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Diarrhea Morbidities in Small Areas: 
Accounting for Non-Stationarity 
in Sociodemographic Impacts 
using Bayesian Spatially Varying 
Coefficient Modelling
F. B. Osei1,2 & A. Stein2

Model-based estimation of diarrhea risk and understanding the dependency on sociodemographic 
factors is important for prioritizing interventions. It is unsuitable to calibrate regression model with a 
single set of coefficients, especially for large spatial domains. For this purpose, we developed a Bayesian 
hierarchical varying coefficient model to account for non-stationarity in the covariates. We used the 
integrated nested Laplace approximation for parameter estimation. Diarrhea morbidities in Ghana 
motivated our empirical study. Results indicated improvement regarding model fit and epidemiological 
benefits. The findings highlighted substantial spatial, temporal, and spatio-temporal heterogeneities 
in both diarrhea risk and the coefficients of the sociodemographic factors. Diarrhea risk in peri-
urban and urban districts were 13.2% and 10.8% higher than rural districts, respectively. The varying 
coefficient model indicated further details, as the coefficients varied across districts. A unit increase in 
the proportion of inhabitants with unsafe liquid waste disposal was found to increase diarrhea risk by 
11.5%, with higher percentages within the south-central parts through to the south-western parts. 
Districts with safe and unsafe drinking water sources unexpectedly had a similar risk, as were districts 
with safe and unsafe toilets. The findings show that site-specific interventions need to consider the 
varying effects of sociodemographic factors.

Disease indices, such as the relative risk, of common morbidities are important criteria for comparison of neigh-
borhood health status, neighborhood health planning, and health budgetary allocations. With the changing 
population redistribution and deformation of sociodemographic characteristics, up to date statistic is required 
for planning. For diarrhea, reducing morbidity levels is closely linked to the attainment of the Millennium 
Development Goal 4 of reducing child mortality by two-thirds of the 1990 estimates. Globally, over 1.7 billion 
episodes are recorded every year with the majority of these occurring in low and middle-income countries1–5. 
Five important pathogens, rotavirus, enteropathogenic E. coli, enterotoxigenic E. coli, calicivirus, and shigella6, 7 
cause the majority of diarrhea cases. The pathogens can spread from feces through multiple exposure pathways 
(water, food, flies, soil, fingers, fomites) which have a complex web of interactions8. The past years have seen much 
developmental efforts on therapeutic treatments such as oral rehydration therapy, zinc, and nutrient supplemen-
tation, leading to dramatic reductions in mortalities9, 10. Morbidities, however, have declined only moderately4. 
Reduction of poverty and malnutrition, improving access to safe water and living conditions, provision of ade-
quate sanitation and health care remain the formidable approach to reducing diarrhea in low and middle-income 
countries8, 11. The inadequacy of resources demands prioritization of relatively high risks areas during interven-
tions. The often available national and regional level estimates result in a major setback to prioritization. Local 
estimates are therefore necessary. These should be unbiased and reliable to inform good practices. Controlling for 
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sociodemographic effects could lead to precise risk estimates. Also, understanding diarrhea risk relationship with 
sociodemographic characteristics opens up the pathway for developing effective strategies to combat this menace.

Mapping diarrhea risk can provide a better understanding of the geographical variation of neighborhood 
health status. Ecological regression models have commonly been used to account for relevant confounding socio-
demographic covariates to provide (1) reliable estimates of risk, and (2) estimates of the association between 
risk and covariates. When geographic information on neighborhoods is available, the inclusion of independent 
Gaussian and conditional autoregressive (CAR) processes as spatially varying intercepts could be adequate to 
account for residual spatial effects. These inclusions have the advantage to account for variance instabilities due 
to heterogeneous populations, unobserved influential factors, spatial interactions induced by similar sociodemo-
graphic conditions, and improve prediction accuracy. Wakefield12 provides discussions on disease mapping using 
ecological regression models. These, however, are fixed effect models and estimate a single coefficient for each 
covariate based on the implicit assumption of stationarity in the effect parameters. For most diseases, given the 
complexity of the relationship with sociodemographic factors, non-stationarity in the impacts of neighborhood 
sociodemographic factors is plausible13. For diarrhea, the assumption of stationarity in neighborhood sociode-
mographic effects is difficult to meet because of differences in neighborhood specific characteristic and unob-
served factors that can locally influence disease outcomes. A mix of attributable socioeconomic inequalities such 
as low-income level, illiteracy, inadequate water and sanitation, urbanization14–18 are expected to exhibit spatially 
varied impacts. For instance, the effect of urbanization on diarrhea has two opposing facets; on the one hand, 
urbanization fueled by economic growth along with improvements in amenities such as availability safe water 
sources and good sanitation practices will reduce diarrhea morbidities. On the other hand, unplanned rapid 
urbanization fueled by rural-urban migration can enhance substantial increases in diarrhea morbidities due to 
stress on existing amenities which do not meet the demands of the rising population. If the neighborhood socio-
demographic effects are allowed to vary by location, then we can remedy the preceding concerns.

