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Abstract: Patch-based medical image registration has been well explored in recent decades. However,
the patch fusion process can generate grid-like artifacts along the edge of patches for the following
two reasons: firstly, in order to ensure the same size of input and output, zero-padding is used, which
causes uncertainty in the edges of the output feature map during the feature extraction process;
secondly, the sliding window extraction patch with different strides will result in different degrees of
grid-like artifacts. In this paper, we propose an exponential-distance-weighted (EDW) method to
remove grid-like artifacts. To consider the uncertainty of predictions near patch edges, we used an
exponential function to convert the distance from the point in the overlapping regions to the center
point of the patch into a weighting coefficient. This gave lower weights to areas near the patch edges,
to decrease the uncertainty predictions. Finally, the dense displacement field was obtained by this
EDW weighting method. We used the OASIS-3 dataset to evaluate the performance of our method.
The experimental results show that the proposed EDW patch fusion method removed grid-like
artifacts and improved the dice similarity coefficient superior to those of several state-of-the-art
methods. The proposed fusion method can be used together with any patch-based registration model.

Keywords: patch-based; registration; overlap; distance; exponential function

1. Introduction

Medical image registration aims to generate a dense displacement field (DDF) to
accurately register a pair of images, and to spatially align anatomical structures [1]. It is
a fundamental procedure in various medical image analysis tasks [2]. However, to find
the best DDF requires many iterative optimizations between the two images, and the
traditional algorithm that is used has a higher time cost [3].

With the rapid development of deep learning, learning-based medical image registra-
tion methods have been commonly applied in recent years. It can imitate the process of
traditional image registration methods and quickly predict the DDF of two unseen images
by training a deep neural network. Patch-based training is not affected by shortage of
training datasets as much, since many image patches can be sampled from the original
images. In addition, patch-based training usually has better performance locally than
whole-image-based training [4]. One challenge regarding patch-based image registration is
the patch fusion process, which stacks many image patches to generate the final whole-
image transformation. This patch fusion process can generate grid-like artifacts along
the edges of the patches. To solve this problem, Yang et al. [5] introduced Quicksilver, a
fast-deformable image registration method. During inference, they provided a probabilistic
version which can calculate uncertainties in the predicted deformations. Cao et al. [6]
proposed a novel deformable registration method, which is based on a cue-aware deep
regression network. In the application stage, the first step was to extract patches from
image pairs using a key-point sampling strategy. Then, the DDF patch was predicted by
the deep regression network. Finally, the whole DDF could be obtained by the block-wise

Sensors 2021, 21, 7112. https://doi.org/10.3390/s21217112 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5988-4021
https://doi.org/10.3390/s21217112
https://doi.org/10.3390/s21217112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217112
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217112?type=check_update&version=3


Sensors 2021, 21, 7112 2 of 12

thin-plate spline (TPS) interpolation. Fan et al. [7] introduced a dual-guided, fully convolu-
tional network for brain image registration, which estimates only the DDF in the central
region. The size of the input image pair was 64 × 64 × 64 voxels, and the output was
a 24 × 24 × 24 DDF patch. Hu et al. [8] used a stride of four to generate patches which
can produce a smoother DDF in the inference. At the same time, to further increase the
smoothness of the DDF and to ensure that it contained enough neighborhood information,
surface-discarding was adopted. Finally, the whole DDF was obtained by the arithmetic
average weighted (AAW) method.

Most of these methods can remove grid-like artifacts of DDFs with probabilistic
models, a small stride, and estimating only the central region, etc. However, they cannot
quickly obtain DDF without these grid-like artifacts at a large stride. Hence, we have
applied an exponential-distance-weighted (EDW) scheme to the patch fusion process.
Compared with the fusion methods used in the above literature, the EDW patch fusion
strategy proposed in this paper can achieve more significant performance in a larger stride
in a shorter time. Our code is freely available at https://github.com/LiangWUSDU/EDW
(accessed on 24 September 2021). The main contributions are summarized as follows:

1. We calculate the relative weight of each point prediction using an exponential function
on each patch, according to the distance from each point to the center point. This
allows fusion of the predictions from all overlapping patches, while giving lower
weight to predictions that are made by the patches near their edges.

