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Abstract: In this short note, we relate the variational bounds proposed in Alemi et al. (2017) and
Fischer (2020) for the information bottleneck (IB) and the conditional entropy bottleneck (CEB)
functional, respectively. Although the two functionals were shown to be equivalent, it was empirically
observed that optimizing bounds on the CEB functional achieves better generalization performance
and adversarial robustness than optimizing those on the IB functional. This work tries to shed light on
this issue by showing that, in the most general setting, no ordering can be established between these
variational bounds, while such an ordering can be enforced by restricting the feasible sets over which
the optimizations take place. The absence of such an ordering in the general setup suggests that the
variational bound on the CEB functional is either more amenable to optimization or a relevant cost
function for optimization in its own regard, i.e., without justification from the IB or CEB functionals.
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1. Introduction

The celebrated information bottleneck (IB) functional [1] is a cost function for supervised
lossy compression. More specifically, if X is an observation and Y a stochastically related random
variable (RV) that we associate with relevance, then the IB problem aims to find an encoder eZ|X,
i.e., a conditional distribution of Z given X, that minimizes

LIB := I(X; Z)− βI(Y; Z). (1)

In (1), I(X; Z) and I(Y; Z) denote the mutual information between observation X and
representation Z and between relevant variable Y and representation Z, respectively, and β is a
Lagrangian parameter. The aim is to obtain a representation Z that is simultaneously compressed
(small I(X; Z)) and informative about the relevant variable Y (large I(Y; Z)), and the parameter β

trades between these two goals.
Recently, Fischer proposed an equivalent formulation, termed the conditional entropy bottleneck

(CEB) [2]. While the IB functional inherently assumes the Markov condition Y − X − Z, the CEB is
motivated from the principle of Minimum Necessary Information, which lacks this Markov condition
and which aims to find a representation Z that compresses a bi-variate dataset (X; Y) while still
being useful for a given task. Instantiating the principle of Minimum Necessary Information induces
then a Markov condition. For example, the task of finding a representation Z that makes X and Y
conditionally independent induces the Markov condition X− Z−Y, and the representation optimal
w.r.t. the principle of Minimum Necessary Information turns out to be arg infX−Z−Y I(X, Y; Z), i.e., it is
related to Wyner’s common information [3]. The task relevant in this work—estimating Y from a
representation Z that is obtained exclusively from X—induces the Markov condition Y− X− Z and
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the constraint I(Y; Z) ≥ I(X; Y). A Lagrangian formulation of the constrained optimization problem
infI(Y;Z)≥I(X;Y) I(X; Z), where the infimum is taken over all encoders eZ|X that take only X as input,
yields the CEB functional (see Section 2.3 of [2])

LCEB := I(X; Z|Y)− γI(Y; Z). (2)

Due to the chain rule of mutual information [4] (Theorem 2.5.2), (2) is equivalent to (1) for
γ = β− 1. Nevertheless, (2) has additional appeals. To this end, note that I(X; Z|Y) captures the
information about X contained in the representation Z that is redundant for the task of predicting the
class variable Y. In the language of [5], which essentially also proposed (2), I(X; Z|Y) thus quantifies
class-conditional compression. Minimizing this class-conditional compression term I(X; Z|Y) is not
in conflict with maximizing I(Y; Z), whereas minimizing I(X; Z) is (see Figure 2 in [2] and Section 2
in [5]). At the same time, as stated in [2] (p. 6), I(X; Z|Y) allows to “measure in absolute terms how
much more we could compress our representation at the same predictive performance”, i.e., by how
much I(X; Z|Y) could potentially be further reduced without simultaneously reducing I(Y; Z).

Aside from these theoretical considerations that make the CEB functional preferable over the
equivalent IB functional, it has been shown that minimizing variational bounds on the former achieve
better performance than minimizing variational bounds on the latter [2,6]. More specifically, it was
shown that variational CEB (VCEB) achieves higher classification accuracy and better robustness
against adversarial attacks than variational IB (VIB) proposed in [7].