The methodology in this paper is an alternative to the common ecological regression approach for disease 
mapping where covariates effects are assumed to be homogenous across neighborhoods. Non-stationarity 
impacts of the covariates may be accommodated by geographically weighted regression (GWR)13, or spatially var-
ying coefficient (SVC) models19. GWR focuses on metric outcomes. Those, however, are less frequently encoun-
tered in disease mapping. The exception, however, is directly observed outcomes like incidence or prevalence 
rates. The robustness of the GWR relies on the selection of appropriate bandwidth for the kernel function which 
is dependent on the geographic locations of point reference data20. In this study, our interest lies in modeling 
the relative risk as an unobserved latent random variable. SVC models can easily be extended to latent random 
variable model and formulated within a hierarchical Bayesian framework. Gelfand et al.19 provide extensive the-
oretical discussions on SVC models using Gaussian random fields on point referenced data, and extensions to 
the spatio-temporal domain. There are still specification and implementation concerns for discrete disease data. 
Hence its application is rarely found in disease mapping literature. Morbidity data often consist of aggregates for 
administrative areas. For these reasons, we focus on modeling the spatially varying coefficients as realizations of 
Conditional Autoregressive Processes (CAR). Our empirical application is motivated by diarrhea epidemiology 
which remains as one of the top 5 out-patient morbidities in Ghana. The manuscript intends to demonstrate the 
methodological significance and the substantive epidemiological implications.

We adopt a hierarchical Bayesian modeling framework and consider a variety of hierarchical models that 
account for spatial random effects, temporal random effects, and spatio-temporal interaction effects. Markov 
Chain Monte Carlo (MCMC) simulations of numerically evaluating complex integrals can be time consuming 
and discouraging. We used Integrated Nested Laplace Approximation (INLA) for approximate Bayesian infer-
ence21, 22. The study has twofold objectives; (1) map area specific relative risk estimates, and (2) estimate the spa-
tially varying association between relative risk and potential risk factors. In what follows, we present the model 
specifications and estimation methods, the data description and empirical applications. We finally end with the 
results and some discussions.

Methods
We consider the double y n{ , }it it  representing the spatio-temporal outcomes of diarrhea and population data dis-
aggregated by districts = ...i m1,  and temporal periods t T1, ,= ... . Such sampling models are typically realiza-
tions from the Poisson process ςY EP( )it it it~  with likelihood
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where ςit is the relative risk and Eit is the expected number of cases. Of particular interest to policy makers and 
health strategists are inequalities in the relative risk itς . The conventional estimate of area specific relative risk is 
the ratio of observed cases to population, ς = y E/it it it, where the expected number of cases =E r nit t it is defined, in 
the absence of covariates, as the number of cases defined in an epidemiologic “null model” of incidence. The risk 
variable rt  is the individual level constant baseline risk estimated from the aggregated population via 
r̂ y n/t i

m
it i

m
it1 1= ∑ ∑= = . Population heterogeneity would influence variation in the relative risk estimates, and conse-

quently, any estimated fixed effect parameter for areas of relatively small populations will show the highest varia-
bility23. Imposing independent normal prior distribution on the log-relative risk, ~ Nlog ( , )it v

2ς α σ , results to a 
log-linear regression with exchangeable random intercepts that corrects for population heterogeneity amongst 
areas. Thus ς α= + vlog it i, implying ς α= + vexp( )it i , where v N(0, )i v

2~ σ  and p v v( ) exp{ 0 5 }v
n

v
2 2σ σ∝ − . Σ− − . 

Here, α denotes the overall level of the relative risk on a log scale and vi denotes the exchangeable random inter-
cepts across districts. It is conceivable that the relative risks over a set of contiguous areas are likely to demonstrate 
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spatial correlation. Unmeasured confounders are potentially continuous in space and can exhibit spatial correla-
tion. Such confounders are often accommodated by introducing a spatially correlated random effect term ui 
which specifies the distribution of ui conditional on the set u u u u u u{ , , , , , }i j i i i n1 1 1= = ... ...− ≠ − + . A widely 
used scheme of representation under irregularly shaped areas is the intrinsic conditional autoregressive (ICAR) 
prior24 where the conditional distribution of ui is given by
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= ∑ +u w u w/i j ij j i  and = ∑+ − =w wi i j ij. In practice, wij is an n × n weight matrix which captures the spatial 
proximity structure such that =w 1ij  if i and j are neighbors i j~ (share a common boundary), and 0 otherwise. 
Setting =w 0ii  ensures that a location will not be used to predict itself. The above specification leads to the prior 
joint distribution

{ }p u w u u( ) exp 0 5 ( ) (3)i u u
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This prior is not proper as it is based on paired differences. Imposing a sum to zero constraint ∑ =u 0i  ensures 
identifiability. The mean of the joint prior distribution σp u( )i u

2  is therefore set to zero, where it’s precision matrix 
uΣ  has diagonal elements wi j ij u

2σ∑− =
−  and off-diagonal elements wij u

2σ− . For brevity, we write ~u ICAR w( , )i u
2σ . 

