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Abstract: Recent developments in additive manufacturing

techniques have motivated an increasing number of

researchers to study regular porous biomaterials that are

based on repeating unit cells. The physical and mechanical

properties of such porous biomaterials have therefore

received increasing attention during recent years. One of the

areas that have revived is analytical study of the mechanical

behavior of regular porous biomaterials with the aim of

deriving analytical relationships that could predict the relative

density and mechanical properties of porous biomaterials,

given the design and dimensions of their repeating unit cells.

In this article, we review the analytical relationships that have

been presented in the literature for predicting the relative

density, elastic modulus, Poisson’s ratio, yield stress, and

buckling limit of regular porous structures based on various

types of unit cells. The reviewed analytical relationships are

used to compare the mechanical properties of porous bioma-

terials based on different types of unit cells. The major areas

where the analytical relationships have improved during the

recent years are discussed and suggestions are made for

future research directions. VC 2016 The Authors Journal of Biomed-

ical Materials Research Part A Published by Wiley Periodicals, Inc.
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INTRODUCTION

Porous biomaterials that have arbitrarily complex and precisely
controlled porous microarchitectures have been the center of
attention of an increasing number of scientists during the last
few years. That is partly due to the emergence and maturation
of several 3D printing and additive manufacturing technologies
in the last few years that are capable of manufacturing arbitra-
rily complex microarchitectures with unprecedented accuracy.
Given the fact that almost any microarchitecture is now possible
to manufacture, the next natural question to ask is “how can
biomaterials performance benefit from this increased flexibility
in manufacturing of complex micro-architectures?” Probably
one of the most important points to consider when answering
this question is the fact that the physical1, biological2, and
mechanical3–7 properties of porous biomaterials are functions
of their microarchitecture. It may therefore be possible to obtain
the optimal combination of physical, biological, and mechanical

properties through rational design of the microarchitecture of
porous biomaterials. To answer the aforementioned question,
one may therefore need to study the shape–property relation-
ships that describe the relationship between the microarchitec-
ture of porous biomaterials and the various types of their
properties.

Mechanical properties of regular porous biomaterials
including both static8–12 and fatigue13–15 properties are shown
to be strongly dependent on the microarchitecture of the
porous structure including the type of repeating unit cell and
its dimensions. One could therefore change both the type of
unit cell and the dimensions of the unit cell to obtain the
mechanical properties that optimize the performance of the
biomaterial. In most cases, optimizing the performance of
porous biomaterials translates to maximizing the volume and
quality of the regenerated tissue. The mechanical properties of
porous scaffolds play important roles in regulating their tissue
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regeneration performance. On one hand, the porous biomateri-
als should be strong enough to support the regeneration of the
tissue. On the other hand, they should not be over stiff,
because that would result in shielding the regenerating tissue
from the mechanical load that is essential for its regeneration.

Optimal design of porous biomaterials requires tools
that could be used to predict the mechanical properties
resulting from any given set of design parameters. As previ-
ously mentioned, the design parameters include the type of
the repeating unit cell and the dimensions of the unit cell.
The dimensions of the repeating unit cell determine the
properties of the porous structure such as porosity, pore
size, strut diameter, and so forth. There are three
approaches that could be used for predicting the mechanical
properties of porous biomaterials, given the aforementioned
design parameters, namely, experimental, computational,
and analytical. The experimental approach is probably the
most accurate approach but requires manufacturing and
mechanical testing of a large number of specimens. This
might be feasible for testing the final optimized design but
is unfeasible for the design optimization process, where a
large number of alternative designs may need to be eval-
uated. The computational and analytical approaches do not
require manufacturing and mechanical testing of a large
number of samples and, are therefore suitable for the
design optimization process. The advantage of the computa-
tional approach as compared to the analytical one is the
possibility to create models that better represent the actual
porous biomaterials. For example, the imperfections caused
by the manufacturing process could be implemented in
computational models16, whereas they cannot be easily
accounted for in the analytical approach. However, analytical
solutions are much simpler to use, as no computational
models need to be built. Moreover, it takes very little time
(e.g., a fraction of a second) to calculate the mechanical
properties using an analytical equation. This significantly
reduced lead-time and computation times are particularly
important when the mechanical properties of porous bioma-
terial are optimized together with the other types of their
properties such as physical and biological properties. In
those multiobjective optimal design problems, the mechani-
cal properties of many thousands of alternative designs
need to be evaluated by the optimization algorithm.