2. The proposed patch fusion method can be used together with a patch-based deep
learning model for registration without any modification to significantly improve
network predictions.

2. Methods
2.1. Grid-like Artifacts

There are two main reasons for the emergence of grid-like artifacts: (1) the influence
of using zero-padding in the feature extraction process. (2) the influence of strides on the
choosing of patches in the testing stage.

Deep neural networks (DNNs) have been successfully applied in order to enhance
the state-of-the-art of many segmentation, registration and classification tasks. Among
them, convolution is often used as an effective method for feature extraction. By sliding
the filter over the input feature maps, the dot product is taken between the filter and the
parts of the input feature. The output is a new set of feature maps. As shown in Figure 1,
in 2D convolution, the stride is 1, the input is a 5 × 5 feature map, and the output is a
3 × 3 feature map, by a 3 × 3 convolution kernel. In some image processing tasks such
as image registration and segmentation, the output and input should have the same size.
Zero-padding and transposed convolution are the two most popular approaches. As shown
in Figure 2a, zero-padding allow us to control the size of the feature map, by padding 0
to make the output size the same as the input size. In Figure 2b, transposed convolution
is the reverse of normal convolution, but only regarding size. To ensure the same size of
the output as the input in this convolution operation, it is necessary to perform padding 0
before convolution. This kind of zero-padding increases the uncertainty of the edge regions.
The same conclusion is obtained for the transposed convolution.
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Figure 2. Illustration of (a) Zero Padding and (b) Transposed Convolution.

In the patch-based image registration method, due to the image features in the patch
edges being incomplete, the patch prediction at the patch edges is less accurate. In addition,
the extraction of patches using sliding windows with different strides also produces
different degrees of grid-like artifacts. In Figure 3a, when the stride is consistent with the
patch size, there is no overlap between the patches, which leads to severe grid-like artifacts
after fusion, due to the inconsistent information of each patch edge. When the stride is
smaller than the patch size, the AAW is generally used for the overlapping regions. The
weights of the overlapping regions are the same no matter how far away from the center
they are. The same grid-like artifacts will appear, as shown in Figure 3b. In the patch-based
training method, the central region is more informative than the edge region. It is not
reasonable to use the same weight for the edge region and the central region. Therefore, this
study set the weight using an exponential function which was calculated by the distance
from the points in the patch to the center point.
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2.2. Distance Functions

Some of the common distance functions in the field of image processing are Euclidean
distance [9], Manhattan distance [9], Chebyshev distance [10] et al. These three functions
are all metrics which compute a distance value based on two data points, and they are
widely used in medical image processing [11,12]. Hence, in this work, we evaluated these
three distance functions. The patch size is h× w× c. In the patch coordinate system, the
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coordinate of any point is (iP, jP, kP), iP ∈ [0, h− 1], jP ∈ [0, w− 1], kP ∈ [0, c− 1]. The
coordinate of the center point of the patch is ( h−1

2 , w−1
2 , c−1

2 ).

2.2.1. Euclidean Distance

Euclidean distance is the most widely used distance metric. The Euclidean distance
de, between two points in Euclidean space, is the length of the line segment between the
two points, as:

de =

√
(iP −

h− 1
2

)
2
+ (jP −

w− 1
2

)
2
+ (kP −

c− 1
2

)
2

(1)

2.2.2. Manhattan Distance

Manhattan distance is calculated as the sum of the absolute differences between the
two points. The Manhattan distance dm of two points is:

dm =

∣∣∣∣iP −
h− 1

2

∣∣∣∣+ ∣∣∣∣jP − w− 1
2

∣∣∣∣+ ∣∣∣∣kP −
c− 1

2

∣∣∣∣ (2)

2.2.3. Chebyshev Distance

The Chebyshev distance between two points is the maximum absolute magnitude of
the differences between the coordinates of the points. The Chebyshev distance dc of two
points is:

dc = max(
∣∣∣∣iP −

h− 1
2

∣∣∣∣, ∣∣∣∣jP − w− 1
2

∣∣∣∣, ∣∣∣∣kP −
c− 1

2

∣∣∣∣) (3)