The exact underlying reason why VCEB outperforms VIB is currently still being investigated.
Comparing these two bounds at β− 1 = γ = 1, Fischer suggests that “we may expect VIB to converge
to a looser approximation of I(X; Z) = I(Y; Z) = I(X; Y)”, where the later equation corresponds to
the Minimum Necessary Information point (see Section 2.5.1 of [2]). Furthermore, Fischer and Alemi
claim that VCEB “can be thought of as a tighter variational approximation to the IB objective than
VIB” (see Section 2.1 of [6]). Nevertheless, the following question remains: Does VCEB outperform VIB
because the variational bound of VCEB is tighter, or because VCEB is more amenable to optimization
than VIB?

To partly answer this question, we compare the optimization problems corresponding to VCEB
and VIB. Rather than focusing on actual (commonly neural network-based) implementations of
these problems, we keep an entirely mathematical perspective and discuss the problem of finding
minimizers within well-defined feasible sets (see Section 3). Our main result in Section 4 shows that the
optimization problems corresponding to VCEB and VIB are indeed ordered if additional constraints
are added: If VCEB is constrained to use a consistent classifier-backward encoder pair (see Definition 1
below), then (unconstrained) VIB yields a tighter approximation of the IB functional. In contrast, if VIB
is constrained to use a consistent classifier-marginal pair, then (constrained and unconstrained) VCEB
yields a tighter approximation. If neither VCEB nor VIB are constrained, then no ordering can be
shown between the resulting optimal variational bounds. Taken together, these results indicate that
the superiority of VCEB over VIB observed in [2,6] cannot be due to VCEB better approximating the IB
functional. Rather, we conclude in Section 5 that the variational bound provided in [2] is either more
amenable to optimization, at least when the variational terms in VCEB and VIB are implemented using
neural networks (NNs), or a successful cost function for optimization in its own regard, i.e., without
justification from the IB or Minimum Necessary Information principles.

Related Work and Scope. Many variational bounds for mutual information have been
proposed [8], and many of these bounds can be applied to the IB functional. Both the VIB and
VCEB variational bounds belong to the class of Barber & Agakov bounds, cf. Section 2.1 of [8].
As an alternative example, the authors of [9] bounded the IB functional using the Donsker–Varadhan
representation of mutual information. Aside from that, the IB functional has been used for NN training
also without resorting to purely variational approaches. For example, the authors of [10] applied the
Barber & Agakov bound to replace I(Y; Z) by the standard cross-entropy loss of a trained classifier,
but used a non-parametric estimator for I(X; Z). Rather than comparing multiple variational bounds
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with each other, in this work we focus exclusively on the VIB [7] and VCEB [2] bounds. The structural
similarity of these bounds allows a direct comparison and still yields interesting insights that can
potentially carry over to other variational approaches.

We finally want to mention two works that draw conclusions similar to ours. First, Achille and
Soatto [11] pointed to the fact that their choice of injecting multiplicative noise to neuron activations is
not only a restriction of the feasible set over which the optimization is performed, but it can also be
interpreted as a means of regularization or as an approach to perform optimization. Thus, the authors
claim, there is an intricate connection between regularization (i.e., the cost function), the feasible
set, and the method of optimization (see Section 9 of [11]); this claim resonates with our Section 5.
Second, Wieczorek and Roth [12] investigate the difference between IB and VIB: While IB implicitly
assumes the Markov condition Y − X − Z, the variational approach taken in VIB assumes that an
estimate of Y is obtained from the representation Z, i.e., X− Z−Y. Dropping the former assumption
allows to express the difference between the VIB bound and the IB functional via mutual and lautum
information, which, taken together, measure the violation of the condition Y − X − Z. The authors
thus argue that dropping this condition enables VIB and similar variants to optimize over larger sets
of joint distributions of X, Y, and Z. In this work, we take a slightly different approach and argue that
the posterior distribution of Y given Z is approximated by a classifier with input Z that responds with
a class estimate Ŷ. Thus, we stick to the Markov condition inherent to IB and extend it by an additional
variable, resulting in Y − X − Z− Ŷ. As a consequence, our variational approach does not assume
that X − Z − Y holds, which also leads to a larger set of joint distributions of X, Y, and Z. Finally,
while [12] compares the IB functional with the VIB bound, in our work we compare two variational
bounds on the IB functional with each other.

