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Abstract: Degenerative disc disease (DDD) continues to be a prevalent condition that afflicts
populations on a global scale. The economic impact and decreased quality of life primarily
stem from back pain and neurological deficits associated with intervertebral disc degeneration.
Although much effort has been invested into understanding the etiology of DDD and its
relationship to the onset of back pain, this endeavor is a work in progress. The purpose of this
review is to provide focused discussion on several areas in which recent advances have been
made. Specifically, we have categorized these advances into early, middle, and late phases of
age-related or degenerative changes in the disc and into promising minimally invasive treatments,
which aim to restore mechanical and biological functions to the disc.
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Introduction

Understanding the pathophysiology of degenerative disc disease (DDD) remains an
important research thrust, because age-related changes that occur in the intervertebral
disc (IVD) are strongly associated with low back pain and other functional neurologi-
cal deficits. In the United States, approximately 25% of individuals surveyed between
18—44 years of age during 2005 indicated that they experienced back pain within the
past 3 months, and the percentage escalates to 31% and 33% for those aged 45—64 years
and >65 years, respectively.! Including treatment and lost wages, the financial costs of
low back pain have been estimated to exceed US $100 billion.? Costs are even higher
for the substantial number of patients (~30%) whose outcomes are unfavorable, whether
they subsequently choose conservative or operative treatment.>*

Generally speaking, there are two strategies for engaging DDD, preventative and
therapeutic. Our ability to prevent, or at least mitigate, degenerative biochemical and
biomechanical changes in the disc hinges on elucidating the biological processes
involved and the risk factors that instigate these processes. One can envision that such
preventative strategies can be employed so long as the disc maintains the capability to
produce and organize extracellular matrix (ECM) that supports its function. Therefore,
this strategy is particularly relevant for healthy IVDs, juvenile or mature. Once the
IVD has gone beyond a tenable state and/or becomes symptomatic, however, the aim
transforms into a therapeutic one to restore quality of life. Protein- or cell-based
biologics for stimulating production or inhibiting destruction of ECM material have
been widely pursued, although these solutions may be limited to asymptomatic discs.
For painful discs, there is a need to improve stabilization devices and our understanding
of pain pathway(s).
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With these goals in mind, the objective of this review is
to provide a synopsis of recent research findings and place
them in the context of the pathophysiology of DDD and
its treatment strategies. We have organized our discussions
around the distinct issues that are relevant for the disc during
aging and during disease, so as to serve as a guide for the
development of respective preventative and treatment strate-
gies in the future (Figure 1). To keep the review focused and
concise, we were unable to include a comprehensive account
of all disc-related research activities, and we apologize for
any omissions.

Aging and degeneration of the IVD

Disc degeneration has often been described as an accelerated
aging process. Therefore, a preventative strategy requires
an understanding of the age-related biological events that
may contribute to the pathophysiology of the disc. Although
research has traditionally been focused on the mature IVD and

Important events during disc aging

on events that immediately precede the onset of symptoms,
it is likely that the entire history of disc aging is important to
its long-term health. As such, this section goes through what
is known about IVD growth and aging, highlighting along
the way new insight into the biology, physiology, and the risk
factors that may contribute to degeneration.

Loss of notochord-derived cells

in the nucleus pulposus

As detailed elsewhere,’ the IVD has interesting develop-
mental origins, consisting of three distinct lineages that
comprise the nucleus pulposus (NP), the inner annulus
fibrosus (AF), and the outer AF. The primary distinguishing
characteristic of juvenile IVDs is the presence of notochord-
derived cells in the NP.° Because this early notochordal-rich
stage is transient, and the mature IVD remains functional in
adulthood, the juvenile IVD has traditionally been neglected.
However, recently, there have been efforts to understand

General
timeline

Morphologic
changes

Significant changes in nucleus pulposus (NP)
Cells — Notochordal to chondrocytic to
fibrochondrocytic

increasing type | & Il collagen
Tissue — Viscoelastic fluid to viscoelastic solid

Mechanics — Hydrostatic pressure decreases,
heterogeneous

ECM — Aggrecan species changes, decreased amounts,

Juvenile

Adult

Significant changes in annulus fibrosus (AF)
become uniformly fibrochondrocytic
loses depth-dependence