Given the aforementioned advantages and the ease of
use of analytical equations, researchers have been develop-
ing relationships for predicting the mechanical properties of
porous structures. The first of those analytical relationships
appeared several decades ago, but the number of unit cells
for which analytical solutions were available was limited
unit recently. That was partly due to the fact that not many
unit cell types could be manufactured using the conven-
tional foam-making technologies. Given the seemingly
unlimited manufacturing possibilities offered by additive
manufacturing during recent years, researchers have been
increasingly motivated to develop analytical relationships
for many more types of repeating unit cells (Fig. 1). It is
therefore a good time to review the analytical relationships
that are available in the literature. In most cases, these ana-
lytical relationships predict the relative density, elastic

properties, and yield stress of the porous structures given
the type and dimensions of the unit cell and the mechanical
properties of the parent material. In the rest of this article,
we will first briefly review the porous biomaterials and
their advantages. Then, we will review the analytical rela-
tionships that are available in the literature for different
types of unit cells. The article concludes with a section
where the applicability of the reviewed analytical relation-
ships and limitations of the analytical approach are dis-
cussed and suggestions are made for future research.

ADDITIVELY MANUFACTURED POROUS BIOMATERIALS

Perhaps the largest difference between additive manufactur-
ing techniques and other techniques for production of
porous biomaterials is the ability to precisely control the
microarchitecture of the fabricated porous biomaterials. It is
within this context that the design and study of highly regu-
lar porous structures based on repeating unit cells start to
make sense. Using additive manufacturing, it is possible to
manufacture complex porous structures with varying unit

FIGURE 1. Different unit-cell types reviewed in this article.
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cells, for example, to create functionally graded porous bio-
materials or multiregion porous biomaterials where the
microarchitecture of the porous structures changes from
one region to another. It is, nevertheless, important to first
study highly regular porous structures with one single
repeating unit cell, because systematic study of porous bio-
materials consisting of one single repeating unit cell could
provide information that is at least partially applicable to
more complex constructions particularly when those con-
structions are made from sufficiently large regions with one
single-unit type of repeating unit cell. Most studies in the
literature have therefore focused on porous structures that
are made from one single type of repeating unit cell.

As far as porous biomaterials are concerned, most appli-
cations require open-pore structures to allow for transport of
oxygen, nutrients, and waste within the biomaterial. The unit
cell is often chosen to be some type of polyhedron. To make
the entire porous structure from the same type of polyhe-
dron unit cell, the polyhedron should be space-filling17,
meaning that it should be possible to tessellate the three-
dimensional space with that unit cell or, in simple terms, it
should be possible to cover the entire three-dimensional
space by repeating the unit cell in different directions. Space-
filling polyhedral have been studied by mathematicians. As
nicely summarized by Weisstein18 based on a number of
studies19–21, space-filling convex polyhedra with regular faces
are limited to five including cube, triangular prism, hexagonal
prism, truncated octahedron, and gyrobifastigium. The same
source puts the number of space-filling hexahedra, heptahe-
dra, and octahedral, respectively, at 27, 34, and 49 based on
the research performed by Michael Goldberg during the
1974–1980 period18. There are many more space-filling poly-
hedra with larger number of faces18. However, the practical
importance of the space-filling polyhedra decreases as the
number of faces increases. That is because additive manufac-
turing of porous biomaterials based on unit cells with a large
number of faces becomes increasingly more challenging with-
out necessarily yielding clear practical advantages.

Analytical relationships have been derived for estimating
the mechanical properties of porous biomaterials made from
a number of these space-filling polyhdera (Fig. 1). The
repeating unit cells that could be used for constructing
porous biomaterials are, however, not limited to these struc-
tures and many more polyhedral with less regular geometries
could be used for constructing open-pore porous structures.