In Figure 4b–d, the deep blue color indicates a large distance from the center point,
and the deep yellow color indicates a small distance. It can be visualized that all three
distance functions become smaller when they are closer to the center point. In addition,
they increase from the center point to the surrounding area in a square, star, and circle
manner, respectively. Additionally, in the heat map of the AAW method, the colors are
the same for all positions, indicating that each position receives the same weight. From
the frequency domain analysis (Figure 5), the amplitude of the AAW method oscillates,
indicating that it still had more high-frequency components. From the amplitude of the
Chebyshev distance function, we observed that it also retained a small number of high-
frequency components. Therefore, these two methods would still have grid-like artifacts
on DDFs. The amplitude of Manhattan distance and Euclidean distance are relatively
stable, which can achieve the purpose of removing grid-like artifacts while preserving the
original information.
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Figure 5. Plot of the weights of the AAW method, the exponential weighted distance (a) and the magnitude of the
corresponding Fourier transformation (b) for the 32nd row of the 33rd slice. From left to right: AAW, exponential
Chebyshev-distance-weighted (ECDW), exponential Manhattan-distance-weighted (EMDW), and exponential Euclidean-
distance-weighted (EEDW). From the amplitude of FFT, we can find that the AAW method and ECDW retain some
high-frequency information and cannot remove the grid-like artifacts to a greater degree.

2.3. The Process of Patch Fusion

In our work (as illustrated in Figure 6), we extract overlapping patches via a sliding
window with a stride of s.

Sensors 2021, 21, x  6 of 13 
 

 

 
Figure 6. The pipeline of patch fusion in the test phase. The size of both the moving image and the fixed image is 
H W C× × , and the overlapping patches of size h w c× ×  are extracted using the sliding window with stride s . The 
DDF patch of 3h w c× × ×  is obtained by the trained registration model. The output DDF patch is located at the same 
location as the input patch. Finally, the whole DDF is obtained by the EDW method. 

An MR image can generate m  patches, which can be calculated as follows: 

( ) ( ) ( )H h s W w s C c sm
s s s

− − − − − −     =           
 (4)

where, H W C× ×  is the image size, and h w c× ×  is the patch size. During inference, 
the output DDF patch is of a size 3h w c× × × . The prediction values of each position 

are , , , , , , , ,
1 2{ , ,..., }i j k i j k i j k i j k

nφ φ φ φ= , and n  is the number of overlaps at point ( , , )i j k , 

where i j kn n n n= × × , [0, 1]i H∈ − , [0, 1]j W∈ − , [0, 1]k C∈ − . in  can be cal-
culated as follows: 

1,

( ), 1

( 1)
( ) ), 1 ( 1)

0, ( 1)

   + <   
 − − ≤ ≤ −   
  + = − −    − − +       − < < −         
   
 +  − ≤    

i

i i h
s
h H h sh i s
s s

H sn s i
H h s H ss s i s

s s s

H s s i
s

 

(5)

We can calculate jn , kn  by the same way. According to the distance map of each 

patch, we can determine the corresponding distance , , , , , , , ,
1 2{ , ,..., }i j k i j k i j k i j k

nd d d d=  for 
n  overlapping patches, at position ( , , )i j k . Due to the uncertainty of the edges, we use 
the following equation to obtain the normalized weights: 

Figure 6. The pipeline of patch fusion in the test phase. The size of both the moving image and the fixed image is H×W×C,
and the overlapping patches of size h× w× c are extracted using the sliding window with stride s. The DDF patch of
h× w× c× 3 is obtained by the trained registration model. The output DDF patch is located at the same location as the
input patch. Finally, the whole DDF is obtained by the EDW method.
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An MR image can generate m patches, which can be calculated as follows:

m =

⌊
H − (h− s)

s

⌋⌊
W − (w− s)

s

⌋⌊
C− (c− s)

s

⌋
(4)

where, H ×W × C is the image size, and h× w× c is the patch size. During inference,
the output DDF patch is of a size h× w× c× 3. The prediction values of each position
are φi,j,k =