Tissue — Lamellar structure is lost & becomes
fibrocartilaginous

Cells — Fibrochondrocytes (inner), fibroblasts (outer)

ECM — Type Il collagen (inner—outer) type | collagen

Mechanics — Lamellar tension, radial compression
become uniformly axial compression

Significant changes in barrier function

Cells — Secretion of cytokines, infiltration of
inflammatory/immune cells

proteoglycans

ECM — Further degradation of organized collagen and

Tissue — Ingrowth of vascular and neuronal structures
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Figure | Highlights of the important cellular and cell-mediated processes (left column) associated with the traditional view of morphologic changes (middle) in the IVD during
aging (right). It may be useful to consider the underpinnings of these changes as an overlapping series of progressive events, so that biologic interventions can be implemented

to target specific phases of aging or degeneration.
Abbreviations: IVD, intervertebral disc; ECM, extracellular matrix.
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notochord-derived cells and the juvenile NP because their
unique biochemical or biomechanical characteristics may
be significant to the long-term health of the IVD. Moreover,
the biology and functional properties of the tissue can serve
as a benchmark for regenerative strategies. Thus, although
age-related changes in the juvenile IVD may be one step
removed from those that occur at the symptomatic stages
of DDD, their discussion is pertinent to the progression of
events leading to morbidity.

One impetus for the increase in efforts toward understand-
ing notochord-derived cells has been the broad observation
that these cells persist in species that do not develop spinal
complications, and these discs retain a healthy AF architec-
ture.” Notably, it has been shown that chondrodystrophoid
canine breeds do exhibit loss of notochord-derived cells,
whereas other breeds do not.”® Therefore, elucidating that
cellular pathophysiology is important for prolonging disc
health. Recent studies have demonstrated that these cells are
particularly sensitive to their microenvironment in a complex
manner. Specifically, it has been shown that notochord-
derived cell function and viability are strongly influenced by
the biochemical milieu, such as pH, osmotic environment,
and nutrition, and these effects may also interact with mono-
layer and hydrogel culture effects.”!! Although the precise
changes in the cellular microenvironment that occur in vivo
are not well defined, these factors may contribute both to the
differentiation of highly vacuolated cells into polygonal small
chondrocyte-like cells'? and to the signaling of neighboring
chondrocytes or fibrochondrocytes.'* The greater propensity
for the small cells to propagate under certain conditions®!!
and their greater resistance to low nutrient environments
may lead to a population shift consistent with the more
cartilaginous tissue phenotype observed in animal models
of degeneration.'*!

Recent reports indicate that there may be remnants of this
population in young adult human discs (although not in older

16

ones).'® Thus, although the notochord-derived cells are largely
lost in the adult human disc, it may be possible to target
these cells for regenerative approaches. This may be impor-
tant because results from a number of studies suggest that
coculture of certain cell populations with notochord-derived
cells may have beneficial effects.*!”2* Towards a practical
implementation of restoring notochord-derived cell to the NP,
there has recently been an increased effort to identify genes
that might confer an important specialized function or serve
as “markers” for defining NP cell phenotype. These studies
have taken a common approach of comparing notochordal
and non-notochordal cells from the NP with cells from the AF

and articular cartilage.’'** Although assessment techniques
varied from small panels of genes using reverse transcriptase
polymerase chain reaction to analysis of transcriptomes and
proteomes, a finding common to most studies was that the
expression of cytokeratins is higher in NP cells. Immunos-
taining techniques have demonstrated that the expression
of cytokeratins is restricted to notochord-derived cells and
becomes visually undetectable in human NP by 35-40 years
of age.?"?* On the transcriptional level, expression decreases
approximately 10-fold in adulthood to levels similar to AF
and cartilage cells, with further decreases with age and
degeneration.?>* However, these population-based measures
of expression are difficult to interpret because it is unclear
what percentage of cells are expressing cytokeratins.