Even though the microarchitecture of porous biomateri-
als can be accurately controlled with additive manufacturing
techniques, there are imperfections in what is ultimately
produced. These manufacturing imperfections have been
shown to significantly influence the mechanical behavior of
porous biomaterials and generally result in decreased stiff-
ness due to weak spots within which strain could localize16.
This is comparable with the effects of imperfections22,23 in
limiting the deformability of other materials such as those
caused by machining imperfections24. However, the micro-
architecture of porous structures is almost always consid-
ered perfect when deriving analytical relationships because

it is much more difficult to derive analytical relationships
for imperfect porous structures.

ANALYTICAL RELATIONSHIPS

Based on the assumptions presented in the previous sec-
tions, the problem of deriving analytical relationships for
estimating the mechanical properties of porous biomaterials
is reduced to the study of the mechanical behavior of highly
regular fully interconnected porous structures with one sin-
gle repeating unit cell (Fig. 1) that is repeated in all direc-
tions and consists of struts with a uniform cross-section all
over their lengths. For most relevant applications of such
biomaterials, relatively large porosities and small densities
are needed to ensure mass transport through these struc-
tures. The representative dimension of the cross-section
(e.g., the diameter in circular cross-sections) of struts should
therefore be relatively small and often much smaller than
the length of struts. Under such assumptions, it is natural to
use the beam theory to derive the analytical relationships.
The Euler–Bernoulli and Timoshenko beam theories are the
most widely used beam theories for estimation of analytical
relationships applicable to porous biomaterials. Up until
recent years, the vast majority of studies used the Euler–Ber-
noulli beam theory, which neglects the shear terms and
assumes the cross-section of the beam to remain perpendic-
ular to the bending line. The neglected terms are of limited
importance for highly slender struts but become increasingly
relevant as the density of the structure increases.

To derive analytical relationship for any given porous
structure with infinite dimensions, one could simply study
the deformations of one single-unit cell with periodic
boundary conditions. In practice, the periodic boundary con-
ditions could be interpreted as specific symmetries that
impose constraints to the deformation of the various
degrees of freedom of the involved beams25.

RELATIVE DENSITY

The simplest analytical relationships that could be obtained
for porous structures are those aimed at estimating the rel-
ative density of the porous biomaterials given the dimen-
sions of the unit cell (e.g., the length and diameter of
struts). The volume occupied by a single-unit cell, Vuc, is
first calculated. Only a part of that entire volume is occu-
pied by the struts constituting the unit cell, which is then
calculated by summing up the volume of all struts of the
unit cell. The total volume of the struts is then divided by
the total volume of the unit cell to calculate the relative
density of the porous structure. The analytical relationships
presented in different studies for predicting the relative
density of porous structures with various types of repeating
unit cells are presented in Table I.

The aforementioned approach suffers from one funda-
mental problem. The beams are not actually one-
dimensional lines and occupy space in reality. At the inter-
section of struts, the volumes of different intersecting struts
overlap, meaning that intersecting struts share part of their
volume (Fig. 2). In other words, the aforementioned
approach for calculating the relative density of porous
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structures overestimates the relative density due to multiple
counting of this shared volume. The importance of this issue
was not realized unit recently26, where it was shown that
multiple counting could result in significant deviation of
analytical solutions from numerical results and experimental
observations. Those deviations were minimized when multi-
ple counting was corrected26. When comparing the mechan-
ical properties of the porous structures with each other, we
have used both approximate (i.e., uncorrected) (Fig. 3) and
exact (i.e., exact) (Fig. 4) values of relative density to dem-
onstrate the importance of this correction in obtaining more
accurate mechanical properties.

ELASTIC MODULUS

The displacement of the unit cell under an applied force is
used to derive the analytical relationships that describe the
elastic modulus and other properties of porous structures.
Depending on the type of the repeating unit cell, the porous
structure may be isotropic or anisotropic. To derive the
elastic modulus as well as other properties of anisotropic
porous structures, loads should be separately applied in all
relevant directions of anisotropy and the response of the
porous structure to the applied loads should be studied sep-
arately in every direction. Different analytical relationships
will then be obtained for elastic moduli in different direc-
tions. As far as porous biomaterials are concerned, compres-
sion is the most widely used mode of loading particularly
when porous biomaterials are aimed for application as bone
substituting biomaterials. Loading is primarily in compres-
sion in such applications.

