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Abstract: With the increasing use of wearable devices equipped with various sensors, information
on human activities, biometrics, and surrounding environments can be obtained via sensor data at
any time and place. When such devices are attached to arbitrary body parts and multiple devices are
used to capture body-wide movements, it is important to estimate where the devices are attached.
In this study, we propose a method that estimates the load positions of wearable devices without
requiring the user to perform specific actions. The proposed method estimates the time difference
between a heartbeat obtained by an ECG sensor and a pulse wave obtained by a pulse sensor, and it
classifies the pulse sensor position from the estimated time difference. Data were collected at 12 body
parts from four male subjects and one female subject, and the proposed method was evaluated in
both user-dependent and user-independent environments. The average F-value was 1.0 when the
number of target body parts was from two to five.

Keywords: wearable device; wearable sensor; load position estimation; electrocardiogram (ECG);
heartbeat; pulse wave; pulse wave velocity (PWV)

1. Introduction

Wearable devices equipped with various sensors are becoming increasingly popular.
The sensors embedded in such devices can obtain biometric data and information about
human activities and the surrounding environments at any time and place. These sensors
can capture acceleration, angular velocity, light, pulse wave, position, radio wave strength,
electromyograph (EMG) [1], electrocardiogram (ECG) [2], and galvanic skin response
(GSR) [3] data, and other types of data obtained from manually configured sensors [4].
Such data can be used for a variety of services, such as health management systems
that automatically extract life patterns and issue warnings about lack of exercise and
overwork [3]. Another application is services that provide support during assembly and
maintenance tasks [5] by predicting the next task from the current operation and presenting
manuals and required tools. Support systems for diabetic patients record the times of insulin
injections and provide blood sugar level measurements outside the hospital. Sports support
systems acquire data on the number of times an athlete performs various maneuvers and
activities (CATAPULT, https://www.catapultsports.com/ accessed on 29 January 2022).
Entertainment systems capture data on changes in audience behavior [6].

The wearable devices currently on the market have various shapes and appearances,
such as watches, bracelets, rings, glasses, belts, shoes, and clothes. Such devices are limited
to a specific body part. However, devices that can be attached to any body part, such
as an instant tattoo [7], a flexible sheet [8], and a general-purpose sensor [4], are also
becoming available. When such devices are attached to an arbitrary body part, the location
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should be identified because the application process may need to change. In one such
application, human activity recognition (HAR) systems change their machine learning
algorithm according to the position of a device, because the recognition accuracy drops
significantly when the training data domain differs from the test data domain [9]. For
example, recognition of hand gestures by using a model that learned leg motions does not
work well. The output method, such as a display, LED, sound, or vibration, can also change
according to a wearable device’s position.

In recent years, mobile on-body robots have also been proposed. For example, Rov-
ables move on clothes by using magnetic wheels [10], while the SkinBot moves on skin
by using two suction cups [11]. In the latter case, body biopotentials (e.g., electrodermal
activity and ECG signals) can be measured using electrodes inserted in the suction cups.
Such wearable robots require self-position estimation, but SkinBot cannot localize itself.
In contrast, Rovables perform localization through dead reckoning, a position estimation
algorithm that determines the current position on the basis of the previous position, but
this requires knowing the initial position.

For systems that use multiple wearable devices to capture body-wide movements, it
is important to estimate the attachment positions. Assuming multiple identical devices,
i.e., the same products for HAR, the devices can be connected to a PC via Bluetooth or a
USB cable. Then, a COM port can be assigned to each device, e.g., “COM3”. The control
system on the PC can identify devices from their assigned COM ports, but it cannot identify
where they are attached. As users usually move body parts individually, the system can
see a device’s waveform and then confirm the COM port associated with the body part.
However, even if devices specify where they should be attached, COM ports often change
when devices are connected.

Generally, studies on device load positions can be categorized as studies on displace-
ment detection and compensation for a single body part and studies on load position
identification for wearable sensors anywhere on the body. Studies in the first category
enable a single recognition model to recognize human activities with compensated sensor
values [12]. In these conventional studies, a small displacement (e.g., a few centimeters)
can be compensated for; however, when the displacement is large or when a sensor is
attached to a different limb (i.e., over a joint), the displacement cannot be compensated
for, which results in low performance. As for the second category, studies on load position
identification classify sensor load positions into predefined body parts [13,14]. However,
these approaches require a certain amount of data as input to a classification model, and
users must perform specific activities, such as walking for a few minutes.

In this paper, we propose a method to estimate the load positions of wearable devices
without requiring the user to perform specific actions. The proposed method calculates the
time difference between a heartbeat obtained via an electrocardiograph and a pulse wave
obtained via a pulse sensor, and it then classifies the sensor position on the basis of the time
difference. We assume that the pulse sensor is embedded in a wearable device. When the
heart pumps blood to the body, the sinus node, a cluster of cells near the heart’s right atrium,
controls constriction of the heart by electrical stimulation. An electrocardiograph measures
the electric potential of this stimulation. Currently, small, coin-sized electrocardiographs
and a clothing-type electrocardiograph are commercially available. The heart rate and
various physical and mental characteristics can be acquired by analyzing ECGs [15,16], and,
in the future, it is expected that users will be able to access personal ECG data on demand.
In the human circulatory system, blood pumped from the left ventricle through the aorta
(main artery) to the whole body passes through the arteries and reaches the capillaries.
A pulse wave sensor can measure changes in blood flow. Here, the pulse wave arrival
time depends on the distance from the heart, and as a result, the time difference between a
heartbeat and a pulse wave measured by a sensor depends on the sensor’s location on the
body. Accordingly, the proposed method detects the occurrence time of a heartbeat and the
arrival time of a pulse wave, calculates the time difference, and used it to estimate the load
position of the wearable device.
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Note that part of this work was published at the 23rd International Symposium on
Wearable Computers [17]. However, the data collected for the evaluation experiment
reported in the conference paper was limited, with only one minute of data for each
body part in an experimental session. Moreover, only a simple evaluation was conducted,
with a session-dependent environment. Hence, for this paper, the evaluation experiment
was repeated with data collection for 3 min at each body part in each session, and with
two evaluation environments, which were user-dependent (i.e., session-independent) and
user-independent. These environments were designed to reflect the actual use of the
proposed method. As a result, this paper has been substantially revised from the conference
paper [17].

The primary contributions of this study are as follows.

• The proposed load position estimation method does not require users to perform any
specific activities: it can identify sensor load positions when a user stands still for 10 s;

• We assume that the sensor device whose load position is to be identified is equipped
with a pulse sensor, which consists of an infrared LED and a photoreflector. Typically,
such sensors cost less than half a US dollar and weigh less than a gram. Wearable elec-
trocardiographs are also attached to the user, and their use here is relatively practical;

• In an experiment with five subjects, we collected ECGs and pulse waves at 12 body parts
in four sessions lasting three minutes each. We then used the collected data to evaluate
the proposed method in both user-dependent and user-independent environments.

The remainder of this paper is organized as follows. Section 2 introduces related work.
The proposed method is explained in Section 3. The experimental evaluation is described
in Section 4, and the limitations of this study are described in Section 5.