{
φ

i,j,k
1 , φ

i,j,k
2 , . . . , φ

i,j,k
n

}
, and n is the number of overlaps at point (i, j, k), where

n = ni × nj × nk, i ∈ [0, H− 1], j ∈ [0, W − 1], k ∈ [0, C− 1]. ni can be calculated as follows:

ni =



⌊
i
s

⌋
+ 1, i < h

h
s , h ≤ i ≤

⌊
H−(h−s)

s

⌋
s− 1⌊

(b H+s
s c−1)s−i

s

⌋
,
⌊

H−(h−s)
s

⌋
s− 1 < i < (

⌊
H+s

s

⌋
− 1)s

0, (
⌊

H+s
s

⌋
− 1)s ≤ i

(5)

We can calculate nj,nk by the same way. According to the distance map of each

patch, we can determine the corresponding distance di,j,k =
{

di,j,k
1 , di,j,k

2 , . . . , di,j,k
n

}
for n

overlapping patches, at position (i, j, k). Due to the uncertainty of the edges, we use the
following equation to obtain the normalized weights:

ω
i,j,k
ts =

e−di,j,k
ts

n
∑

t=1
e−di,j,k

ts

(6)

where, ω
i,j,k
ts is the weight of t overlapping patches at the point (i, j, k), t ∈ [1, n], n is

the number of overlapping points (i, j, k) when extracting the patch with a stride of s. e
(≈2.71828), a natural constant which is the base of the exponential function. From Figure 7
we observed that the further the distance from the patched centroid is, the smaller the
value of the weight is. This can give a greater confidence to the central region and improve
the final prediction. Hence, the final prediction value of this point is:

φ̂
i,j,k
s =

n

∑
t=1

ω
i,j,k
ts φ

i,j,k
ts (7)

where, φ̂
i,j,k
s is the final predicted value of the DDF at point (i, j, k). The whole DDF φ̂ can

be obtained by applying the above processing to all voxels.
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Figure 7. A schematic diagram of the overlapping patches. The shaded regions represent overlap.
Points A and B are the center points of patch 1 and patch 2, respectively, and point C is a point in the
overlap region. The predicted value of point C in patch 1 and patch 2 are φA and φB, respectively. d1

is the distance from point C to point A when point C is in patch 1, d2 is the distance from point C to
point B when point C is in patch 2. The final predicted value is φC. According to Equation (6), the
weights of point C in patch 1 and patch 2 are as follows: ωA = e−d1

e−d1+e−d2
and ωB = e−d2

e−d1+e−d2
. Finally,

we can get φC = ωAφA + ωBφB from Equation (7).



Sensors 2021, 21, 7112 7 of 12

3. Experiments and Results
3.1. Dataset Description

Experimental data were obtained from The Open Access Series of Imaging Studies
(OAISIS-3) (https://www.oasis-brains.org, accessed on 15 July 2021) [13]. The OASIS-3
dataset was a longitudinal imaging, clinical and cognitive dataset of both normal aging
and Alzheimer’s disease. It included 609 cognitively normal subjects and 489 subjects with
varying stages of cognitive decline. We randomly selected 800 TI-weighted (T1) subjects for
the experiment. We used 750 subjects for training, 50 subjects for inference, and the MNI-
152 brain atlas was used as the fixed image. In preprocessing, each subject was linearly
aligned to the MNI-152 brain atlas. The final image size was 160 × 192 × 160 voxels with
1 × 1 × 1 mm3 voxel resolution. The dataset also contained segmentation label images of
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM).

3.2. Experimental Details

During training, we extracted 80 patches with sizes 64 × 64 × 64 from each image
with a stride of 32. The total number of patch pairs of MR images was 600,000. During
reference, we explored the performance of the proposed fusion method by extracting the
patches using sliding windows with different strides according to Equation (4), as shown
in Table 1. We evaluated the performance of the registration using the dice similarity
coefficient (DSC). In addition, to quantify the deformation regularity, we calculated the
Jacobian determinant det(Dφ−1) of the DDF. det(Dφ−1) < 0 indicates the locations where

folding has occurred. The proportion of folding voxels ρ = ∑ δ(det(Dφ−1)<0)
V is computed to

evaluate the topology-preserving performance [14].

Table 1. Number of patches extracted in different strides during inference.