Two primary approaches could be used for determining
the response of the unit cell to an applied load. In the first
approach, the governing equations of the deformation of
individual beams are written while simultaneously consider-
ing all the possible loads and displacements. The advantage
of this approach is that it may require relatively few steps
when deriving the analytical relationships of simpler unit

cells. A number of studies16,27–32 have used the direct
approach. The disadvantage of the direct approach is that it
quickly becomes complex and error-prone for more complex
unit cells. In the second approach, the superposition princi-
ple is used to derive the stiffness matrix of the porous
structure. To apply the superposition principle, each degree
of freedom of the unit cell is displaced by unity while keep-
ing all other degrees of freedom unchanged. The loads
needed for imposing such a displacement are then calcu-
lated using the equations of the applied beam theory. The
relationships between that load and displacement are then
used to form one column of the stiffness matrix correspond-
ing to that particular degree of freedom. By repeating the
same procedure for all the degrees of freedom of the unit
cell, the entire stiffness matrix can be obtained which can
then be inverted to calculate the effective mechanical prop-
erties of the porous structures as explained below. This is a
very systematic approach that minimizes the risk of errors
and has been used for deriving the analytical relationships
of unit cells with up to 15 degrees of freedom. Table II
presents an overview of the analytical relationships

TABLE I. List of Relative Density Formulas for Open-Cell Structures with Different Microgeometries

Circular Cross-Section
(Approximate)

Circular Cross-Section
(Exact)

Other
Cross-Sections
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FIGURE 2. Overlapping of 4 struts at their intersection.

REVIEW ARTICLE

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A | DEC 2016 VOL 104A, ISSUE 12 3167



obtained in different studies for estimating the effective
elastic modulus of porous structures with various types of
repeating unit cells.

Comparison between the elastic moduli obtained for var-
ious types of unit cells (Table I) shows that the elastic mod-
ulus could largely vary between porous structures based on
different types of unit cells even when the relevant density

is the same (Figs. 3 and 4). This highlights the importance
of having access to a library of unit cells with known
mechanical properties, so that the mechanical properties
could be adjusted independent from other morphometric
parameters of the unit cell such as porosity. In addition, it
is clear that the use of exact values of apparent density
(compare Figs. 3 and 4) could significantly influence the

FIGURE 3. Comparison of (a) relative elastic modulus, (b) Poisson’s

ratio, and (c) relative yield stress of open-cell structures with different

microgeometries (approximate density).

FIGURE 4. Comparison of (a) relative elastic modulus, (b) Poisson’s

ratio, and (c) relative yield stress of open-cell structures with different

microgeometries (exact density).
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obtained mechanical properties. It is therefore important to
make sure the exact values of relative density are obtained
when deriving analytical relationships that describe prop-
erty–density relationship of porous biomaterials. Finally, for
the few structures where both Euler–Bernoulli and Timo-
shenko beam theories are used for deriving the analytical
relationships, there is potentially large difference between
both theories particularly for larger values of relevant den-
sity (Fig. 5). That is because the shear terms neglected in
the Euler–Bernoulli beam theory play increasingly impor-
tant role in the deformation of porous structure, as the rela-
tive density of the porous structures increases. This
highlights the importance of using the Timoshenko beam
theory for deriving the analytical relationships, whenever
possible (Table III).

POISSON’S RATIO

Once the response of the porous structure to the applied
force is determined (see the previous section), it is rela-
tively straightforward to calculate the Poisson’s ratio and
other mechanical properties of the porous structure. As for
the Poisson’s ratio, it is sufficient to divide the lateral defor-
mation of the porous structure by the axial deformation.
Table IV presents an overview of the analytical relationships
presented in the literature for calculating the Poisson’s ratio
of various porous structures.