2. Related Work

This section introduces related work on sensor positions in HAR, position estimation
for wearable devices, position estimation for smartphones, and ECG and pulse wave
sensing.

2.1. Sensor Positions in HAR

Many studies have been conducted on recognizing human behavior by attaching
multiple accelerometers to various locations throughout the body. This section introduces
these studies and investigates various sensor locations.

Murao et al. [18] proposed an evaluation function that scores sensor placement in
terms of both recognition accuracy and sensor wearability. This study involved 20 wearable
sensors and 30 types of exercise including aerobic exercise, weight training, and yoga. In
experiments conducted to evaluate sensor placement, the proposed evaluation function
yielded an accuracy of 86% without inducing stress on the user.

Louis et al. [19] investigated differences in accuracy in HAR by having subjects attach
three-axis acceleration sensors to seven locations: the ear, chest, arm, wrist, waist, knee,
and ankle. Data were collected from 11 subjects who performed 15 different actions. From
the collected data, the accuracy of action recognition was highest when the acceleration
sensor was attached to the arm or ear. Gjoreski et al. [20] also had subjects wear three-axis
accelerometers, at four locations (chest, waist, thigh, and ankle), and they investigated the
optimal sensor locations for nine types of action recognition, including sitting and standing.
Acceleration data were collected from 11 subjects, and classification was performed using
features such as the mean and standard deviation. For the case of only one sensor, the
results showed an average accuracy of 75% when the sensor was attached to the chest and
77% when it was attached to the waist; in contrast, the accuracy was insufficient when the
sensor was attached only to the thigh or ankle. Furthermore, the accuracy increased to
about 90% when the single sensor was combined with ankle data and 93% when it was
combined with thigh data.

In another study, Cleland et al. [21] investigated the optimal sensor locations for
behavior recognition by having subjects wear three-axis accelerometers at six locations:
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the chest, wrist, waist, buttocks, thigh, and ankle. Data were collected from eight subjects
for seven different behaviors, such as walking and running, and the behaviors were
classified using four different machine learning algorithms: a J48 decision tree, a naive
Bayes, a neural network, and a support vector machine (SVM). The classification results
showed an accuracy of 97.81% when the sensor was attached only to the buttocks. Finally,
Pannurat et al. [22] investigated the optimal sensor placement for recognizing seven types
of actions, such as sitting and lying down, by using data collected from 12 subjects aged
23 to 45. The results showed an average accuracy of 96% when the accelerometers were
placed on the chest, anterior waist, lateral waist, and thigh.

2.2. Position Estimation for Wearable Devices

Several studies have reported that system performance drops if a classification model
designed for a specific body part is used with a different body part. For instance, Apiwat
et al. [23] asked 10 subjects to attach accelerometers to three positions (shirt pocket, pants
pocket, and waist) and perform six different activities. Then, they evaluated activity
recognition by using sensor data collected from different positions in the training and
test data. When the waist data were used for both training and testing, the accuracy was
91.71%. However, when the waist data were used for training and the shirt pocket data
were used for testing, the accuracy was only 51.58%. The results thus demonstrated that an
appropriate classification model is required for motion recognition.

Vahdatpour et al. [24] used acceleration data to estimate the load positions of wearable
sensors. In an experiment with 25 subjects, 10 accelerometers were attached to the head,
both upper arms, both forearms, the waist, both thighs, and both shins, and acceleration
data were collected during daily activities such as walking. The load positions were
estimated from the collected data by using an SVM, an average accuracy of 84% was
achieved. Timo et al. [25] collected acceleration data on human activities, such as walking
and running, from 15 subjects who wore accelerometers at various positions, such as the
head, chest, upper left arm, left wrist, waist, front shirt pocket, and left ankle. By using a
random forest, the load positions were estimated from the collected data with an average
accuracy of 89%. Kunze et al. [26] collected acceleration data from six subjects who walked
with sensors attached to the right wrist, the side of the right eye, the left pants pocket, and
the left shirt pocket. A C4.5 decision tree was used to estimate the load positions, and an
average accuracy of 94% was achieved. Similarly, Takata et al. [13] had 10 subjects wear a
device equipped with accelerometers and angular rate sensors at a total of 10 locations: the
head, chest, left wrist, right wrist, waist, front pants pocket, back pants pocket, left ankle,
and right ankle. They collected sensor data from the 10 subjects during daily activities
such as walking. By estimating the load position with a random forest, they obtained a
maximum accuracy of 98.2% and an average accuracy of 90.0%.

In a study on device displacement compensation, data were collected from one subject
who had accelerometers attached to six points on the lower right arm [12]. The sensor
load positions were identified from the data distribution with an average accuracy of 84%.
Moreover, the results showed that a small displacement (e.g., a few centimeters) could be
compensated for; however, when the displacement was large or the sensor was attached
to a different limb (i.e., over the a joint), the effect could not be compensated for, and the
performance was low.

2.3. Position Estimation for Smartphones

Several studies have estimated where mobile devices, such as smartphones, are being
carried. For instance, Coskun et al. [27] used acceleration data to estimate the carrying
location of a mobile device. Fifteen subjects carried a handheld terminal in three places:
a hand, backpack, and clothes pocket. Acceleration data were collected during daily
activities, such as walking and running, and a random forest was used to estimate the
carrying location. Using only acceleration data, the average accuracy was 77.34%. When
both acceleration and angular velocity data were used, the accuracy improved to 85% on
average. Martin et al. [28] estimated the storage location of a mobile device by using data
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from five types of sensors: an acceleration sensor, gravity sensor, linear acceleration sensor,
magnetometer sensor, and gyroscope sensor. By using a decision tree to estimate the storage
location, an accuracy of up to 92.94% was obtained. Fujinami et al. [14] used acceleration
data to estimate five storage positions during walking: the front pants pocket, back pants
pocket, jacket pocket, breast pocket, and a neck strap. Acceleration data were collected for
each position from 10 subjects, and an average accuracy of 72.3% was obtained.

Park et al. [29] also used acceleration data to estimate the location of a mobile device.
Nine subjects were asked to hold or store their mobile devices at four locations (the
hand, ear, backpack, and clothing pocket) and acceleration data were collected while the
subjects walked at three different speeds. From collected data, they could estimate the
mobile device’s location with an average accuracy of 94%. Maarten [30] estimated the
locations of smartphones worn by pedestrians and cyclists. Forty-nine subjects carried
their smartphones in four locations: the jacket breast pocket, front pants pocket, back pants
pocket (or bicycle back pocket for cyclists), and backpack. Acceleration and angular velocity
data were collected, the device location was estimated with an average accuracy of 79.5%
for pedestrians and 90.5% for cyclists.

In another approach, Itzik [31] proposed a method that used deep learning to estimate
the position of a smartphone carried by a walking user. Acceleration and angular velocity
data were collected from 107 subjects who kept a smartphone in a pocket, near an ear
(while talking), at waist level (while texting), and swinging in a hand (while walking). For
training with a single user, the combined use of acceleration and angular velocity data
yielded an accuracy over 95%, while the acceleration data alone yielded an accuracy over
91%. In comparison, for learning with multiple users, the combined use of acceleration
and angular velocity data yielded an accuracy over 94.8%, and the acceleration data alone
yielded an accuracy over 91.6%.