Notation. We consider a classification task with a feature RV X on Rm and a class RV Y on the
finite set Y of classes. We assume that the joint distribution of X and Y is denoted by pXY. In this work
we are interested in representations Z of the feature RV X. This (typically real-valued) representation
Z is obtained by feeding X to a stochastic encoder eZ|X , and the representation Z can be used to infer
the class label by feeding it to a classifier cŶ|Z. Note that this classifier yields a class estimate Ŷ that
need not coincide with the class RV Y. Thus, the setup of encoder, representation, and classifier yields
the following Markov condition: Y− X− Z− Ŷ. We abuse notation and abbreviate the conditional
probability (density) pW|V=v(·) of a RV W given that another RV V assumes a certain value v as
pW|V(·|v). For example, the probability density of the representation Z for an input X = x is induced
by the encoder eZ|X and is given as eZ|X(·|x).

We obtain encoder, classifier, and eventual variational distributions via solving a constrained
optimization problem. For example, mineZ|X∈E J minimizes the objective J over all encoders eZ|X
from a given family E . In practice, encoder, classifier, and variational distributions are parameterized
by (stochastic) feed-forward NNs. The chosen architecture has a certain influence on the feasible set;
e.g., E may denote the set of encoders that can be parameterized by a NN of a given architecture.

We assume that the reader is familiar with information-theoretic quantities. More specifically,
we let I(·; ·) and D (·‖·) denote mutual information and Kullback–Leibler divergence, respectively.
The expectation w.r.t. to a RV W drawn from a distribution pW is denoted as EW∼pW [·].

2. Variational Bounds on the Information Bottleneck Functional

We consider the IB principle for NN training. Specifically, we are interested in a (real-valued)
representation Z, obtained directly from X, that minimizes the following functional:

LIB(β) := I(X; Z)− βI(Y; Z) = I(X; Z|Y)− (β− 1)I(Y; Z) =: LCEB(β− 1) (3)

Rather than optimizing (3) directly (which was shown to be ill-advised at least for deterministic
NNs in [13]), we rely on minimizing variational upper bounds. More specifically, the authors of [7]
introduced the following variational bound on LIB:
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LVIB(β) := EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(4)

where eZ|X, cŶ|Z, and qZ are called the encoder, classifier, and marginal. The classifier is used as a
variational approximation to the distribution pY|Z. The marginal qZ is a learned distribution that aims
to marginalize out the encoder eZ|X . As such, this distribution is conceptually different from a fixed
(unlearned) prior distribution in a Bayesian framework as in, e.g., the variational auto-encoder [14].

As an alternative and motivated by the principle of Minimum Necessary Information, the author
of [2] proposed the variational bound on the CEB functional:

LVCEB(β) := EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(5)

where bZ|Y is called the backward encoder, which is a variational approximation to the
distribution pZ|Y.

3. Variational IB and Variational CEB as Optimization Problems

While it is known that LIB(β) ≤ LVIB(β) and LIB(β) ≤ LVCEB(β− 1) for all possible pXY and
all choices of eZ|X , bZ|Y, cŶ|Z, and qZ, it is not obvious how LIB(β) and LVCEB(β− 1) compare during
optimization. In other words, we are interested in determining whether there is an ordering between

min
eZ|X ,cŶ|Z ,qZ

LVIB(β) (6a)

and
min

eZ|X ,cŶ|Z ,bZ|Y
LVCEB(β− 1). (6b)

Since we will always compare variational bounds for equivalent parameterization, i.e., compare
LVIB(β) with LVCEB(β− 1), we will drop the arguments β and β− 1 for the sake of readability.

For a fair comparison, we need to ensure that both cost functions are optimized over comparable
feasible sets E , C, B, andQ for the encoder, classifier, the backward encoder, and the marginal. We make
this explicit in the following assumption.

