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Abstract: Degenerative disc disease (DDD) continues to be a prevalent condition that afflicts 

populations on a global scale. The economic impact and decreased quality of life primarily 

stem from back pain and neurological deficits associated with intervertebral disc degeneration. 

Although much effort has been invested into understanding the etiology of DDD and its 

relationship to the onset of back pain, this endeavor is a work in progress. The purpose of this 

review is to provide focused discussion on several areas in which recent advances have been 

made. Specifically, we have categorized these advances into early, middle, and late phases of 

age-related or degenerative changes in the disc and into promising minimally invasive treatments, 

which aim to restore mechanical and biological functions to the disc.
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Introduction
Understanding the pathophysiology of degenerative disc disease (DDD) remains an 

important research thrust, because age-related changes that occur in the intervertebral 

disc (IVD) are strongly associated with low back pain and other functional neurologi-

cal deficits. In the United States, approximately 25% of individuals surveyed between 

18–44 years of age during 2005 indicated that they experienced back pain within the 

past 3 months, and the percentage escalates to 31% and 33% for those aged 45–64 years 

and .65 years, respectively.1 Including treatment and lost wages, the financial costs of 

low back pain have been estimated to exceed US $100 billion.2 Costs are even higher 

for the substantial number of patients (∼30%) whose outcomes are unfavorable, whether 

they subsequently choose conservative or operative treatment.3,4

Generally speaking, there are two strategies for engaging DDD, preventative and 

therapeutic. Our ability to prevent, or at least mitigate, degenerative biochemical and 

biomechanical changes in the disc hinges on elucidating the biological processes 

involved and the risk factors that instigate these processes. One can envision that such 

preventative strategies can be employed so long as the disc maintains the capability to 

produce and organize extracellular matrix (ECM) that supports its function. Therefore, 

this strategy is particularly relevant for healthy IVDs, juvenile or mature. Once the 

IVD has gone beyond a tenable state and/or becomes symptomatic, however, the aim 

transforms into a therapeutic one to restore quality of life. Protein- or cell-based 

biologics for stimulating production or inhibiting destruction of ECM material have 

been widely pursued, although these solutions may be limited to asymptomatic discs. 

For painful discs, there is a need to improve stabilization devices and our understanding 

of pain pathway(s).
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Significant changes in nucleus pulposus (NP)

Important events during disc aging
Morphologic

changes
General
timeline

Cells – Notochordal to chondrocytic to
            fibrochondrocytic
ECM – Aggrecan species changes, decreased amounts,
            increasing type I & III collagen
Tissue – Viscoelastic fluid to viscoelastic solid
Mechanics – Hydrostatic pressure decreases,
         heterogeneous

Significant changes in annulus fibrosus (AF)
Cells – Fibrochondrocytes (inner), fibroblasts (outer)
            become uniformly fibrochondrocytic
ECM – Type II collagen (inner→outer) type I collagen
            loses depth-dependence
Tissue – Lamellar structure is lost & becomes
   fibrocartilaginous

Significant changes in barrier function
Cells – Secretion of cytokines, infiltration of
            inflammatory/immune cells
ECM – Further degradation of organized collagen and
            proteoglycans
Tissue – Ingrowth of vascular and neuronal structures

Mechanics – Lamellar tension, radial compression
         become uniformly axial compression

Juvenile

Adult

Symptomatic

Figure 1 Highlights of the important cellular and cell-mediated processes (left column) associated with the traditional view of morphologic changes (middle) in the ivD during 
aging (right). it may be useful to consider the underpinnings of these changes as an overlapping series of progressive events, so that biologic interventions can be implemented 
to target specific phases of aging or degeneration. 
Abbreviations: ivD, intervertebral disc; eCM, extracellular matrix.
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With these goals in mind, the objective of this review is 

to provide a synopsis of recent research findings and place 

them in the context of the pathophysiology of DDD and 

its treatment strategies. We have organized our discussions 

around the distinct issues that are relevant for the disc during 

aging and during disease, so as to serve as a guide for the 

development of respective preventative and treatment strate-

gies in the future (Figure 1). To keep the review focused and 

concise, we were unable to include a comprehensive account 

of all disc-related research activities, and we apologize for 

any omissions.