Most conventional studies have estimated the load positions of sensors and devices
by using accelerometer and gyroscope data; accordingly, they required users to perform
specific actions so that each sensor could generate values that were unique to the various
positions. In contrast, pulse wave time differences always occur and vary with the distance
that blood flows, which is unique for different positions. To the best of our knowledge, no
study to date has used ECG and pulse wave data to estimate sensor load positions.

2.4. ECG and Pulse Wave Sensing

Many studies have used ECG and pulse wave data in various ways, including es-
timation of the peak time of an ECG and the arrival times of pulse waves. Assuming a
situation in which an electrocardiograph cannot be attached but pulse wave sensors can
be, Robert et al. [32] estimated the peak time of an ECG by calculating the time difference
between pulse wave peaks. The peak time was estimated with an average error of 14.3 ms
for standing and 9.43 ms for sitting. Rajala et al. [33] evaluated whether the time difference
between ECG peaks, referred to as the R-peaks, and pulse wave peaks could be calculated
using pulse waves measured from the wrist and fingers. Pulse wave data were measured
from 30 subjects at rest. For calculation of the pulse wave arrival time at the wrist, it was
found that using the first derivative peak method or detecting pulse wave arrival at the
foot was suitable. In addition, the shape and amplitude of pulse waves were found to be
different between the wrist and fingers.

There are also methods for estimating blood pressure values from ECG and pulse
wave data. Yoon et al. [34] tested whether blood pressure could be continuously estimated
without a cuff by using pulse wave analysis based on a multi-parameter model. The
experiment used data collected from 23 subjects. With an average regression model, the
resulting standard deviation of error was 8.7 ± 3.2 mm Hg for estimation of systolic blood
pressure and 4.4 ± 1.6 mm Hg for diastolic blood pressure. The results thus showed a
small standard deviation of error by using pulse wave analysis rather than pulse wave
arrival times.

Liu et al. [35] also proposed a cuffless method for estimating blood pressure by using
pulse wave data measured by a pressure sensor. Their method extracted 21 types of features
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and created a model by using a linear regression method. In evaluation of the model on
65 middle-aged and elderly subjects, they could reduce the error by 1.33 ± 0.37 mm Hg for
systolic blood pressure and by 1.14 ± 0.20 mm Hg for diastolic blood pressure as compared
with the conventional method. Simjanoska et al. [36] proposed a method for estimating
blood pressure values by using only ECG data. They developed a machine learning
algorithm that combined a stacking-based classification module and a regression module
into a prediction model for blood pressure values. They collected ECG data from 51 subjects
and could estimate the systolic and diastolic blood pressure with average absolute errors
of 8.64 and 18.20 mm Hg, respectively. Furthermore, calibration based on a probability
distribution reduced the respective errors to 7.72 and 9.45 mm Hg. Sun et al. [37] proposed
a method for estimating systolic blood pressure by using ECG and pulse wave data. They
collected ECG and pulse wave data from 19 subjects who exercised for 40 min, and the
standard deviation of error for the estimated blood pressure values was 13.52 mm Hg.

These studies estimated biological information, such as blood pressure, vascular
age, and ECG peaks from data obtained by sensors at known positions. To the best of
our knowledge, however, a study on estimating the load positions of devices from time
differences in pulse waves has not yet been conducted.

3. Proposed Method

This section describes the process of the proposed method.

3.1. Overview of Proposed Method

As shown in Figure 1, the proposed method comprises four processes: ECG and pulse
wave measurement, ECG and pulse wave peak detection, peak time difference calculation,
and load position estimation.

Figure 1. System flow of the proposed method.

Here, we assume that the user attaches a small electrocardiograph sensor to the chest,
which provides constant measurements. In addition, a wearable device attached to an
arbitrary body part contains a photoplethysmography (PPG) sensor and measures pulse
waves at load positions. Note that the proposed method works in real time. From the start
time to the current time, the device positions are identified from the ECG and pulse wave
data. For example, given data acquired over 10 s, all peaks (e.g., 15 peaks) in the 10 s of ECG
and pulse wave data are detected. Then, 15 time difference samples are calculated, and
the device position is identified on the basis of these 15 samples. Given data from a longer
interval, the identification accuracy should thus increase, because many time difference
samples can be used and the time differences become stable.

The following subsections explain each of the four processes in detail. For simplicity,
we assume a single wearable device; however, the positions of multiple wearable devices
can be identified by individually applying the proposed method to each device.

3.2. ECG and Pulse Wave Measurement

First, the ECG data from the chest ECG sensor and the pulse wave data from the pulse
wave sensor located at an arbitrary body part are collected. The raw sensor readings often
contain noise due to the analog–digital converter and show jagged peaks. Accordingly, we
apply a moving average filter over a 21-sample (≈26 ms) window, defined as ∑t+10

i=t−10 f [i],
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to facilitate easier peak detection. Here, f [t] denotes the raw sensor readings at index t.
After applying the moving average filter, the ECG (i.e., cardiac potential) and the pulse
wave sensor output (i.e., the pulse wave) at t are denoted as xh[t] and xp[t], respectively.

3.3. ECG and Pulse Wave Peak Detection

Next, the proposed method detects peaks in the ECG and the pulse wave, as illustrated
in Figure 2. Given an ECG signal xh[t] (t = 0, . . . , T − 1), peaks are detected as follows.

Figure 2. Example of peak detection: each • denotes a peak found during the process).

1. Find all convex parts that satisfy (xh[t + 1]− xh[t])× (xh[t]− xh[t− 1]) ≤ 0. If the
same values continue after a peak, i.e., if the top of a peak is flat, the midpoint of the
flat interval is detected as a peak;

2. Delete peaks below a threshold value defined as θh = max(xh) − α · (max(xh) −
1
T ∑T−1

t=0 xh[t]), where α is a coefficient that is empirically determined from the collected
data; here, we set it to 0.5;

3. Consolidate peaks that are close in time; this may be completed in order from the
highest peak, for example. Any other peaks in the 0.2 s periods to the left and right, are
deleted. This is completed because the peak interval even at 200 bpm (the maximum
human heart rate) is 0.3 s; therefore, two true peaks will never appear within the same
0.3 s window.

Through this process, ECG peak (i.e., R-peaks) are found, and pulse wave peaks are
detected by the same process. It is possible, however, that a pulse wave peak is not readily
detected because of the contact state between the sensor and the skin. In that case, when no
convexity is detected by the above algorithm, we define the peak as the maximum value
max(xp) of the pulse wave within the interval between the current ECG peak and next
ECG peak. To finish this process, the indices of all detected ECG and pulse wave peaks are
stored in hpeak and ppeak, respectively.

3.4. Peak Time Difference Calculation

Here, the proposed method calculates the time differences between the detected ECG
and pulse wave peaks. Blood delivered from the heart is detected as a pulse wave at each
body part with a delay of tens of milliseconds. The proposed method finds the pulse wave
peak corresponding to an ECG peak, because the ECG signal is more stable than the pulse
wave. Fake peaks occasionally appear because of the contact state of the pulse sensor and
the skin.