Assumption 1. The optimizations of VCEB and VIB are performed over equivalent feasible sets. Specifically,
the families E and C from which VCEB and VIB can choose encoder eZ|X and classifier cŶ|Z shall be the
same. Depending on the scenario, we may require that the optimization over the marginal qZ is able to
choose from the same mixture models as are induced by VCEB. I.e., if bZ|Y(·|y) is a feasible solution of
LVCEB, then qZ(·) = ∑y bZ|Y(·|y)pY(y) shall also be a feasible solution for LVIB; we thus require that
Q ⊇ {qZ : qZ(z) = ∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}. Depending on the scenario, we may require that every
feasible solution for the marginal qZ shall be achievable by selecting feasible backward encoders; we thus require
that B ⊇ {bZ|Y : qZ(z) = ∑y bZ|Y(z|y)pY(y), qZ ∈ Q}. If both conditions are fulfilled, then we write that
B ↔ Q.

We furthermore need the following definition:

Definition 1. In the optimization of LVCEB, we say that backward encoder bZ|Y and classifier cŶ|Z are a
consistent pair if

cŶ|Z(y|z) =
pY(y)bZ|Y(z|y)

∑y′ pY(y′)bZ|Y(z|y′)
=

pY(y)bZ|Y(z|y)
q′Z(z)

(7)
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holds. In the optimization of LVIB, we say that marginal qZ and classifier cŶ|Z are a consistent pair if

pY(y) = ∑
z

cŶ|Z(y|z)qZ(z) (8)

holds.

The restriction to consistent pairs restricts the feasible sets. For example, for VCEB, if C is large
enough to contain all classifiers consistent with backward encoders in B, i.e., if C ⊇ {cŶ|Z : cŶ|Z(y|z) ∝
pY(y)bZ|Y(z|y), bZ|Y(·|y) ∈ B}, then the triple minimization

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB (9)

is reduced to the double minimization

min
eZ|X∈E ,bZ|Y∈B

LVCEB. (10)

Equivalently, one can write the joint triple minimization as a consecutive double minimization
and a single minimization, where the inner minimization runs over all backwards encoders consistent
with the classifier chosen in the outer minimization (where the minimization over an empty set
returns infinity):

min
eZ|X∈E ,cŶ|Z∈C

 min
bZ|Y∈B∩

{
b′Z|Y :

pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′)=cŶ|Z(y|z)
}LVCEB

 . (11)

Similar considerations hold for VIB.

4. Main Results

Our first main result is negative in the sense that it shows LVIB and LVCEB cannot be ordered in
general. To this end, consider the following two examples.

Example 1 (VIB < VCEB). In this example, let B ↔ Q, where B and Q are constrained, and let C be
unconstrained, thus mincŶ|Z∈C −EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
= H(Y|Z). Suppose further that we have

selected a fixed encoder eZ|X that induces the marginal and conditional distributions pZ and pZ|Y, respectively.
With this, we can write

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]

= I(X; Z|Y) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bZ|Y(·|Y)
)]

(12a)

and
EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
= I(X; Z) + D (pZ‖qZ) . (12b)

Suppose that bVCEB
Z|Y is a minimizer of (12a) over B and that qVCEB

Z (z) = ∑y pY(y)bVCEB
Z|Y (z|y). By the chain

rule of of Kullback–Leibler divergence [4] (Th. 2.5.3) and with bVCEB
Y|Z (y|z) = pY(y)bVCEB

Z|Y (z|y)/qVCEB
Z (z),

we can expand
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D
(

pZY‖bVCEB
Z|Y pY

)
= D

(
pZ‖qVCEB

Z

)
+ EZ∼pZ

[
D
(

pY|Z(·|Z)‖bVCEB
Y|Z (·|Z)

)]
︸ ︷︷ ︸

≥0

= D (pY‖pY)︸ ︷︷ ︸
=0

+EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]

thus
EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]
≥ D

(
pZ‖qVCEB

Z

)
.

Suppose that eZ|X is such that the inequality above is strict. Then,

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB(β− 1)

= I(X; Z|Y) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]
− (β− 1)I(Y; Z)

> I(X; Z|Y) + D
(

pZ‖qVCEB
Z

)
− (β− 1)I(Y; Z)

= I(X; Z) + D
(

pZ‖qVCEB
Z

)
− βI(Y; Z)

≥ min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB(β)

where the last inequality follows because qVCEB
Z may not be optimal for the VIB cost function.