Aging and degeneration of the IVD
Disc degeneration has often been described as an accelerated 

aging process. Therefore, a preventative strategy requires 

an understanding of the age-related biological events that 

may contribute to the pathophysiology of the disc. Although 

research has traditionally been focused on the mature IVD and 

on events that immediately precede the onset of symptoms, 

it is likely that the entire history of disc aging is important to 

its long-term health. As such, this section goes through what 

is known about IVD growth and aging, highlighting along 

the way new insight into the biology, physiology, and the risk 

factors that may contribute to degeneration.

Loss of notochord-derived cells  
in the nucleus pulposus
As detailed elsewhere,5 the IVD has interesting develop-

mental origins, consisting of three distinct lineages that 

comprise the nucleus pulposus (NP), the inner annulus 

fibrosus (AF), and the outer AF. The primary distinguishing 

characteristic of juvenile IVDs is the presence of notochord-

derived cells in the NP.6 Because this early notochordal-rich 

stage is transient, and the mature IVD remains functional in 

adulthood, the juvenile IVD has traditionally been neglected. 

However, recently, there have been efforts to understand 
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notochord-derived cells and the juvenile NP because their 

unique biochemical or biomechanical characteristics may 

be significant to the long-term health of the IVD. Moreover, 

the biology and functional properties of the tissue can serve 

as a benchmark for regenerative strategies. Thus, although 

age-related changes in the juvenile IVD may be one step 

removed from those that occur at the symptomatic stages 

of DDD, their discussion is pertinent to the progression of 

events leading to morbidity. 

One impetus for the increase in efforts toward understand-

ing notochord-derived cells has been the broad observation 

that these cells persist in species that do not develop spinal 

complications, and these discs retain a healthy AF architec-

ture.7 Notably, it has been shown that chondrodystrophoid 

canine breeds do exhibit loss of notochord-derived cells, 

whereas other breeds do not.7,8 Therefore, elucidating that 

cellular pathophysiology is important for prolonging disc 

health. Recent studies have demonstrated that these cells are 

particularly sensitive to their microenvironment in a complex 

manner. Specifically, it has been shown that notochord-

derived cell function and viability are strongly influenced by 

the biochemical milieu, such as pH, osmotic environment, 

and nutrition, and these effects may also interact with mono-

layer and hydrogel culture effects.9–11 Although the precise 

changes in the cellular microenvironment that occur in vivo 

are not well defined, these factors may contribute both to the 

differentiation of highly vacuolated cells into polygonal small 

chondrocyte-like cells12 and to the signaling of neighboring 

chondrocytes or fibrochondrocytes.13 The greater propensity 

for the small cells to propagate under certain conditions9,11 

and their greater resistance to low nutrient environments 

may lead to a population shift consistent with the more 

cartilaginous tissue phenotype observed in animal models 

of degeneration.14,15

Recent reports indicate that there may be remnants of this 

population in young adult human discs (although not in older 

ones).16 Thus, although the notochord-derived cells are largely 

lost in the adult human disc, it may be possible to target 

these cells for regenerative approaches. This may be impor-

tant because results from a number of studies suggest that 

coculture of certain cell populations with notochord-derived 

cells may have beneficial effects.8,17–20 Towards a practical 

implementation of restoring notochord-derived cell to the NP, 

there has recently been an increased effort to identify genes 

that might confer an important specialized function or serve 

as “markers” for defining NP cell phenotype. These studies 

have taken a common approach of comparing notochordal 

and non- notochordal cells from the NP with cells from the AF 

and articular cartilage.21–24 Although assessment techniques 

varied from small panels of genes using reverse transcriptase 

polymerase chain reaction to analysis of transcriptomes and 

proteomes, a finding common to most studies was that the 

expression of cytokeratins is higher in NP cells. Immunos-

taining techniques have demonstrated that the expression 

of cytokeratins is restricted to notochord-derived cells and 

becomes visually undetectable in human NP by 35–40 years 

of age.21,23 On the transcriptional level, expression decreases 

approximately 10-fold in adulthood to levels similar to AF 

and cartilage cells, with further decreases with age and 

degeneration.22,23 However, these population-based measures 

of expression are difficult to interpret because it is unclear 

what percentage of cells are expressing cytokeratins.