Beginning from index t = 0, the proposed method finds a peak and calculates the
time difference from the corresponding pulse wave peak. All time differences are ob-
tained through this process until reaching the maximum index t = T − 1. Here, we
assume that there is an n-th ECG peak at hpeak[n], and we denote the time for this peak as
tmph[n] = timestamp(hpeak[n]). We then find a pulse wave peak between tmph[n] + 0.25
[s] and tmph[n] + 0.5 [s]. The interval is set in this manner because we determined through
preliminary experiments that the difference at any part of the body ranges from 0.25 to 0.5 s.
Accordingly, by applying this interval, fake pulse wave peaks can be eliminated.
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Next, let tmpp[n] = timestamp(ppeak[n]) denote the time of the n-th pulse wave peak
found by the above procedure. The time difference d[n] is then obtained as

d[n] = tmpp[n]− tmph[n] (1)

If an interval contains multiple pulse wave peaks, the highest peak is used. If there is no
pulse wave peak, the time difference is not calculated for the ECG peak in question.

Figure 3 shows ECG and pulse wave waveforms obtained at (a) a fingertip, (b) an
upper arm, and (c) a toe. As seen in the figure, the time difference between peaks is different
for each body part. For example, the time differences at (a) the fingertip and (b) the upper
arm are 0.28 s and 0.30 s, respectively. In contrast, the time difference for (c) the toe, which
is farther from the heart, is 0.39 s and thus longer. The proposed method uses this property
to estimate the load position by obtaining, multiple time differences. For example, given
30 s of ECG and pulse wave data with an 80-bpm heart rate, there are 40 peaks in the data,
and, 40 time difference samples are ideally collected.

3.5. Load Position Estimation

Finally, to estimate the load position, the proposed method calculates the distance
between the set of time differences collected at each position in advance, which constitutes
the training data, and the set of time differences obtained at unknown positions, which are
the test data. For the distance calculation, we use the Kullback–Leibler (KL) divergence [38],
which is a measure of how a probability distribution differs from a reference distribution.
A KL divergence of 0 indicates that the two distributions are identical.

Figure 4 shows the process flow for load position estimation by using KL divergence.
Note that the calculation requires a distribution for each dataset. Here, histograms ranging
from 0.25 to 0.5 s with a bin of 0.01 s are created from each dataset at each position. The
histograms of the time differences in the training and test data are denoted as P and Q,
respectively. Then, the KL divergence between P and Q is calculated as follows:

DKL(P||Q) =
25

∑
i=1

P(i) log
P(i)
Q(i)

, (2)

where P(i) and Q(i) are the frequencies of the i-th bins of histograms P and Q, respectively.
When the frequency of a certain bin is empty, the KL divergence cannot be calculated

because P(i) or Q(i) becomes 0, which causes an undefined log 0 or divide by zero error.
To avoid this problem with a general solution, a very small value of 0.0000001 is added
to each bin. Finally, the KL divergence between the test and training datasets has been
calculated for each body part, the part with the smallest KL divergence is estimated as the
load position by the proposed method as follows, where Y denotes the set of positions with
attached wearable devices.

arg min
y∈Y

DKL(Py||Q) (3)
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Figure 3. ECG and pulse wave peaks and time differences for (a) a fingertip, (b) an upper arm, and
(c) a toe. The black line represents the ECG, and the red line represents the pulse wave. The green
and blue circles indicate the ECG and pulse wave peaks, respectively.
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Figure 4. Position estimation based on the KL divergence between the training and test data distributions.

4. Evaluation

This section describes an experiment that we conducted to evaluate the accuracy of
estimating device load positions with the proposed method.

4.1. Performance Evaluation of R-Peak Detection Algorithm
4.1.1. Experimental Environment

First, we evaluated the performance of the R-peak detection algorithm. The dataset
for the evaluation was the MIT-BIH Arrhythmia Database [39], which is available from
PhysioNet [40]. It contains 48 sets of ECG data with arrhythmias, which were collected
from 47 subjects (25 men aged 32–89 years, and 22 women aged 23–89 years). The length
of each set of data is 30 min. The data were recorded at 360 Hz. In this experiment, the
sensitivity (SEN) and the positive predictive value (PPV) were used as the evaluation
criteria; they are calculated by the following equations:

SEN =
TP

TP + FN
× 100, PPV =

TP
TP + FP

× 100, (4)

Here, TP, FN, and FP denote the number of true positives (correctly identified R-peaks), false
negatives (missing R-peaks), and false positives (wrongly identified R- peaks), respectively.

The peak position detected by our algorithm is allowed to be within 100 ms of the
peak position of the correct answer in the MIT-BIH Arrhythmia Database. We chose this
value because it was used in related studies [41,42].

4.1.2. R-Peak Detection Results

For the 48 datasets, Table 1 lists the values of TP, FP, FN, SEN, and PPV, along with
the average (AVE) difference between the peak time of the correct answer and that of the
detected peak, the standard deviation (SD) of this difference. The values of AVE and SD
were calculated from the TP samples.
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Table 1. Results of the R-peak detection algorithm on the MIT-BIH dataset.

Record ID TP FP FN SEN[%] PPV [%] AVE[ms] SD[ms]

100 2272 3 1 99.96 99.87 1.49 1.54
101 1791 69 74 96.03 96.29 −1.82 1.35
102 2084 3 103 95.29 99.86 −3.92 10.82
103 1999 0 85 95.92 100 1.91 1.29
104 1187 355 1042 53.25 77.98 −4.02 11.82
105 204 262 2368 7.93 43.78 0.23 8.37
106 1272 53 755 62.75 96.0 0.48 3.10
107 1951 150 186 91.30 92.86 −9.60 3.58
108 20 428 1743 1.13 4.46 −7.92 18.91
109 1460 40 1072 57.66 97.33 −3.03 4.54
111 66 106 2058 3.11 38.37 −2.99 5.06
112 968 108 1571 38.13 89.96 0.71 1.27
113 1795 42 0 100 97.71 1.57 1.38
114 69 228 1810 3.67 23.23 10.31 14.16
115 1939 0 14 99.28 100 3.31 1.09
116 1396 159 1016 57.88 89.77 2.33 3.33
117 564 186 971 36.74 75.2 −17.16 6.80
118 610 76 1668 26.78 88.92 3.67 4.55
119 1983 750 4 99.80 77.56 1.86 2.13
121 163 276 1700 8.75 37.13 0.82 2.09
122 2473 2 3 99.88 99.12 0.84 1.68
123 1514 0 4 99.74 100 3.16 1.03
124 1499 93 120 92.59 94.16 −1.68 2.21
200 307 93 2294 11.80 76.75 2.93 2.33
201 364 108 1599 18.54 77.12 2.92 1.11
202 950 0 1186 44.48 100 2.02 1.27
203 183 371 2797 6.14 33.03 −1.52 8.40
205 2561 18 95 96.42 99.30 1.17 2.05
207 18 319 1842 0.97 5.34 0.31 21.63
208 505 148 2450 17.09 77.34 5.66 7.86
209 2804 6 201 93.31 99.79 2.49 1.13
210 2 75 2648 0.08 2.60 5.56 2.78
212 1880 0 868 68.41 100 2.08 1.24
213 3223 97 28 99.14 97.08 0.07 6.36
214 2127 91 135 94.03 95.90 2.49 3.14
215 159 27 3204 4.73 85.48 2.18 2.58
217 341 145 1867 15.44 70.16 −4.52 12.07
219 2119 124 35 98.38 94.47 0.74 2.44
220 2048 0 0 100 100 3.41 1.40
221 2310 83 117 95.18 96.53 1.57 2.25
222 945 4 1538 38.06 99.58 0.88 1.59
223 1984 0 621 76.16 100 4.31 2.04
228 285 156 1768 13.88 64.63 0.54 2.12
230 1856 1 400 82.27 99.95 3.07 1.06
231 1565 2 6 99.62 99.87 −0.42 1.12
232 1183 4 597 66.46 99.66 3.11 1.18
233 2244 45 835 72.88 98.03 0.52 5.25
234 2347 69 406 85.25 97.14 0.70 1.21