Example 2 (VIB > VCEB). Let B ↔ Q, where Q and B are unconstrained, thus with (12) we have

min
bZ|Y∈B

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]

= I(X; Z|Y)

and min
qZ∈Q

EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
= I(X; Z).

Suppose further that C is such that mincŶ|Z∈C −EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
= H(Y|Z) + ε, where ε > 0.

It then follows that

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB(β) = I(X; Z)− βI(Y; Z) + βε

> I(X; Z|Y)− (β− 1)I(Y; Z) + (β− 1)ε = min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB(β− 1).

In both of these examples we have ensured that the comparison is fair in the sense of Assumption 1.
Aside from showing that VIB and VCEB in general allow no ordering, additional interesting insights
can be gleaned from Examples 1 and 2. First, whether VIB or VCEB yield tighter approximations of the
IB and CEB functionals for a fixed encoder depends largely on the feasible sets C and B: Constraints
on C cause disadvantages for VIB, while constraints on B lead to the VCEB bound becoming looser.
Second, for fixed encoders, the tightness of the respective bounds and the question which of the
bounds is tighter do not depend on how well the IB and CEB objectives are met: These objectives are
functions only of the encoder eZ|X , whereas the tightness of the variational bounds depends on C, B,
and Q. (Of course, the tightness of the respective bounds after the triple optimization in (6) depends
also on E , as the optimization over B and Q in Example 1 and over C in Example 2 interacts with the
optimization over E in a non-trivial manner.)

Our second main result, in contrast, shows that the variational bounds can indeed be ordered
if additional constraints are introduced. More specifically, if the variational bounds are restricted to
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consistent pairs as in Definition 1, then the following ordering can be shown. The proof of Theorem 1
is deferred to Section 6.

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if Q ⊇ {qZ : qZ(z) =
∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}, then

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB ≤ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB. (13a)

If VIB and VCEB are constrained to a consistent classifier–marginal and classifier-backward encoder pair,
respectively, and if B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C}, then

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB ≥ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB. (13b)

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.

Theorem 1 thus relates the cost functions of VIB and VCEB in certain well-defined scenarios,
contingent on the size of the feasible sets B and Q. If the variational approximations are implemented
using NNs, then these bounds are thus contingent on the capacity of the NNs trained to represent the
backward encoder in case of VCEB and the marginal in the case of VIB. A few clarifying statements
are now in order.

First, it is easy to imagine scenarios in which the inequalities are strict. Trivially, this is the case
for (13a) if C and B, and for (13b) if C and Q do not contain a consistent pair. Furthermore, if the set
relations in the respective conditions do not hold with equality, the optimization over the strictly larger
set of, e.g., marginals in (13a), may yield strictly smaller values for the cost function LVIB.

Second, the condition that B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C} is
less restrictive than the condition stated in Assumption 1. This is because every backward encoder
that is written as bZ|Y(z|y) = c′

Ŷ|Z(y|z)q
′
Z(z)/pY(y) for q′Z ∈ Q and c′

Ŷ|Z ∈ C satisfies trivially that

∑y b′Z|Y(z|y)pY(y) = q′Z(z). Thus, if one accepts Assumption 1 as reasonable for a fair comparison
between VCEB and VIB, then one must also accept that the ordering provided in the theorem is mainly
a consequence of the restriction to consistent pairs, and not to one of the optimization problems having
access to a significantly larger feasible set.