Disruption of the annular lamellae
Although the NP experiences marked changes during the 

early stages of aging, there are few indications of substantial 

effects in the AF until adulthood, typically characterized by 

mucoid degeneration, the presence of clefts and tears, and 

changes in collagen composition.6,25 It has been traditionally 

hypothesized that the driving force behind the initiation of 

these changes is that the AF’s structural function shifts from 

containment of the NP during loading to direct compression 

bearing as an axial strut.15,26 However, this may be only part 

of the story. Recent studies of annular puncture injuries in 

animal models indicate that degenerative changes can occur 

even in the absence of significant external loading of the disc. 

A number of reports have confirmed that needle puncture of 

caudal discs can lead to morphologic changes,14,27–30 and the 

puncture of nonloaded discs in organ culture also stimulates 

cell death.31

This mirrors the results observed with induction of spinal 

disc puncture injuries,32–34 but in systems that are spared from 

loads generated by trunk muscle stabilizers. The NP, which is 

estimated to sustain a resting pressure of 100–200 kPa, places 

the AF in a state of residual tension stress. As alteration of 

disc mechanics caused by puncture appears to be necessary 

and sufficient for inducing degradative changes,28,31 depres-

surization of the NP may be the primary contributing factor. 

In other scenarios, such as compressive loading, the loss of 

AF tension causes degeneration, whereas restoration of lost 

tension preserves annular morphology.35 The dependence 

on needle injury size28,36 suggests that the inflammation 

associated with injury may play only a minor role.

In addition to the lamellae, one aspect of the AF that 

had not drawn much attention previously, but which may 

be important in aging and degeneration, is the region of 
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tissue between lamellae. The interlamellar matrix of the 

adult disc is composed primarily of type I collagen fibrils, 

type IV collagen, elastin, aggrecan, and versican37–40 and is 

populated by cells that appear to be distinct from lamellar 

fibroblasts and fibrochondrocytes.41–43 Although the precise 

function of this tissue is not clear, the presence of lubricin 

in this region and the observed deformation of interlamellar 

tissue during annular tension suggest an important role in 

mediating shear stress between successive lamellae.44,45 

In healthy discs, the elastin content and colocalization with 

microfibrils increase from inner to outer AF,40 mirroring the 

zonal increases in shear modulus and in-plane anisotropy.46 

During degeneration, there is a more dramatic increase in 

elastin content in the inner AF compared with the outer AF,47 

which would tend to diminish the zonal variation. Although 

no direct measurements have been reported, the trends are 

consistent with the notion that the AF, and indeed the IVD as 

a whole, becomes more uniform both biomechanically and 

biologically. Whether these shifts serve as contributory fac-

tors in the progression of DDD or represent a manifestation 

of the degenerative process is currently unclear.

Degradative changes and nerve ingrowth
A prominent gap in our understanding of DDD is its causal 

relationship to pain. Once the integrity of the aging or degen-

erative IVD is sufficiently compromised, complications such 

as disc herniations or spinal stenosis may develop, leading 

to pain or dysfunction. But with discogenic back pain, there 

is no physical impingement of the spinal cord or nerve root. 

Whether distinctions exist between the pathobiology of 

symptomatic and asymptomatic degenerative discs is cur-

rently unclear. Historically, numerous studies in herniated 

discs have highlighted contributions from inflammation and 

enhanced neovascularization around the extruded NP.48–51 

Taking a cue from these studies, recent efforts aimed at 

understanding the mechanisms of discogenic back pain 

have focused on similar factors. Thus far, the evidence is 

circumstantial but potentially important.

The processes leading up to the onset of discogenic back 

pain appear consistent with inflammation and involve a com-

plex interplay among disc cells, immune cells, and inflamma-

tory cytokines. Because of crosstalk, detangling the nature and 

implications of these interactions will likely be a significant 

challenge. Various cytokines have been found to be associated 

with degenerative discs, but tumor necrosis factor (TNF)-α and 

interleukin (IL)-1β have garnered the most scrutiny. Based on 

recent findings, it appears that these two cytokines may have 

both distinct and overlapping roles in discogenic back pain. 