Disruption of the annular lamellae

Although the NP experiences marked changes during the
early stages of aging, there are few indications of substantial
effects in the AF until adulthood, typically characterized by
mucoid degeneration, the presence of clefts and tears, and
changes in collagen composition.®* It has been traditionally
hypothesized that the driving force behind the initiation of
these changes is that the AF’s structural function shifts from
containment of the NP during loading to direct compression
bearing as an axial strut.'>* However, this may be only part
of the story. Recent studies of annular puncture injuries in
animal models indicate that degenerative changes can occur
even in the absence of significant external loading of the disc.
A number of reports have confirmed that needle puncture of
caudal discs can lead to morphologic changes,'*?’-3° and the
puncture of nonloaded discs in organ culture also stimulates
cell death.’!

This mirrors the results observed with induction of spinal
disc puncture injuries,*?>* but in systems that are spared from
loads generated by trunk muscle stabilizers. The NP, which is
estimated to sustain a resting pressure of 100-200 kPa, places
the AF in a state of residual tension stress. As alteration of
disc mechanics caused by puncture appears to be necessary
and sufficient for inducing degradative changes,?*! depres-
surization of the NP may be the primary contributing factor.
In other scenarios, such as compressive loading, the loss of
AF tension causes degeneration, whereas restoration of lost
tension preserves annular morphology.*> The dependence
on needle injury size?®* suggests that the inflammation
associated with injury may play only a minor role.

In addition to the lamellae, one aspect of the AF that
had not drawn much attention previously, but which may
be important in aging and degeneration, is the region of
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tissue between lamellae. The interlamellar matrix of the
adult disc is composed primarily of type I collagen fibrils,
type IV collagen, elastin, aggrecan, and versican®’*’ and is
populated by cells that appear to be distinct from lamellar
fibroblasts and fibrochondrocytes.*'** Although the precise
function of this tissue is not clear, the presence of lubricin
in this region and the observed deformation of interlamellar
tissue during annular tension suggest an important role in
mediating shear stress between successive lamellae.*4
In healthy discs, the elastin content and colocalization with
microfibrils increase from inner to outer AF,* mirroring the
zonal increases in shear modulus and in-plane anisotropy.*
During degeneration, there is a more dramatic increase in
elastin content in the inner AF compared with the outer AF,*’
which would tend to diminish the zonal variation. Although
no direct measurements have been reported, the trends are
consistent with the notion that the AF, and indeed the IVD as
a whole, becomes more uniform both biomechanically and
biologically. Whether these shifts serve as contributory fac-
tors in the progression of DDD or represent a manifestation
of the degenerative process is currently unclear.

Degradative changes and nerve ingrowth
A prominent gap in our understanding of DDD is its causal
relationship to pain. Once the integrity of the aging or degen-
erative IVD is sufficiently compromised, complications such
as disc herniations or spinal stenosis may develop, leading
to pain or dysfunction. But with discogenic back pain, there
is no physical impingement of the spinal cord or nerve root.
Whether distinctions exist between the pathobiology of
symptomatic and asymptomatic degenerative discs is cur-
rently unclear. Historically, numerous studies in herniated
discs have highlighted contributions from inflammation and
enhanced neovascularization around the extruded NP.43!
Taking a cue from these studies, recent efforts aimed at
understanding the mechanisms of discogenic back pain
have focused on similar factors. Thus far, the evidence is
circumstantial but potentially important.

The processes leading up to the onset of discogenic back
pain appear consistent with inflammation and involve a com-
plex interplay among disc cells, immune cells, and inflamma-
tory cytokines. Because of crosstalk, detangling the nature and
implications of these interactions will likely be a significant
challenge. Various cytokines have been found to be associated
with degenerative discs, but tumor necrosis factor (TNF)-o.and
interleukin (IL)- 13 have garnered the most scrutiny. Based on
recent findings, it appears that these two cytokines may have
both distinct and overlapping roles in discogenic back pain.