Finally, if C, B, and Q are sufficiently large, i.e., if the NNs implementing the classifier, backward
encoder, and marginal are sufficiently powerful, then both VCEB and VIB can be assumed to yield
equally good approximations of the IB functional. To see this, let pZ, pZ|Y, and pY|Z denote the
marginal and conditional distributions induced by eZ|X and note that with (12) we get

LVIB(β) = LIB(β) + D (pZ‖qZ) + βEZ∼pZ

[
D
(

pY|Z(·|Z)‖cŶ|Z(·|Z)
)]

(14a)

and

LVCEB(β− 1)

= LIB(β) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bZ|Y(·|Y)
)]

+ (β− 1)EZ∼pZ

[
D
(

pY|Z(·|Z)‖cŶ|Z(·|Z)
)]

. (14b)

Large B and Q render the second terms in both equations close to zero for all choices of eZ|X
(see Example 2), while large C renders the last terms close to zero (see Example 1). Thus, in this
case not only do we have LVIB(β) ≈ LVCEB(β− 1) ≈ LIB(β), but we also have that VCEB employs a
consistent classifier-backward encoder pair by the fact that bZ|Y ≈ pZ|Y and cŶ|Z ≈ pY|Z. Thus, one may
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argue that if the feasible sets are sufficiently large, the restriction to consistent pairs may not lead to
significantly looser bounds.

5. Discussion

In this note we have compared the IB and CEB functionals and their respective variational
approximations. While IB and CEB are shown to be equivalent, the variational approximations VIB
and VCEB yield different results after optimization. Specifically, it was observed that using VCEB as a
training objective for stochastic NNs outperforms VIB in terms of accuracy, adversarial robustness,
and out-of-distribution detection (see Section 3.1 of [2]). In our analysis we have observed that,
although in general there is no ordering between VIB and VCEB (Examples 1 and 2), the optimal values
of the cost functions can be ordered if additional restrictions are imposed (Theorem 1). Specifically,
if VCEB is constrained to a consistent classifier-backward encoder pair, then its optimal value cannot
fall below the optimal value of VIB. If, in contrast, VIB is constrained, then the optimal value of VIB
cannot fall below the optimal value of VCEB (constrained or unconstrained). Thus, as expected, adding
restrictions weakens the optimization problem w.r.t. the unconstrained counterpart.

These results imply that the superiority of VCEB is not caused by enabling a tighter bound on the
IB functional than VIB does. Furthermore, it was shown in Table 1 of [6] that VCEB, constrained to a
consistent classifier-backward encoder pair, yields better classification accuracy and robustness against
corruptions than the unconstrained VCEB objective. Since obviously

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB ≥ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB (15)

the achievable tightness of a variational bound on the IB functional appears to be even negatively
correlated with generalization performance in this set of experiments. (We note that [6] only reports
constrained VCEB results for the largest NN models, and the constrained models perform slightly
worse on robustness to adversarial examples than the unconstrained VCEB models of the same size.)

One may hypothesize, though, that VCEB is more amenable to optimization, in the sense that it
achieves a tighter bound on the IB functional when encoder, classifier, and variational distributions are
implemented and optimized using NNs. However, optimizing VCEB and VIB was shown to yield
very similar results in terms of a lower bound on I(X; Z) for several values of β, cf. Figure 4 of [2],
which seems not to support above hypothesis.

We therefore conclude that the superiority of (constrained) VCEB is not due to it better
approximating the IB functional. While the hypothesis that the optimized VCEB functional
approximates the optimized IB functional better cannot be ruled out, we will now formulate an
alternative hypothesis. Namely, that the VCEB cost function itself instills desirable properties in
the encoder that would otherwise not be instilled when relying exclusively on the IB functional,
cf. Section 5.4 of [13]. For example, neither IB nor the Minimum Necessary Information principle
include a classifier cŶ|Z in their formulations. Thus, by the invariance of mutual information under
bijections, there may be many encoders eZ|X in the feasible set E that lead to representations Z
equivalent in terms of (1) and (2). Only few of these representations are useful in the sense that the
information about the class Y can be extracted “easily”. The variational approach of using a classifier to
approximate I(Y; Z), however, ensures that, among all encoders eZ|X that are equivalent under the IB
principle, one is chosen such that there exists a classifier cŶ|Z in C that allows inferring the class variable
Y from Z with low entropy: While the IB and Minimum Necessary Information principles ensure that
Z is informative about Y, the variational approaches of VIB and VCEB ensure that this information
can be accessed in practice. Regarding the observed superiority of VCEB over VIB, one may argue
that a variational bound relying on a backward encoder instills properties in the latent representation
Z that are preferable over those that are achieved by optimizing a variational bound relying on a
marginal only.
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In other words, VCEB and VIB are justified as cost functions for NN training even without
recourse to the IB and Minimum Necessary Information principles. This does not say that the concept
of compression, inherent in both of these principles, is not a useful guidance—whether compression
and generalization are causally related is the topic of an ongoing debate to which we do not want to
contribute in this work. Rather, we claim that variational approaches may yield desirable properties
that go beyond compression and that may be overlooked when too much focus is put on the functionals
that are approximated with these variational bounds.