An important observation regarding the Poisson’s ratio
is that the use of correct type of beam theory could be very
important for accurate description of the mechanical

behavior of porous structures. Most importantly, the Euler–
Bernoulli beam theory predicts negative values of the Pois-
son’s ratio for specific ranges of relative density of certain
unit cells. Materials with negative values of the Poisson’s
ratio called auxetic materials and have important applica-
tions in various areas of research33–35. It is therefore impor-
tant to know the exact values of the Poisson’s ratio of
porous biomaterials. Comparison of the values of the Pois-
son’s ratio obtained using the Euler–Bernoulli theory with

TABLE II. List of Euler–Bernoulli Analytical Elastic Modulus Formulas for Open-Cell Structures with Different Microgeometries

Circular Cross-Section
Other

Cross-Sections
Unequal

Strut Lengths

Cube62
p r2

l2
�
�

Not applicable

Isocube63
b
l

� �4
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41108 r
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1 207 r
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6
1G

E
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4
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6

� �
81 70 r
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4
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6
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�
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�
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2
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�
�
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2
p

A Al21 36Ið Þ
3l2 Al21 4Ið Þ

�
�
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E1
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5 E2
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with u554:73�
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p
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A

A
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�
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Body-centered cubic (BCC)65 4
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3
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- Yes
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21b
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b
l
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6
p
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4

113
2

r
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�
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3
p

4 11 9
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3
p
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A

� �
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A
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�
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Tetrahedral31,32 33
ffiffi
3
p

20p l2 �
�
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FIGURE 5. Comparison of predicted relative elastic modulus of open-

cell structures by Euler–Bernoulli and Timoshenko beam theories for

octahedral and diamond unit cells.
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those obtained using the Timoshenko theory and numerical
simulations shows that neglecting the shear terms might
result in inaccurate values of the Poisson’s ratio and false
prediction of auxetic behavior in porous structures that are
actually not auxetic (see for example Fig. 18 in Ref. 25).

YIELD STRESS

A porous structure is assumed to have yielded once the
maximum stress in the repeating unit cell has reached the
yield stress of the bulk material from which the struts are
made. Given that the stress values of the beams could be
simply obtained from the analytical relationships obtained
in the previous steps, the most important issue is determin-
ing which struts experiences the maximum stress. In some
unit cells, this is relatively easy to determine while this is
not very clear in some other unit cells. Numerical analysis
is sometimes performed to determine which struts is expe-
riencing the maximum stress36. It is, however, important to
realize that there is no guarantee that the same strut experi-
ences the maximum stress for all relevant dimensions of the
unit cell and all porosity values. It is therefore essential that
numerical simulations are performed for a wide range of
geometrical dimensions and porosity values to ascertain the

chosen struts are, indeed, the most stressed struts in all rel-
evant conditions. The analytical relationships obtained for
the yield stress are listed in Table V.

BUCKLING LIMIT

Similar to the yield stress, one needs to determine which
strut of the unit cell is most susceptible to buckling to cal-
culate the buckling limit of a regular porous structure. The
buckling limit of that strut can then be calculated using the
Euler formula for stability analysis and applying the correct
boundary conditions considering the symmetries and con-
strains imposed by the periodicity of the porous structure.
Table VI presents an overview of the buckling limits of the
porous structures with different repeating unit cells that
have been studied in the literature.

One important question regarding the failure of porous
structures is whether yielding or buckling occurs first. By
dividing the analytical relationships obtained for the buck-
ling stress with those for the yield stress, one could plot the
ratio of those stresses for the various types of porous struc-
tures studied in the literature (Fig. 6). According to such
calculations, for all cases where analytical relationships for
predicting both yield stress and buckling stress are

TABLE III. List of Timoshenko Analytical Elastic Modulus Formulas for Open-Cell Structures with Different Microgeometries

Circular Cross-Section Other Cross-Sections Unequal Strut Lengths

Octahedral64 ffiffi
2
p

A 12I 1 Ajl21 36Ij 1 12Imsð Þ
3Es l2 Ajl21 12I 1 4Ij 1 12Imsð Þ

�
�

NA

Diamond30 ffiffi
6
p

p 3
4ð Þ2 r

lð Þ
4

113
2

r
lð Þ

2
1

11

cos2u
jAGs

l2cos2u
12Es I

1sin2 u
Es A

�
�

NA

TABLE IV. List of Analytical Poisson’s Ratio Formulas for Open-Cell Structures with Different Microgeometries

Circular Cross-Section
Other

Cross-Sections
Unequal

Strut Lengths

Cube62 0 �
�

NA

Isocube63 0.3 for � - NA
Rhombicuboctahedron25

1
3

8212 r
lð Þ

2
236 r
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4

1
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2
29 r
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4

� �
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4
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1
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4
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lð Þ
2
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lð Þ
4
16 r

lð Þ
6
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�
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lð Þ
2

5 121 r
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2

�
�
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�

NA
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�
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Face-centered cubic (FCC)-
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7
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3
p
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A
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4 1
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3
p
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A

� �
�
�
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Body-centered cubic (BCC)65
2 1
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2pr4
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1
2

Al2212I
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available, the buckling stress is several times larger than the
yield stress (Fig. 6). The only exceptions are extremely small
relative densities for which the buckling stress may be
smaller than the yield stress. These extremely small relative
densities have limited biomedical applications. It can be
therefore concluded that it is for most practical applications
of porous biomaterials, yielding precedes buckling.