Stride 4 × 4 × 4 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32

Number of Per Patch 20,625 2873 441 80

We conducted experiments on the OASIS-3 dataset to evaluate the performance of the
proposed fusion method and to compare it with three state-of-the state methods: AAW,
MIScnn [15] and patchify [16]. Three kinds of deep learning models were trained: (1) Voxel-
Morph: this was a typical representative of unsupervised learning-based registration; (2) To
produce a smoother DDF, a Jacobian constraint lossJD = 0.5(

∣∣det(Dφ−1)
∣∣− det(Dφ−1))

was added to the loss function of VoxelMorph to reduce the folding of the DDF [2], de-
noted as VoxelMorph (JD); (3) Label-reg: this was a weakly-supervised image registration
model [1].

3.3. Experimental Results

We used the trained VoxelMorph (JD) model to test the patches extracted from a
sliding window with stride of 16. In our fusion method, Euclidean distance was chosen as
the distance function. Table 2 shows the DSC values of CSF, GM, and WM, as well as the
folding rate for the three fusion methods.

Table 2. Registration results of different fusion methods and the best results are shown in bold.

Method
DSC

ρ
CSF GM WM

AAW 0.7542 0.7253 0.8188 0.0026
MIScnn 0.7512 0.7223 0.8162 0.0028
Patchify 0.7573 0.7239 0.8192 0.0050

Proposed 0.7621 0.7407 0.8325 0.0042
Note: Arithmetic Average Weighted: AAW; Medical Image Segmentation with Convo-lutional Neural Net-
works: MIScnn.

https://www.oasis-brains.org
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As can be seen from Table 2, our method obtained higher DSC values when compared
with the other three methods. However, the ρ values of MIScnn and AAW were lower,
and the resulting DDF was smoother. In Figure 8, we show the DDFs of different fusion
methods. It can be seen that the DDFs of AAW, MIScnn and patchify have obvious seam
lines between patches, which indicates that the prediction of the edge region was inaccurate.
Since our method considered the uncertainty of the edge, different weights were given
to the center regions and the edge regions, which effectively eliminated the seams. From
the enlarged red box, we can see that the DDF obtained by our method does not show
grid-like artifacts. However, from the red markers, both our method and patchify retain
many folding points which was mainly caused by the predicted model itself, while both
the AAW and MIScnn methods changed the predicted values to some extent.
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To verify the robustness of the method, we tested it on VoxelMorph and Label-reg
models. The experimental results are shown in Figure 9. We found that we obtained DDF
without grid-like artifacts under different models.
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3.4. Comparisons of the Results with Different Strides

In the AAW method, the stride has a great influence on the patch fusion process.
Table 3 shows the DSC, ρ and fusion time of AAW and proposed methods with differ-
ent strides.
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Table 3. Registration results of different strides and the best results are shown in bold.

Stride Method
DSC

ρ Times (s)
CSF GM WM

4 × 4 × 4
AAW 0.7491 0.7231 0.8161 0.0018 ≈600

Proposed 0.7578 0.7375 0.8293 0.0037 ≈1000

8 × 8 × 8
AAW 0.7512 0.7241 0.8173 0.0022 91.3156

Proposed 0.7593 0.7390 0.8307 0.0040 97.0658

16 × 16 × 16
AAW 0.7542 0.7253 0.8188 0.0026 14.1332

Proposed 0.7621 0.7407 0.8325 0.0042 14.7074

32 × 32 × 32
AAW 0.7556 0.7243 0.8183 0.0034 2.6318

Proposed 0.7627 0.7406 0.8326 0.0042 2.7107

In Table 3, when the stride decreases, the smoothness of DDF increases with a smaller
ρ. However, the DSC of the CSF, GM and WM are nearly similar. As the number of patches
increases with a small stride, the fusion time is significantly increased. Compared with
the AAW method, the DSC and ρ values of our method are higher than those obtained by
AAW under different strides. We found that the stride had little effect on the ρ obtained by
our method, while the AAW method obtained a smoother deformation field with smaller
strides. This further proves that our method can robustly maintain the predicted values of
the registration model. In addition, the fusion times of the two methods has little difference.
In Figure 10, we found that the DDFs of our method under different strides removed the
grid-like artifacts, but the AAW method still has a small number of grid-like artifacts, even
at a stride of 4 × 4 × 4. We can conclude that to obtain the DDF without grid-like artifacts,
the AAW method requires a smaller stride while significantly increasing the fusion time.
However, our method can obtain the DDF without grid-like artifacts in a shorter time, even
under a larger stride, as well as a higher DSC value than that obtained by the AAW method.
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3.5. Comparisons of the Results with Different Distance Functions

To explore the effect of distance functions on patch fusion, we choose Chebyshev
distance, Manhattan distance, and Euclidean distance for our experiments. The results are
shown in Table 4.

