajectory by using the lowest energy structure in the
M1 state as a reference to select an ensemble of structures with
similar energy from each of the three basins for performing the
chemical shift analysis. Using the SHIFTX2 software package,38

chemical shift differences were computed between the
ensembles representing the different substates (Table 1). A
RMS deviation of 2.1 ppm was obtained from the ff99SB-I
aMD simulation (computed for the shifts with known sign)
compared to 2.7 ppm computed from the 1 ms cMD
simulation. In general, good agreement is achieved from the
aMD simulation compared to values calculated from the 1 ms

cMD simulation and the experimental values.39,40 We would
like to highlight the fact that one cannot compute these
differences using only 500 ns of cMD since the simulation
never explores the excited states during the course of such a
short simulation (Figure 3b).

Water Occupancy. Examination of the water occupancy
throughout the aMD simulation correctly identifies the four
long-lived waters in agreement with experimental results.41 The
longest-lived water, W122, is identified by the 1 ms cMD
simulation as having a lifetime of 14 μs. During the course of
the aMD simulation, several exchange events are captured at
this location and an interesting “revolving door” mechanism is
identified, whereby the disulfide bond rotates around and
pushes the water out of the pocket (highlighted in Movie S3).
The longest binding events of water molecules at this site occur
when in the crystallographic basin of the aMD simulation,
consistent with the 1 ms cMD simulation.

■ CONCLUSION

This work shows that, using conventional off the shelf GPU
hardware combined with an enhanced sampling algorithm,
events taking place on the millisecond time scale can be
effectively sampled with dynamics simulations orders of
magnitude shorter (2000×) than those time scales. The
implementation is validated in this work by comparison with
a long unbiased cMD simulation and experimental data.
Structurally, we show the long-lived states identified by the 1
ms cMD simulation have been sampled both in terms of RMSD

Figure 2. The free energy principal component projection of (a) 1 ms simulation, (b) 500 ns cMD ff99SB-I simulation, and (c) 500 ns aMD ff99SB-I
simulation onto (PC1, PC2) defined by the 1 ms simulation. The long-lived structures are projected onto the free energy surface and are labeled as
red, blue, green, purple, and black triangles. The crystal structure, 5PTI, is demarked by the red diamond (see also Movies S1 and S2).
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and coverage in PC space. We demonstrate that access to these
states cannot be obtained with the same length of simulation
carried out using conventional MD. Important structural waters
were preserved and found to exhibit the same occupancies as
those experimentally. Chemical shift differences computed from
the aMD simulations were found to be in agreement with those
calculated from the long 1 ms cMD simulation, and similar
dihedral populations were also observed. However, we point
out that, while aMD is great for exploration of conformational
space, it does not reproduce the exact dynamics of the system.
We conclude by emphasizing never before has the aMD been
benchmarked against a long cMD simulation, and we commend
D. E. Shaw Research for providing their data to the community.

■ ASSOCIATED CONTENT

*S Supporting Information
Simulation setup, theory of aMD, details of how aMD
parameters were selected, and reweighting protocol. Movies
S1−S3, Figure S1, and Table S1. This information is available
free of charge via the Internet at http://pubs.acs.org/.
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Table 1. 15N Chemical Shift Differences between the
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ΔδM1,mC14 (ppm) ΔδM1,mC38 (ppm)

res. exptl37

500
ns

cMD
1 ms
cMD23

500 ns
aMD exptl32

500
ns

cMD
1 ms
cMD23

500 ns
aMD

C14 3.6 1.8 5.0 −0.4 0.6 0.6
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