As seen in the table, with a tolerance range of 100 ms for peak detection, some
sessions had SEN and PPV values over 90%. Accordingly, we concluded that the detection
algorithm could detect peaks correctly. However, the peaks in some sessions were not
detected correctly even within the tolerance of 100 ms. For example, in the case of record
ID 210, the maximum value for all the datum is 3.32, but the maximum value from the start
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of measurement to the 10,000th sample is 1.08. The proposed algorithm uses the maximum
and average values of the data during the measurement time to calculate the threshold
for peak detection, which is not a suitable approach for record ID 210. In other words,
if noise causes the maximum value to be significantly different, the threshold value may
not be calculated correctly. In addition, the data for record ID 114 data shows an inverted
signal, and we can see in Table 1 that the peaks were not detected correctly. Indeed, the
R-peak detection algorithm was implemented under the assumption that the signal was
not inverted. On the other hand, the error in the time of the detected peak was less than
3 ms for many sessions. Because the MIT-BIH dataset was recorded at 360 Hz, the time gap
between samples is about 2.78 ms. Thus, the detected peaks were off by at most one sample.
Therefore, when detection is possible, the R-peak detection algorithm in the proposed
method is highly accurate.

Next, Table 2 summarizes the SEN and PPV values for the proposed detection algo-
rithm and other detection algorithms. The results are compared for three records: record
ID 100, which was correctly detected; and the two problematic records mentioned above
(IDs 114 and 210), which were not correctly detected with the a tolerance of 100 ms.

Table 2. Performance comparison of R-peak detection algorithms.

Record ID Reference SEN[%] PPV [%]

100
Proposed method 99.96 99.87

Lu et al. [43] 100 99.96
Gupta et al. [44] 100 100

114
Proposed method 3.67 23.23

Lu et al. 99.79 94.08
Gupta et al. 99.95 99.95

210
Proposed method 0.08 2.60

Lu et al. 98.38 99.92
Gupta et al. 99.98 99.96

As seen in Table 2, the detection accuracy for record IDs 114 and 210, in which the
R-peaks were not detected correctly, was much lower with the proposed algorithm than
with the other algorithms. On the other hand, the results for record ID 100 were similar to
those of the other algorithms. Because the proposed method is designed for data collection
in advance, problematic data such as record IDs 114 and 210 would not be measured in
practice, and peaks would be detected with high accuracy as in record ID 100. However, to
deal with a wider range of situations, the algorithms used in previous studies should also
be adopted. Accordingly, we will consider improvement of the proposed algorithm and
adoption of algorithms from previous studies.

4.2. Data Collection

Five subjects (denoted A, B, C, D, and E; four men (A–D), and one woman (E); average
age: 23.0 years) participated in our data collection experiment. Pulse wave sensors were
attached to 12 body parts, and an ECG sensor with three electrodes was attached near the
heart. As shown by the red circles in Figure 5, the 12 target body parts were the (1) forehead,
(2) left ear, (3) right ear, (4) mouth, (5) left hand finger, (6) right finger, (7) left upper arm,
(8) right upper arm, (9) left wrist, (10) right wrist, (11) left toe, and (12) right toe.
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(1) Forehead

(4) Mouth

(3) Right ear
(2) Left ear

(8) Right upper arm

(5) Left finger

(11) Left toe

(7) Left upper arm

(6) Right finger

(10) Right wrist (9) Left wrist

(12) Right toe

Figure 5. Target body positions.

The ECG and pulse wave data were collected for 3 min at a time, which constituted a
session. We collected data for two days with a maximum of two sessions per day. Thus,
a total of 3 min × 2 sessions × 2 days × 12 parts × 5 subjects = 720 min of data were
collected. Note that the participants were permitted to determine the order in which data
were collected from each body part, so the order differed among the participants and
sessions. Because the pulse wave sensor was removed between each sessions, its position
varied slightly from session to session even on the same body part. The data were collected
while the subjects were sitting and wearing clothes.

In this experiment, the pulse was collected using a PulseSensor.com device (https:
//pulsesensor.com/ accessed on 29 January 2022). The specific pulse sensor used here was
a photoelectric pulse wave sensor (PPG sensor). The photoelectric pulse wave method
uses an LED to irradiate green light at a wavelength around 550 nm to the skin surface,
and the irradiated light reflected by body tissue is received by a photodiode on the skin
surface. The ECG was collected using a SHIELD-EKG-EMG device (https://www.olimex.
com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware accessed on
29 January 2022) manufactured by OLIMEX, which is an Arduino compatible shield. The
pulse sensor and ECG sensor were connected to an Arduino Uno Rev3, and the pulse wave
and ECG were collected using a laptop connected to the Arduino board. The sampling
rate was 695 Hz. Note that while the ECG and pulse wave sensors were manufactured by
different companies, their measurement times could be synchronized because they were
both connected to the Arduino board.

After the data collection, the peak detection, peak time difference calculation, and
position estimation were performed offline by a program implemented in Python.

For each session, peak detection was performed, and the time difference between
the ECG and pulse wave peaks (hereafter referred to as the peak time difference) was
calculated. In the rest of the paper, we refer to Session 1 as S1, Session 2 as S2, Session 3 as
S3, and Session 4 as S4. Table A1 lists the age, sex, and average heart rate (bpm) obtained at
each body part for each subject during data collection.

4.3. Preliminary Analysis of Peak Time Differences

The average and standard deviation of the peak time difference for each body part and
each session for the five subjects are shown in Figure 6. The numbers on the horizontal axis
correspond to the numbers of the body part positions shown in Figure 5. A • represents an
average time difference, with the error bars indicating the standard deviation.

https://pulsesensor.com/
https://pulsesensor.com/
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware
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Figure 6. Average and standard deviation of peak time differences.