DISCUSSION

The recent advances in additive manufacturing technologies
have motivated renewed interest in derivation of analytical
relationships that could be used to estimate the mechanical
properties of regular porous structures. Because of this
renewed interest, a number of developments have occurred
during the last few years. First, analytical relationships are
derived for a large number of unit cells that could not be
easily manufactured using conventional manufacturing tech-
niques but are now accessible thanks to additive manufac-
turing technologies. Second, the Timoshenko beam theory is
increasingly used for derivation of the analytical relation-
ships. Finally, it has become clear that mass multiple count-
ing could result in significant inaccuracies that could be
overcome by excluding the multiple-counted mass from the
relationships used for calculating the relative density of
porous structures.

Thanks to the three aforementioned developments, much
more accurate estimations of the mechanical properties of a

wider range of regular porous structures are now possible
using analytical relationships. This has a number of practical
consequences for the study and design of porous biomateri-
als. Comparison between regular porous structures based on
different types of unit cells (Figs. 3 and 4) shows that the
mechanical properties of these porous structures could
widely differ depending on the type of repeating unit cell
even for the same porosity values. Analytical relationships are
particularly useful to understand the difference between the
deformation mechanisms of all types of regular porous struc-
tures, because individual terms of the analytical relationships
could be traced back to specific types of deformation of the
unit cells. Moreover, the differences between the mechanical
properties of porous structures that are based on different
types of unit cells expand the parameter space and loosen the
constraints that need to be applied when designing optimal
porous biomaterials. For example, it may be desirable to keep
the pore size or porosity constant throughout a multiregion
porous structure to ensure proper oxygenation and nutrition
of cells that invade the porous structure, either in the lab or
when the porous biomaterial is implanted in the human body.
At the same time, it is often desirable to optimize the distribu-
tion of the mechanical properties throughout the volume of
the implant. Using porous biomaterials with various types of
repeating unit cells would allow us to simultaneously satisfy
both requirements.

Analytical relationships presented here could be used
for fast estimation of the mechanical properties of the

TABLE V. List of Analytical Yield Stress Formulas for Open-Cell Structures with Different Microgeometries

Circular Cross-Section Other Cross-Sections Unequal Strut Lengths

Cube62 p r2

l2 �
�

NA

Isocube63 0:3 b
l

� �3
for � - NA

Rhombicuboctahedron25 4pffiffi
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11ð Þ2
r
l

� �2
�
�
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TABLE VI. List of Analytical Buckling Stress Formulas for Open-Cell Structures with Different Microgeometries
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different zones of the multizone porous structures. Fast esti-
mation of the mechanical properties of different zones is
particularly important when the distribution of mechanical
properties is optimized using iterative optimization algo-
rithms that require many iterations. Furthermore, the opti-
mization algorithm may have an objective function that
consists of the distribution of not only mechanical proper-
ties but also mass transport properties such as permeability
and diffusivity. Alleviating the computational burden of cal-
culating the mechanical properties will leave more computa-
tional power for estimating the other physical properties
that could not be calculated using analytical relationships
and, thus, require more computational resources.