TNF-α has long been suspected to be directly involved. In 

animal models, it had been shown that application of TNF-α to 

rat dorsal root ganglia (DRG) results in mechanical allodynia 

and nerve sensitization,52–54 which can be exacerbated by DRG 

compression.55 Disc herniation models support the potential 

for disc cell-secreted TNF-α to be involved in discogenic back 

pain. Blockade of TNF-α following the application of autolo-

gous NP to DRG has been demonstrated by several groups 

to improve behavior characteristics and allodynia in rats.56–58 

Notably, in mice, significantly less mechanical allodynia 

occurred using NP from TNF-knockout mice.59

Nerve ingrowth has been postulated as a mechanism 

that enables disc cell-secreted cytokines to generate pain 

in the absence of herniation. Painful discs have been found 

to have greater nerve penetration than nonpainful discs.60–62 

As reviewed by Freemont,63 there may be a strong relation-

ship between the ability for neuron or endothelial cells to 

migrate into the disc and both the cells and the ECM of the 

degenerative disc. It is possible that IL-1β and TNF-α may 

play important roles since they have been found to increase 

with age and degeneration in human disc tissues.64–67 These 

inflammatory cytokines have recently been shown to upregu-

late neurotrophin expression,68 promote vascular endothelial 

growth factor secretion,69 sensitize disc cells for apoptosis,70 

further increase cytokine production,71–73 and disrupt matrix 

homeostasis.71,72,74–77 

Although the presence of elevated cytokine levels has 

been confirmed by several groups, the source of the cytokines 

remains unclear. It has been shown that disc cells are capable 

of producing various cytokines. In addition, CD68-positive 

cells have also been identified in degenerative discs, sug-

gesting that monocytes or macrophages may infiltrate and 

constitute a secondary source of cytokines.67,78 To complicate 

matters, there have also been reports that NP cells can exhibit a 

phagocytic phenotype possibly triggered by apoptosis,79,80 but 

whether this has any short-term and/or long-term implications 

on cytokine production has not yet been examined. Thus, at 

this time, we must remain open to the possibility of complex 

interplay between cytokines that are secreted by disc cells to 

recruit immune cells and those produced by invading immune 

cells to stimulate disc cells.

Treatments for DDD
Current treatments of painful disc degeneration include 

approaches that range from noninvasive—such as “benign 

neglect,” physical therapy, or symptom control with 

medication or injection—to outright surgical excision of 

the disc with or without fusion. These treatments are not 
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capable of improving the underlying degenerative changes, 

although they have proven to be effective for alleviating 

symptoms in some patients. The debate over best treatment 

option for discogenic back pain remains unresolved.81 In a 

Norwegian randomized clinical trial, Brox et al82 showed 

that it is possible for conservative treatments to yield results 

comparable to instrumented fusion surgery. By introducing 

a recently developed educational rehabilitation program 

based on cognitive-behavioral principles, they were able 

to achieve reduction in Oswestry Disability Index (ODI)

v1 and its primary outcome measure from 43.0 to 29.7 and 

42.0 to 26.4 in nonsurgical and surgical groups, respectively. 