As seen in Figure 6, the time difference for each body part depended on the distance
from the heart. For example, in the case of subject A, the peak time difference for (4) the
mouth was approximately 300 ms, whereas the differences for (11) the left toe and (12)
the right toe were approximately 380 ms. The peak time differences for the other subjects
showed the same trend. This was a natural result of the different distances between the
heart and each body part: the mouth is closer to the heart than the a toe is, and the peak
time difference of the mouth was thus smaller than that of the toe. In addition, several body
parts had similar peak time differences within the same session because their distances
from the heart were almost the same. For example, in S3 for subject A, the peak time
differences of (5) the left finger and (6) the right finger were 308 and 309 ms, respectively.
Similarly, in S2 for subject C, the peak time differences of (11) the left toe and (12) right toe
were both 380 ms.

Furthermore, the peak time difference was different in each session even for the same
subject. As seen in Figure 6, the peak time differences between S1 and S2 and between S3
and S4 collected on the same day were also different for subjects B, C, and D. For example,
for (10) the right wrist of subject D, the peak time difference of S1 was 313 ms, but that of
S2 was 405 ms. In another example, for (7) the left upper arm of subject B, the peak time
difference of S3 was 339 ms, but that of S4 was 415 ms. These results were due to the fact
that the heart rate and blood pressure change moment by moment.
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4.4. Datasets and Environment

We expected that the proposed method’s performance would be affected by the
length of the data for training and testing. To understand this effect, we investigated the
performance with the data split in the 13 different ways as illustrated in Figure 7. Here,
12 of the splits were created by splitting the 180 s of data into 5 to 60 s intervals in 5 s
increments, and the remaining data were the original 180 s data. For example, the 5 s
dataset consisted of 36 pieces of 5 s data, and the 40 s dataset consisted of four pieces of
40 s data, with the extra 20 s of data discarded. Table A2 lists the number of peak time
differences calculated for each subject, session, and body part.

5-s dataset

45-s dataset

40-s dataset

50-s dataset

35-s dataset

60-s dataset

180-s dataset

55-s dataset

30-s dataset

25-s dataset

15-s dataset

10-s dataset

Dataset name

1500 1806030 12090

1500 1806030 12090

1500 1806030 12090

1400 1806020 100

20-s dataset

0 18025 12575

1500 1806030 12090

0 18035 105

0 18040 12080

0 18045 13590

1500 18050 100

0 18055 110

0 18060 120

1500 1806030 12090

(      :Not used)

165

160

175

175

10

15

5

Data length [s]0 180

Figure 7. Split datasets used in the evaluation experiment.

Using the data consisting of four sessions each from subjects A, B, and C, we conducted
experiments in two different environments, as illustrated in Figure 8 and described below.

• User-dependent: To estimate the sensor position on the same subject but in a different
session, we defined a user-dependent environment in which the training and test data
came from different sessions for the same subject;

• User-independent: To estimate the sensor positions for different users, we defined
in a user-independent environment in which the training and test data were from
different subjects.
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Figure 8. Illustration of two experimental environments using data consisting of four sessions each
from three subjects. The circles represent the peak time differences in each session.

4.5. User-Dependent Experiment
4.5.1. Experimental Environment

The user-dependent experiment was conducted with each subject. The number of
target body parts was varied from 2 to 12, and all combinations of each body part were
tested, so that 12C2 = 66 combinations were tested for two body parts. As described
above, this experiment was user-dependent in that the training and test data were from
the same subjects. The training data were taken from three of the four 180 s sessions, and
all peak time differences in the selected sessions were obtained as the training data were
learned. The test data were taken from the fourth session and were split 13 different ways,
as described above. All possible combinations of training and test data were used.

Because the estimation results were output as many times as the number of pieces of
training data, we used the following two methods to narrow down multiple estimation
results to one result and obtain the final estimated position.

• Minimum-value method (Mini-method): The body part that showed the smallest
KL divergence value in the training data with respect to the input data session was
estimated as the load position;

• Majority-vote method (Vote-method): The load position was estimated for each piece
of training data, and the final position was estimated by a majority vote. When
multiple body parts tied for the highest number of votes, the part with the smallest
KL divergence was estimated as the load position.

Hereafter, we referred to these methods as the Mini-method and the Vote-method.
Figure 9 illustrates the process of outputting the final results for each method.
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Test data (piece of
x-second data for  
body part in Session 1)

Training data (180-s
dataset for all body 
parts in each session)

1

2

3

4

Body part: mouth, KL divergence = 0.2

Body part: mouth, KL divergence = 0.3

Body part: forehead, KL divergence = 0.1

Result of majority-vote method is mouth 
because it got 2 of 3 votes. 

Results of minimum-value method is forehead
because it got minimum value of 0.1.

Figure 9. Examples of final load position estimation by the Mini-method and Vote-method.

In this paper, the evaluation index is the F-value, which is the harmonic mean of the
precision and the recall. The closer the F-value is to 1.0, the better the system performance
is. The F-value is calculated by Equation (5):

F-value =
2× precision× recall

precision + recall
(5)

By varying the number of target body parts from 2 to 12, we investigated the change
in the F-value according to the number of parts. The average F-value was calculated for
each combination with the same number of target body parts, and the maximum among
these average F-values was used as the final result. For example, given training data from
S1 and test data from S1, we wanted to estimate the attachment positions for 12C2 = 66
combinations of two body parts. First, we calculated the average F-value for each of the
66 combinations. Then, we obtained the maximum value among the 66 calculated average
F-values as the final result.

4.5.2. Results for Position Estimation Accuracy When Varying Input Data Length

Figures 10 and 11 show the average F-value over 12 body parts for each subject and
each session when the input data length was varied, by using the Mini-method and the
Vote-method, respectively.

Figure 10. Average F-value when varying the input data length for 12 body parts by using the
Mini-method in the user-dependent environment.
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Figure 11. Average F-value when varying the input data length for 12 body parts by using the
Vote-method in the user-dependent environment.

As seen in the figures, the average F-value was low regardless of the input data length.
This was because the distribution of the peak time differences was different between the
training and test data sessions. Specifically, the peak time differences depended on factors
such as the subject’s physical condition and blood pressure. For example, for the right wrist
of subject D, the modes of the histogram of peak time differences in S1, S2, S3, and S4 were
305, 405, 325, and 355 ms, respectively. When S1, S3, and S4 for subject D were used for
training and S2 was used for testing, the distributions of the peak time differences were
very different, and the load position could not be estimated correctly. Accordingly, it is
necessary to collect data under multiple conditions, such as at rest and after exercise.

The figures also show that the best method depended on the input data length. For
example, when the input data length for subject A was 45 s, the Mini-method had a higher
F-value in all test data sessions. When the input data length for subject A was 10 s, however,
the F-value was higher with the Vote-method when the test data were from S3.

Furthermore, the best method depended on the subject. When the input data length
was 60 s, the F-value was higher for subject A with the Mini-method for all test data
sessions. In comparison, the F-value for subject D was higher with the Vote-method for
test data from S1, S2, and S3 and with the Mini-method for S4. These results indicate that
it is necessary to select the best method to obtain a high F-value. An example of how to
select the best method is to collect data from one body part before starting load position
estimation and then to use the method that can estimate the correct position of that part.