Table 4. Registration results of different distance functions and the best results are shown in bold.

Distance
Function

DSC
ρ

CSF GM WM

Chebyshev 0.7628 0.7405 0.8326 0.0042
Manhattan 0.7626 0.7406 0.8326 0.0042
Euclidean 0.7627 0.7406 0.8326 0.0042

From Table 4, it can be observed that the distance functions have little difference in
the quantitative analysis. We also show the fusion results of the three distance functions in
Figure 11. From the top row, we can see that the slices in the middle of the DDF introduced
the three distance functions without grid-like artifacts. However, the Chebyshev distance
still has a significant seam at the edge slice seen on the bottom row. In Figure 4, when using
the Chebyshev distance as a distance function, the distances from the points at the edge to
the centroid are equal. This gives the same weight to all predicted values at that point no
matter how many times they overlap, which results in grid-like artifacts still appearing
at the edge. Combined with Figure 5, the Chebyshev distance appears to undulate in the
transition from low to high frequencies, which indicates that it is less stable at the edge and
will retain some high-frequency information. Therefore, by our method, introducing the
Euclidean distance or Manhattan distance can obtain the DDF without grid-like artifacts.
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3.6. Comparisons of the Results with Different Weighting Methods

The weighting method is the key to our fusion method. In this section, we chose
the inverse-distance weighting (IDW) method to compare with our method. The distance
function used is Euclidean distance. In Figure 12, we found that the IDW approach did
not remove the grid-like artifacts. From the corresponding function curves in Figure 12c, it
can be seen that in the central region (small distance), both weighting methods can give
larger weighting coefficients, while in the edge region (larger distance), the IDW method
produces larger weights than the EDW method. This indicates that the IDW method does
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not find the suitable weighting coefficients in the central and edge regions to eliminate the
uncertainty of the edge, which results in its fusion results still having grid-like artifacts.
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4. Discussion

Zero-padding is a relatively common operation in deep learning networks to keep
the same input and output sizes. However, this operation is subject to uncertainty in edge
prediction, which leads to grid-like artifacts in the patch fusion process. To solve this
problem, we propose an exponential-distance-weighted fusion method. This method uses
an exponential function to convert the distance from the predicted value of each patch to
the center point into a set of weight coefficients. The larger the distance is, the smaller
the weight coefficient is. Finally, the predicted DDF value of each voxel is obtained by a
weighting method.

We performed experiments on the OASIS-3 dataset. By comparing our proposed
method with AAW, MIScnn and patchify, three different fusion methods, our method
obtained a seam-free DDF. Through a quantitative analysis, our overall DSC in the three
types of brain tissue was 0.7784, and the other three methods were 0.7661, 0.7632, and
0.7668, respectively. It was found that our method is significantly better than these three
methods. In addition, when compared with AAW and MIScnn, our fusion method did not
change the predicted value of the registration model. To demonstrate the robustness and
the effectiveness of our method, we also validated it on different models. In addition, we
discussed the DDF results which were obtained under different strides, distance functions,
and weighting methods. However, our method was found to have two shortcomings:
(1) although our method can remove grid-like artifacts, it may change the true prediction
results of the model after weighting; (2) the DDF obtained by our method is not smooth
enough, and the folding rate still exists.

5. Conclusions

In this paper, we introduced a distance function to reduce grid-like artifacts when
performing patch-based image registration. We demonstrated that our proposed EDW
method has significant advantages over existing patch fusion methods. Moreover, our
method is easy to implement into existing deep learning models, even if they are already
trained. In the future, we will use the registration model to learn the weight coefficients
of overlapping regions so that the contextual information can be fully considered, and
the true prediction results of the model can be preserved. In addition, only the Euclidean
distance, Manhattan distance, and Chebyshev distance were selected for experiments in
this paper. Next, we will introduce more distance functions, and explore the influence of
the distance function used, the network structure and the distance variance on this method.
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