This program also improved trunk musculature and muscle 

strength over the surgical group.83 Conversely, there is also 

compelling evidence that surgical interventions can pro-

duce significantly better outcomes compared with “usual 

care” of physical therapy and/or anti-inflammatory drug 

administration. Notably, the recent Spine Patient Outcomes 

Research Trial (SPORT) randomized patients to surgical and 

nonsurgical treatment groups but allowed crossing over from 

their assigned groups.84 Through 4 years of follow-up data, 

intent-to-treat analyses did not yield significant differences 

in primary outcomes (Short-Form-36, ODI) for degenerative 

spondylolisthesis and spinal stenosis. However, as-treated 

analyses indicate that surgical intervention yields significant 

improvements over conservative treatment.85,86

If a patient opts for surgery, the type of treatment inter-

vention then becomes another consideration. Recent data 

suggest that discectomy with spinal fusion may be associated 

with disc degeneration in adjacent levels,87–89 presumably due 

to altered biomechanics.90 Motion-preserving modifications 

to rigid lumbar fusion, such as dynamic stabilization, have 

been used, but the questionable benefit and rates of observed 

failure have also drawn some attention, as reviewed by 

Kelly et al.91 Total disc arthroplasty has become more widely 

used after US Food and Drug Administration (FDA) approval 

was granted for the CHARITÉ in 2004 and for the ProDisc 

in 2006. Randomized investigational device exemption trials 

reported to the FDA indicate that these devices generate no 

more complications than spinal fusion.92,93 Moreover, range 

of motion appears to be better, and patient outcomes are at 

least in line with fusion.94–97 Nevertheless, many consider 

that painful degenerative discs should, whenever possible, 

be treated with minimally invasive procedures, which pre-

serve much of the IVD intact. The effectiveness of some 

such procedures, such as ablative techniques that use lasers 

or radiofrequency energy to decompress discs and alleviate 

pain, are not supported by the literature. As such, we will 

focus the discussion around updated developments in nucleus 

replacements and molecular therapy.

NP replacement
A number of so called “preformed” nucleus replacement 

technologies have been utilized and have been the subject 

of focused reviews.98–100 These implants have defined shapes 

and often involve an insertion state that is smaller than its 

functional state caused either by swelling upon rehydration 

or by uncoiling. However, these implants typically require 

exposure of the IVD that is not insignificant, and biomechani-

cal restoration of the disc and effects on adjacent levels using 

these technologies have not yet been investigated in great 

detail. Moreover, a number of recent studies using computa-

tional methods have shown that conformity of the NP-filling 

material to the nucleotomized space is important for transfer 

of axial stress into an annular circumferential hoop stress and 

improve stress distribution over the endplate,101–103 confirming 

what had been postulated previously.104

As a way to address this limitation present in preformed 

nucleus implants, there have been several recent efforts to 

develop injectable materials for nucleus replacement. This 

area shares a common theme with tissue engineering in 

that the material must be biocompatible and mechanically 

robust. These materials could additionally overlap with tis-

sue engineering strategies to support or, perhaps, promote 

regenerative biological processes, although current efforts 

have not yet focused on this potential aspect. A number of 

recent reports have described potential candidates for inject-

able polymers.105–110 Thus far, focus has been primarily on 

materials’ characterization to assess their biomechanical 

similarity with healthy NP tissues, but reports on their abil-

ity to restore gross mechanics of the motion segment have 

yet to be released. One pilot clinical study has been reported 

with good results.111

Molecular therapy
One of the major efforts in therapeutic strategies for disc 

degeneration is in the restoration of the disc’s structural mor-

phology. The main thesis has been that by restoring the disc 

matrix and reversing the appearance of disc degeneration, 

the symptoms of disc degeneration will be alleviated. Cur-

rently, tissue engineering is the most widely pursued area, but 

molecular therapy (growth factor therapy) is closer to actual 

clinical use. Some of the earliest research into molecular 

therapy included the study by Thompson et al112 investigating 

the effects of insulin-like growth factor-1, epidermal growth 

factor, fibroblast growth factor, and transforming growth 
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factor on matrix synthesis and cell growth. The promitotic 

effect of growth factors and enhancement of disc matrix 

production were documented. However, cell mitosis may not 

be the most desirable characteristic, as the disc is nutrition-

ally limited, and there is some evidence that there is an upper 

limit on cell density in disc matrix before which cells may 

not survive.113 The most important parameter to consider may 

be the ability to increase disc matrix production to balance 

catabolism or outpace catabolism. Some of the molecules 

(bone morphogenic protein [BMP]-2, BMP-7, growth dif-

ferentiation factor [GDF]-5, Lim Mineralization Protein-1, 

among others) promote a chondrogenic phenotype by disc 

cells, bone marrow-derived stem cells, and have proven to 

be highly effective in enhancing disc matrix production.114–121 

When compared with primarily mitogenic molecules, these 

molecules are more potent stimulators of matrix production 

on a per cell basis. More recent experiments have moved 

beyond proof of concept tissue culture experiments to show 

that molecular therapy can be effective in animal models of 

disc degeneration.122–127 This has lead to two different FDA 

trials (BMP-7 and GDF-5) that are currently ongoing to test 

whether a single injection of therapeutic molecule can improve 

disc matrix appearance on magnetic resonance imaging and 

improve low back pain. Because there is no animal model 

of discogenic pain, these trials are the first “large animal” 

study of molecular therapy of disc degeneration. The thesis 

that disc matrix production will alleviate pain will be first 

tested in humans. If successful, these studies will be a major 

breakthrough in spinal care.
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