4.5.3. Results for Position Estimation Accuracy When Varying Number of Target
Body Parts

Figures 12 and 13 show the maximum of the average F-value for each body part when
the number of target body parts was varied from 2 to 12 by using the Mini-method and the
Vote-method, respectively. The input data length was 180 s for both methods.
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Figure 12. Maximum of the average F-value when varying the number of target body parts with
180 s input data by using the Mini-method in the user-dependent environment.

Figure 13. Maximum of the average F-value when varying the number of target body parts with
180 s input data by using the Vote-method in the user-dependent environment.

For test data from S2 for subject A, the maximum of the average F-value was 1.0 from
two to six body parts with the Mini-method, and 1.0 from two to five body parts with the
Vote-method. The same result can be seen for test data from S4 for subject D and test data
from S1 for subject E. A high F-value could thus be obtained by limiting the number of
target body parts. The number of target body parts was lower for the Vote-method here
because there were no suitable sessions in the training data. When there was no training
data that were suitable for the test data, the peak time difference distributions of the
collected data and the wrong target body part were similar. As a result, because of incorrect
estimation results, the wrong body part received votes. Accordingly, the Mini-method is
more suitable for use in a user-dependent environment.

4.6. User-Independent Experiment
4.6.1. Experimental Environment

The user-independent experiment was also conducted with each subject. The training
data consisted of 16,180 s sessions for the four subjects, and all peak time differences in the
selected sessions were obtained as the training data were learned. The test data were taken
from one of the four sessions that was not selected for the training data, and were split into
13 different datasets ranging in length from 5 to 180 s datasets. All possible combinations
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of training and test data were used. Because there were multiple pieces of training data,
the Mini-method and Vote-method proposed in Section 4.5 were used to obtain the final
estimated load position. In addition, the number of target body parts was varied from 2 to
12, and all combinations of each body part were tested.

4.6.2. Results for Position Estimation Accuracy When Varying Input Data Length

Figures 14 and 15 show the average F-value over 12 body parts for each subject and
each session when the input data length was varied, by using the Mini-method and the
Vote-method, respectively.

Figure 14. Average F-value when varying the input data length for 12 body parts by using the
Mini-method in the user-independent environment.

Figure 15. Average F-value when varying the input data length for 12 body parts by using the
Vote-method in the user-independent environment.

As seen in the figures, the F-value did not improve significantly even when the input
data length was increased. This was because the peak time difference for each body part
was different for each subject. For example, the average value of the peak time difference
for (12) the right toe in S1 for subject A was 385 ms. In comparison, the average values of
the peak time difference for (12) the right toe in each session for subject B were 435, 423,
413, and 432 ms. Because the peak time differences between the training and test data were
different, a low F-value was obtained. Accordingly, it is necessary to eliminate the peak
time differences between the subjects for each body part.
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4.6.3. Results for Position Estimation Accuracy When Varying Number of Target
Body Parts

Figures 16 and 17 show the maximum of the average F-value for each body part when
the number of target body parts was varied from 2 to 12, by using the Mini-method and
the Vote-method, respectively. The input data length was 180 s for both methods.

Figure 16. Maximum of the average F-value when varying the number of target body parts with
180 s input data by using the Mini-method in the user-independent environment.

Figure 17. Maximum of the average F-value when varying the number of target body parts with
180 s input data by using the Vote-method in the user-independent environment.

As seen in Figure 16, for the test data from all subjects, an F-value of 1.0 was obtained
from two to five body parts. Furthermore, when the test data were from S4 for subject D,
the F-value was 1.0 from two to six body parts. Accordingly, the proposed method can be
used even in a user-independent environment by limiting the number of target body parts
to about five.

Regarding the method used to obtain the final estimation result, Figure 16 shows
that the F-value was 1.0 from two to five body parts by using the Mini-method when the
test data were from S4 for subject A. On the other hand, as seen in Figure 17, when the
Vote-method was used with test data from S2 and for S4 for subject A, the F-value was 1.0
from two to four body parts. For Subjects B, C, and D, as well, the Mini-method had more
target body parts for which the F-value was 1.0. This was because many wrong body parts
were estimated, and the number of votes was larger than the number of correct body parts.
From the results of Section 4.3, the peak time difference for each body part was different for
each subject. For example, the difference for (11) the left toe in S3 for subject A was 366 ms;
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however, (11) the left toe in S4 for the subject B was 442 ms, and the closest difference to
366 ms was that for (5) the left finger (374 ms). For this reason, misrecognition occurred,
and votes were given to the wrong body part. Accordingly, the Mini-method is better for
use in a user-independent environment.

4.7. Summary of Evaluation

In this evaluation, the F-value was 1.0 for two to five body parts in both the user-
dependent and user-independent environments. In addition, the proposed method ob-
tained a high F-value by using the Mini-method to narrow down the number of estimation
results to one. The proposed method can thus estimate the load position with high accuracy
if the number of target body parts to be estimated is limited and the final result is output
by using the Mini-method, regardless of whether data are learned for the user in question.

Here, we compare the accuracy of our method with the accuracies of previous studies
on estimating the load positions of wearable devices. Vahdatpour et al. [24] obtained
an average accuracy of 84% for 10 positions, including the upper arm; Timo et al. [25]
obtained an average accuracy of 89% for seven positions, including the left wrist; and
Takata et al. [13] obtained an average accuracy of 90% for 10 positions, including the left
wrist. In comparison, the accuracy of the proposed method was as high as an F-value of 1.0
for five parts, which is very high. However, the number of body parts that can be estimated
with high accuracy by the proposed method is comparatively small. The great advantage
of the proposed method is that it does not require specific actions, such as walking, that the
previous studies required. Accordingly, this novel method can provide a certain level of
evaluation, but it will need to be improved to achieve a high level of accuracy for many
body parts.

5. Limitations

This section discusses the limitations of the proposed method.

5.1. Estimation of Load Positions with Similar Peak Time Differences

From the results described in Section 4, the peak time differences were similar for
body parts that were a similar distance from the heart. For example, the average values of
the peak time difference for the left and right toes were both about 400 ms, or nearly the
same value for the same body part on the left and right sides. In the evaluation experiment,
the subjects were asked to sit. Accordingly, by using a measurement posture in which the
peak time difference is different for each body part, the accuracy of the estimated load
position will be improved even if the number of target body parts is high. Examples of
such measurement postures include raising one arm, lying down, or crossing the arms.

Moreover, the body parts that are prone to be misrecognized depend on the subject.
The accuracy may thus be improved by using features other than the peak time difference.
For example, the thickness of skin varies from person to person, which causes variations
in the measured pulse wave. Therefore, taking the pulse wave amplitude and shape into
consideration may improve the accuracy.