Despite recent advances, there are still multiple areas
that require further research. First, it is desirable to take
the irregularities caused by the additive manufacturing pro-
cess into account when deriving the analytical relationships.
This could further increase the accuracy of analytical rela-
tionships16, but is associated with increased technical diffi-
culty because stochastic processes that simulate creation of
irregularities during the additive manufacturing need to be
analytically modeled. Second, analytical relationships that
currently cover the elastic range of deformations need to be
extended to include larger deformations that lead to failure
of porous structures. Use of advanced failure prediction the-
ories similar to the ones used for predicting the failure of
engineering materials37–41 would be particularly enlighten-
ing. Third, full-field strain measurement techniques such as
digital image correlation42–46 should be used to validate the
predictions of the analytical relationships at the strut level
and to see where do the largest differences between the
analytical predictions and experimental observations origi-
nate from. Finally, more complex loading scenarios should
be used in addition to simple compression to evaluate the
mechanical behavior of porous biomaterials under more
realistic loading conditions. More realistic loading conditions
could be obtained using either large-scale musculoskeletal
models47–50 or at least mass-spring-damper models51–54

that simulate the behavior of the human body during spe-
cific physical activities such as running or walking. Extend-
ing the analytical relationships in the aforementioned
directions will further enhance the value of such relation-
ships in practical applications that require rational design of
porous biomaterials. Examples of such applications include
bone substitution, bone tissue regeneration, and implant
design.

The analytical relationships used for estimating the
mechanical properties of regular porous biomaterials based
on various types of repeating unit cells were reviewed in this
article. Direct estimation of mechanical properties given the
geometry and dimensions of the unit cell can be both replaced
by and complemented by the use of computational techniques
such as homogenization and (topology) optimization55–59.
While homogenization techniques could be used for estima-
tion of the mechanical properties of regular and irregular
porous biomaterials, topology optimization methods could be
instrumental in optimal design of the ultrastructure of porous
biomaterials. A combined approach to the design of additively
manufactured porous biomaterials based on combination of
analytical relationships and computational techniques will be
particularly welcome possibly in combination with theoretical
models that could be used for simulating bone tissue fracture
healing60 and adaptation61.

Even though we primarily focused on biomedical appli-
cations of regular porous structures, the analytical relation-
ships reviewed here have many more applications in other
areas of research. The recent advances in derivation of more
accurate analytical relationships for an increasing number of
unit cells and some of the suggested ideas for future
research may therefore have much wider implications in
other industries, where structural properties of porous
structures are of interest including the automotive and air-
craft industries.

CONCLUSIONS

Analytical relationships that have been proposed for predict-
ing the relative density and mechanical properties of regular
porous biomaterials were reviewed in this article. From the
reviewed literature, it is clear that the recent years have
seen a surge of interest in the mechanical properties of reg-
ular porous biomaterials largely fueled by the recent advan-
ces in additive manufacturing technologies. As a result of
those recent studies, the accuracy of the available analytical
relationships has improved. Using the Timoshenko beam
theory for deriving the analytical relationships and correct-
ing for the mass shared by multiple struts have been the
major ways through which the accuracy of the analytical
relationships has been improved. Moreover, analytical rela-
tionships have been derived for a larger number of unit
cells for which no analytical relationships existed in the
past. Several areas of interest for future research were also
identified and discussed in the article. Widespread availabil-
ity of additive manufacturing techniques, decreasing produc-
tion cost, expansion of biomaterials that could be processed
using additive manufacturing, and enhancement in flexibility

FIGURE 6. Comparison of ratio of buckling stress to yield stress of

open-cell structures with different microgeometries.
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and reliability of additive manufacturing techniques are all
reasons to expect continued interest in regular porous bio-
materials for years to come. It is therefore expected that
more research is needed for deriving accurate and broadly
applicable analytical relationships that could be used for
fast and cost-effective design of (optimal) porous
biomaterials.

NOMENCLATURE

r Radius of the struts, m
l Length of the struts, m
A Cross-sectional area of the struts, m2

h One of the main angles of rhombus faces in a
rhombic dodecahedron unit cell, 8

b Side dimension of the strut, m
c Distance between the neutral plane and the

farthest portion of the beam cross-section, m
l Relative density, dimensionless
j Shear coefficient factor, dimensionless
I, J Second moment of area, m4

Es Elastic modulus of the bulk material, Pa
E Elastic modulus of the unit cell, Pa
Gs Shear modulus of the bulk material, Pa
ms Poisson’s ratio of the bulk material,

dimensionless
rY Yield stress of the porous structure, Pa
rYs Yield stress of the bulk material, Pa
Subscripts
1, 2, and 3

Representatives of first, second, and third
main directions of unit cell, respectively

Subscript s Representative of solid (bulk) material
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