TNF-o has long been suspected to be directly involved. In
animal models, it had been shown that application of TNF-o. to
rat dorsal root ganglia (DRG) results in mechanical allodynia
and nerve sensitization,”>** which can be exacerbated by DRG
compression.>® Disc herniation models support the potential
for disc cell-secreted TNF-a. to be involved in discogenic back
pain. Blockade of TNF-a following the application of autolo-
gous NP to DRG has been demonstrated by several groups
to improve behavior characteristics and allodynia in rats.*¢
Notably, in mice, significantly less mechanical allodynia
occurred using NP from TNF-knockout mice.*

Nerve ingrowth has been postulated as a mechanism
that enables disc cell-secreted cytokines to generate pain
in the absence of herniation. Painful discs have been found
to have greater nerve penetration than nonpainful discs.®0-2
As reviewed by Freemont,* there may be a strong relation-
ship between the ability for neuron or endothelial cells to
migrate into the disc and both the cells and the ECM of the
degenerative disc. It is possible that IL-1f and TNF-o. may
play important roles since they have been found to increase
with age and degeneration in human disc tissues.®*” These
inflammatory cytokines have recently been shown to upregu-
late neurotrophin expression,® promote vascular endothelial
growth factor secretion,® sensitize disc cells for apoptosis,”
further increase cytokine production,’”® and disrupt matrix
homeostasis.” 72777

Although the presence of elevated cytokine levels has
been confirmed by several groups, the source of the cytokines
remains unclear. It has been shown that disc cells are capable
of producing various cytokines. In addition, CD68-positive
cells have also been identified in degenerative discs, sug-
gesting that monocytes or macrophages may infiltrate and
constitute a secondary source of cytokines.®”-”® To complicate
matters, there have also been reports that NP cells can exhibit a
phagocytic phenotype possibly triggered by apoptosis,”*’ but
whether this has any short-term and/or long-term implications
on cytokine production has not yet been examined. Thus, at
this time, we must remain open to the possibility of complex
interplay between cytokines that are secreted by disc cells to
recruit immune cells and those produced by invading immune
cells to stimulate disc cells.

Treatments for DDD

Current treatments of painful disc degeneration include
approaches that range from noninvasive—such as “benign
neglect,” physical therapy, or symptom control with
medication or injection—to outright surgical excision of
the disc with or without fusion. These treatments are not
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capable of improving the underlying degenerative changes,
although they have proven to be effective for alleviating
symptoms in some patients. The debate over best treatment
option for discogenic back pain remains unresolved.’' In a
Norwegian randomized clinical trial, Brox et al®> showed
that it is possible for conservative treatments to yield results
comparable to instrumented fusion surgery. By introducing
a recently developed educational rehabilitation program
based on cognitive-behavioral principles, they were able
to achieve reduction in Oswestry Disability Index (ODI)
v1 and its primary outcome measure from 43.0 to 29.7 and
42.0 to 26.4 in nonsurgical and surgical groups, respectively.
This program also improved trunk musculature and muscle
strength over the surgical group.®® Conversely, there is also
compelling evidence that surgical interventions can pro-
duce significantly better outcomes compared with “usual
care” of physical therapy and/or anti-inflammatory drug
administration. Notably, the recent Spine Patient Outcomes
Research Trial (SPORT) randomized patients to surgical and
nonsurgical treatment groups but allowed crossing over from
their assigned groups.®* Through 4 years of follow-up data,
intent-to-treat analyses did not yield significant differences
in primary outcomes (Short-Form-36, ODI) for degenerative
spondylolisthesis and spinal stenosis. However, as-treated
analyses indicate that surgical intervention yields significant
improvements over conservative treatment.3>%

If a patient opts for surgery, the type of treatment inter-
vention then becomes another consideration. Recent data
suggest that discectomy with spinal fusion may be associated
with disc degeneration in adjacent levels,*”® presumably due
to altered biomechanics.” Motion-preserving modifications
to rigid lumbar fusion, such as dynamic stabilization, have
been used, but the questionable benefit and rates of observed
failure have also drawn some attention, as reviewed by
Kelly et al.”! Total disc arthroplasty has become more widely
used after US Food and Drug Administration (FDA) approval
was granted for the CHARITE in 2004 and for the ProDisc
in 2006. Randomized investigational device exemption trials
reported to the FDA indicate that these devices generate no
more complications than spinal fusion.”>** Moreover, range
of motion appears to be better, and patient outcomes are at
least in line with fusion.”*®” Nevertheless, many consider
that painful degenerative discs should, whenever possible,
be treated with minimally invasive procedures, which pre-
serve much of the IVD intact. The effectiveness of some
such procedures, such as ablative techniques that use lasers
or radiofrequency energy to decompress discs and alleviate
pain, are not supported by the literature. As such, we will

focus the discussion around updated developments in nucleus
replacements and molecular therapy.