5.2. Number of Target Body Parts for Load Position Estimation

From the results described in Section 4, the more body parts to be recognized, the
lower the accuracy that is obtained for the target body parts. The optimal number of
target body parts and the optimal combination of body parts depend on the user and the
experimental environment. To increase the number of target body parts, it will be necessary
to solve the problem of certain parts having the same peak time differences. In contrast,
to limit the number of target body parts, a method of searching for the optimal number
and combination of body parts will be needed. One approach would be to collect data
from specific body parts in advance and reduce the number of parts that have similar peak
time differences.
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5.3. Dataset Environment

All the data for the evaluation experiment were collected with the subjects sitting, and
both the training and test data were collected in the same environment. Accordingly, it
will be necessary to evaluate whether the load position can be estimated by collecting the
training data at rest and the test data in a state other than sitting. An example of such a
state would be a situation in which the heart rate increases, such as after exercise.

In addition, the experimental subjects were young people between the ages of 22 and
25; there were no older subjects. It will thus be necessary to evaluate the performance of
the proposed method with data collected from subjects of various ages.

5.4. User Dependence

From the results described in Section 4.6, when the number of target body parts was
small, a high F-value was obtained by using other subjects’ peak time difference distri-
butions. However, if no other subject is a suitable match, misrecognition may occur. In
addition, because the estimation results are output for each training data session, the
amount of calculation becomes large when there is a large amount of training data. Accord-
ingly, it will be necessary to create and use a basic common model. There is a technique
for calculating the pulse wave velocity (PWV) from the difference in pulse wave arrival
times between known body parts, and this technique can be applied to measure health
indices, such as the blood vessel age. In particular, the brachial-ankle PWV (baPWV)
is a convenient, non-invasive method for measuring pulse waves in the upper arm and
ankle [45]. By measuring the PWV between known body parts before using the proposed
method, a basic model constructed in advance can be fitted to users according to their ages.

5.5. Time Synchronization

In the evaluation experiment, the pulse and ECG sensors were analog-connected to
a single Arduino board; therefore, time synchronization was not required. In a practical
application, however, the pulse and ECG sensors would have their own processors, and they
would transmit sensor data to a computer to calculate the time differences independently
via USB or Bluetooth. In that case, the sensor devices would require synchronization. Once
synchronization is ensured, the transmission delay and data processing time do not affect
the proposed method, because the devices send sensor data with timestamps when analog
values are read. Nevertheless, accurate synchronization of multiple devices remains an
ongoing issue. In addition, an oscillator would produce a time gap due to frequency stability.
A general oscillator with a ±50 ppm frequency stability (SG-8018CB, Seiko EPSON Corp.,
https://www5.epsondevice.com/en/products/crystal_oscillator/sg8018cb.html accessed
on 29 January 2022) would generate a ±180-ms time gap per hour, which would affect
the proposed method. Analog–digital conversion also suffers from jitter, i.e., deviation
from the true periodicity of a presumably periodic signal; however, the amount of jitter
is much less than a single clock cycle and would not affect the proposed system. Further
investigations will be required to explore these issues.

6. Conclusions

In this paper, we have proposed a method for estimating the load position of a
wearable device by using the time differences between ECG and pulse wave peaks.

The proposed method estimates the load position in real time. First, it measures
the ECG and pulse wave for a certain time and detects their peaks. Then, it calculates
the time differences between those peaks and outputs a load position estimation result
by calculating the distance between the distributions of the peak time differences in the
training data and the test data.

We conducted an evaluation experiment with four male subjects and one female
subject by collecting ECG and pulse wave data at 12 body parts. Because the proposed
method outputs as many results as the number of pieces of training data, we applied two
methods to narrow down multiple estimation results to one result and obtain the final

https://www5.epsondevice.com/en/products/crystal_oscillator/sg8018cb.html
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estimated position. By limiting the number of estimated body parts to about five in both
user-dependent and user-independent environments, the proposed method could achieve
a high F-value.

In the future, we will define postures that can generate differences in the peak time
difference for each body part, and we will verify whether the accuracy of load position
estimation is improved by using these postures. We will also examine differences in the age
and condition of each user, as well as differences in the user’s situation like after exercise
when the heart rate increases. In addition, we will investigate the optimal combination of
body parts and develop a method for determining that combination. Finally, we plan to
examine how to select another user with suitable training data when there are no data for
the user in question, and how to estimate the load position without creating a distribution
of peak time differences when there are no suitable training data.
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Appendix A. Heart Rates for Each Subject

Table A1. Age, sex, and average heart rate (bpm) for each subject during data collection.

Body
Part

Subject A Subject B Subject C Subject D Subject E
Age 24, M Age 24, M Age 22, M Age 25, M Age 22, F

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

(1) 71 72 86 78 75 61 69 67 78 60 75 66 77 67 87 77 64 76 68 65
(2) 76 72 79 73 72 66 74 69 70 60 73 65 78 67 85 74 66 73 66 66
(3) 71 73 82 76 74 69 74 63 71 65 70 63 80 63 82 78 62 65 68 65
(4) 72 69 78 81 69 66 71 69 66 62 73 64 79 64 85 73 64 75 67 66
(5) 74 79 72 79 74 69 95 74 69 62 84 66 83 76 95 77 73 83 73 69
(6) 75 80 72 79 72 67 94 69 71 70 73 65 77 77 94 81 74 75 71 64
(7) 74 68 79 72 70 71 99 76 65 69 79 64 83 73 93 77 73 78 68 66
(8) 74 74 76 82 69 70 93 75 70 68 80 63 83 73 92 81 71 74 87 84
(9) 74 66 69 74 61 69 95 72 66 61 77 68 79 74 87 84 70 79 70 70

(10) 75 72 76 77 66 68 93 70 65 62 79 65 83 73 90 78 75 76 71 67
(11) 71 68 80 84 74 77 98 75 65 67 73 65 82 79 83 80 83 79 71 67
(12) 76 71 87 71 70 78 80 69 58 63 74 67 78 79 83 80 81 87 74 67
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Appendix B. Peak Time Differences for Each Subject

Table A2. Number of peak time differences obtained for 180 s data.

Body
Part

Subject A Subject B Subject C Subject D Subject E
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

(1) 214 216 260 236 226 185 208 203 236 183 228 200 232 201 262 231 194 229 204 196
(2) 228 218 239 219 217 201 223 209 211 181 220 197 236 201 256 224 201 221 201 200
(3) 213 220 247 230 223 209 223 189 213 195 211 189 240 190 247 236 186 196 204 197
(4) 217 209 234 243 208 199 215 208 200 188 219 194 238 192 255 221 193 227 202 198
(5) 224 237 218 238 224 207 287 223 209 188 254 199 250 228 285 232 221 249 221 207
(6) 226 242 216 239 216 203 282 210 216 211 220 195 233 232 284 243 225 225 213 192
(7) 222 204 237 218 211 215 297 230 197 208 239 192 251 221 281 233 219 234 206 198
(8) 222 222 230 246 209 211 280 224 212 205 241 191 249 219 277 243 215 232 209 203
(9) 223 198 208 224 185 207 285 218 198 185 232 203 237 223 263 252 211 237 212 210

(10) 227 216 228 233 199 205 281 210 194 188 238 196 249 220 271 236 227 230 215 202
(11) 213 205 241 253 224 233 295 224 196 202 221 195 247 237 251 242 248 237 215 201
(12) 228 214 263 215 213 235 241 210 175 189 222 203 235 237 250 240 245 264 222 203
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