In combination with the variational approach, the selection of feasible sets can also have
profound impact on the properties of the representation Z. A representation Z is called disentangled
if its distribution pZ factorizes. Disentanglement can thus be measured by total correlation,
i.e., the Kullback–Leibler divergence between pZ and the product of its marginals Section 5 of the [11].
Achille and Soatto have shown that selecting Q in the optimization of VIB as a family of factorized
marginals is equivalent to adding a total correlation term to the IB functional, effectively encouraging
disentanglement, cf. Proposition 1 in [11]. Similarly, Amjad and Geiger note that selecting B in the
optimization of VCEB as a family of factorized backward encoders encourages class-conditional
disentanglement; i.e., it enforces a Naive Bayes structure on the representation Z, cf. Corollary 1 &
Section 3.1 of [5]. To understand the implications of these observations, it is important to note that
neither disentanglement nor class-conditional disentanglement are encouraged by the IB or CEB
functionals. However, by appropriately selecting the feasible sets of VIB or VCEB, disentanglement
and class-conditional disentanglement can be achieved. While we leave it to the discretion of the reader
to decide whether disentanglement is desirable or not, we believe that it is vital to understand that
disentanglement is an achievement of optimizing a variational bound over an appropriately selected
feasible set, and not one of the principles based on which these variational approaches are motivated.

6. Proof of Theorem 1

We start with the first assertion. Assume that eVCEB
Z|X , bVCEB

Z|Y , and cVCEB
Ŷ|Z are the optimal encoder,

backward encoder, and classifier in terms of the VCEB cost function under the assumption of
consistency, i.e.,

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB = EXY∼pXY

[
D
(

eVCEB
Z|X (·|X)‖bVCEB

Z|Y (·|Y)
)]

− (β− 1)H(Y)− (β− 1)EXYZ∼pXYeVCEB
Z|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(16)

where

cVCEB
Ŷ|Z (y|z) =

pY(y)bVCEB
Z|Y (z|y)

∑y′ pY(y′)bVCEB
Z|Y (z|y′)

=
pY(y)bVCEB

Z|Y (z|y)
q′Z(z)

. (17)

Certainly, if C and B are such that they do not admit a consistent pair, then this minimum is infinity
and the inequality holds trivially.
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For the VIB optimization problem, we obtain

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB

= min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(a)
= min

eZ|X∈E ,cŶ|Z∈C,qZ∈Q
EXZ∼pXeZ|X

[
log

eZ|X(Z|X)

qZ(Z)

]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(b)
= min

eZ|X∈E ,cŶ|Z∈C,qZ∈Q
EXYZ∼pXYeZ|X

log
eZ|X(·|X)cVCEB

Ŷ|Z (Y|Z)

qZ(Z)cVCEB
Ŷ|Z (Y|Z)

− βH(Y)

− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(c)
≤ min

eZ|X∈E ,qZ∈Q
EXYZ∼pXYeZ|X

log
eZ|X(·|X)cVCEB

Ŷ|Z (Y|Z)

qZ(Z)cVCEB
Ŷ|Z (Y|Z)

− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(d)
≤ min

eZ|X∈E
EXYZ∼pXYeZ|X

log
eZ|X(Z|X)cVCEB

Ŷ|Z (Y|Z)

pY(Y)bVCEB
Z|Y (Z|Y)

− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(e)
= min

eZ|X∈E
EXY∼pXY

[
D
(

eZ|X(·|X)‖bVCEB
Z|Y (·|Y)