NP replacement

A number of so called “preformed” nucleus replacement
technologies have been utilized and have been the subject
of focused reviews.”® 1% These implants have defined shapes
and often involve an insertion state that is smaller than its
functional state caused either by swelling upon rehydration
or by uncoiling. However, these implants typically require
exposure of the IVD that is not insignificant, and biomechani-
cal restoration of the disc and effects on adjacent levels using
these technologies have not yet been investigated in great
detail. Moreover, a number of recent studies using computa-
tional methods have shown that conformity of the NP-filling
material to the nucleotomized space is important for transfer
of axial stress into an annular circumferential hoop stress and
improve stress distribution over the endplate,'” 1% confirming
what had been postulated previously.'*

As a way to address this limitation present in preformed
nucleus implants, there have been several recent efforts to
develop injectable materials for nucleus replacement. This
area shares a common theme with tissue engineering in
that the material must be biocompatible and mechanically
robust. These materials could additionally overlap with tis-
sue engineering strategies to support or, perhaps, promote
regenerative biological processes, although current efforts
have not yet focused on this potential aspect. A number of
recent reports have described potential candidates for inject-
able polymers.!%11° Thus far, focus has been primarily on
materials’ characterization to assess their biomechanical
similarity with healthy NP tissues, but reports on their abil-
ity to restore gross mechanics of the motion segment have
yet to be released. One pilot clinical study has been reported
with good results.!!

Molecular therapy

One of the major efforts in therapeutic strategies for disc
degeneration is in the restoration of the disc’s structural mor-
phology. The main thesis has been that by restoring the disc
matrix and reversing the appearance of disc degeneration,
the symptoms of disc degeneration will be alleviated. Cur-
rently, tissue engineering is the most widely pursued area, but
molecular therapy (growth factor therapy) is closer to actual
clinical use. Some of the earliest research into molecular
therapy included the study by Thompson et al''? investigating
the effects of insulin-like growth factor-1, epidermal growth
factor, fibroblast growth factor, and transforming growth

Open Access Journal of Sports Medicine 2010:1

submit your manuscript 195

Dove


www.dovepress.com
www.dovepress.com
www.dovepress.com

Hsieh and Yoon

Dove

factor on matrix synthesis and cell growth. The promitotic
effect of growth factors and enhancement of disc matrix
production were documented. However, cell mitosis may not
be the most desirable characteristic, as the disc is nutrition-
ally limited, and there is some evidence that there is an upper
limit on cell density in disc matrix before which cells may
not survive.' The most important parameter to consider may
be the ability to increase disc matrix production to balance
catabolism or outpace catabolism. Some of the molecules
(bone morphogenic protein [BMP]-2, BMP-7, growth dif-
ferentiation factor [GDF]-5, Lim Mineralization Protein-1,
among others) promote a chondrogenic phenotype by disc
cells, bone marrow-derived stem cells, and have proven to
be highly effective in enhancing disc matrix production.!+!2!
When compared with primarily mitogenic molecules, these
molecules are more potent stimulators of matrix production
on a per cell basis. More recent experiments have moved
beyond proof of concept tissue culture experiments to show
that molecular therapy can be effective in animal models of
disc degeneration.'?>'?” This has lead to two different FDA
trials (BMP-7 and GDF-5) that are currently ongoing to test
whether a single injection of therapeutic molecule can improve
disc matrix appearance on magnetic resonance imaging and
improve low back pain. Because there is no animal model
of discogenic pain, these trials are the first “large animal”
study of molecular therapy of disc degeneration. The thesis
that disc matrix production will alleviate pain will be first
tested in humans. If successful, these studies will be a major
breakthrough in spinal care.
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