)]
+ EXYZ∼pXYeZ|X

log
cVCEB

Ŷ|Z (Y|Z)
pY(Y)


− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

( f )
= min

eZ|X∈E
EXY∼pXY

[
D
(

eZ|X(·|X)‖bVCEB
Z|Y (·|Y)

)]
− (β− 1)H(Y)

− (β− 1)EXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(g)
≤ EXY∼pXY

[
D
(

eVCEB
Z|X (·|X)‖bVCEB

Z|Y (·|Y)
)]
− (β− 1)H(Y)− (β− 1)EXYZ∼pXYeVCEB

Z|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

= min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LCEB

where

• (a) follows by writing the KL divergence as an expectation of the logarithm of a ratio;
• (b) follows by multiplying both numerator and denominator in the first term with cVCEB

Ŷ|Z ;

• (c) is because of the (potential) suboptimality of cVCEB
Ŷ|Z for the VIB cost function;

• (d) is because Q ⊇ {qZ : qZ(z) = ∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}, thus we may choose qZ = q′Z
where q′Z is defined in (17); and because this particular choice may be suboptimal for the VIB
cost function;

• (e) follows by splitting the logarithm
• ( f ) follows by noticing that EXYZ∼pXYeZ|X [log pY(Y)] = −H(Y)

• (g) follows because eVCEB
Z|X may be suboptimal for the VIB cost function.

Comparing the last line with (16) completes the proof of the first assertion.
We next turn to the second assertion. Assume that eVIB

Z|X, cVIB
Ŷ|Z, and qVIB

Z are the optimal encoder,
classifier, and marginal in terms of the VIB cost function under the assumption of consistency, i.e.,

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB := EX∼pX

[
D
(

eVIB
Z|X(·|X)‖qVIB

Z

)]
− βH(Y)− βEXYZ∼pXYeVIB

Z|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(18)
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where
pY(y) = ∑

z
cVIB

Ŷ|Z(y|z)q
VIB
Z (z). (19)

Again, if C and Q are such that they do not admit a consistent pair, then this minimum is infinity and
the inequality holds trivially.

For the VCEB optimization problem, we obtain

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB + (β− 1)H(Y)

= min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]
− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]

(a)
= min

eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Y|Z)

]
− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]

(b)
= min

eZ|X∈E ,cŶ|Z∈C
min

bZ|Y∈B∩
{

b′Z|Y :
pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′)=cŶ|Z(y|z)
} EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Y|Z)

]

− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(c)
≤ min

eZ|X∈E
min

bZ|Y∈B∩
{

b′Z|Y :
pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′)=cVIB
Ŷ|Z(y|z)

} EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Z|Y)

]

− (β− 1)EXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(d)
≤ min

eZ|X∈E
EXYZ∼pXYeZ|X

log
eZ|X(Z|X)

cVIB
Ŷ|Z(Y|Z)q

VIB
Z (Z)

− H(Y)− (β− 1)EXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

= min
eZ|X∈E

EXZ∼pXeZ|X

[
log

eZ|X(Z|X)

qVIB
Z (Z)

]
− H(Y)− βEXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(e)
≤ EXZ∼pXeVIB

Z|X

[
log

eVIB
Z|X(Z|X)

qVIB
Z (Z)

]
− H(Y)− βEXYZ∼pXYeVIB

Z|X

[
log cVIB

Ŷ|Z(Y|Z)
]

= min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB + (β− 1)H(Y)

where

• (a) follows by writing the KL divergence as an expectation of the logarithm of a ratio;
• (b) follows by the assumption that the VCEB problem is constrained to a consistent

classifier-backward encoder pair, and from (11);
• (c) is because of the (potential) suboptimality of cVIB

Ŷ|Z for the VCEB cost function;

• (d) follows by adding and subtracting H(Y); by choosing bVIB
Z|Y = cVIB

Ŷ|ZqVIB
Z /pY, which is possible

because B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C}; and by the fact that
this particular choice may be suboptimal for the VCEB cost function;

• (e) follows because eVIB
Z|X may be suboptimal for the VCEB cost function.

This completes the proof.
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