To overcome the difficulty of choosing between the spatially structured and unstructured effects, one can sum up 
the two priors, resulting in the so-called convolution priors of the two independent components. Thus

ς α= + +v ulog (4)it i i

The term ui iυ +  can be interpreted as a random spatial adjustment to the overall intercept, and ui iα υ+ +  
as varying intercepts across areas. To account for time and varying space-time effects, further parameterization of 
the model results in

v ulog (5)it i i t itς α ρ ϕ= + + + +

where ρ accounts of the temporal processes and ϕ ϕ ϕ= ...{ , , }it nT11  are space-time random interactions. 
Considering the years = ...t T1, ,  as Gaussian vectors, one can specify either first or second-order random walk 
processes for ρt . First and second-order random walk processes are specified as t t 1ρ ρ ρ= + ∆−  and 

2t t t1 2ρ ρ ρ ρ= − + ∆− − , receptively, where ~ρ σ∆ ρ( )N 0, 2 . The first-order random walk penalizes abrupt jumps, 
while a second-order random walk penalizes deviations from the linear trend ρ ρ−− −2 t t1 2. The space-time inter-
action effects ϕit may be specified either of the four ways: unstructured temporal and unstructured spatial effects, 
structured temporal and unstructured spatial effects, unstructured temporal and structured spatial effects, or 
structured temporal and structured spatial effects. Details of theses specifications can be found in Knorr-Held25.

The model can further be adjusted to accommodate the joint effects of area-level continuous covariates 
xip, = ...p P1, , , and categorical covariates zik k K1, ,= ...

v u t x zlog (6)it i i it p ip k ikς α ρ ϕ β γ= + + + + + Σ + Σ

where xip is the pth continuous regressor at location i with coefficients βp, and zik is the is the kth categorical 
regressor at location i with coefficients γk.

The model can be reparameterized to accommodate spatial variability of the covariates effects by varying the 
coefficients across areas. A spatially varying coefficient version is

ς α ρ ϕ β δ γ δ= + + + + + Σ + + Σ +v u t x zlog ( ) ( ) (7)it i i it p ip ip k ik ik

where ipδ  and ikδ  are differential spatially varying effects which account for varying effects of the covariates. Thus, 
ip p ipβ β δ= +  and γ γ δ= +ik k ik can be viewed as random slope processes. The common specifications for 

{ },i ip ikδ δ δ=  are either ICAR processes ~ ICAR w( , )i
2δ σδ  or exchangeable Gaussian processes N(0, )i

2~δ σδ .

Bayesian Inference.  Let ψ = ς α β γ δ ρ ϕ, , , v, u, ,{ , , }1  be the full Gaussian latent (unobservable) field 
and { }, , , ,v u2

2 2 2 2 2σ σ σ σ σψ = δ ρ ϕ  be a vector of hyper-parameters. The components of ψ1 are conditionally inde-
pendent with the sparse precision matrix 0ijΩ =  for ≠i j. Hence we assume a multivariate normal prior 

MVN(0, )1
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The conditional density is a Gaussian random field of which the sparsity of Ω gives rise to computational 
benefits. Consequently, we adopted a Bayesian hierarchical specification through the INLA to estimate the model 
parameters. INLA provides accurate estimates of the integrals through Laplace approximation, a deterministic 
algorithm proposed by Rue and Martino21. By the Bayesian paradigm, we require calculating the posterior dis-
tribution of the unknown parameters given the data. Hence, the model parameters are assumed random with 
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prior distributions assigned at each stage of the hierarchy. The modeling can be summarized under a three stage 
hierarchical framework; the data model, process model and parameter model. Thus:

Stage 1: ψ ψ ψ ψpy , y ,( )1 2 1 2~
Stage 2: ψ ψ ψ ψp( )1 2 1 2~
Stage 3: ~ψ ψp( )2 2
The joint posterior distribution of ψ1 and 2ψ  given the data likelihood is

∫ ∫
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The joint posterior is written in shorthand as ψ ψ ψ ψ ψ ψ ψ∝ × ×p p p py y( , ) ( , ) ( , ) ( )1 2 1 2 1 2 2  since the 
denominator is integrated over the latent field parameters and the hyper-parameters. Using INLA, the integrals 
are numerically evaluated through nested Laplace approximations. The implementation of INLA can be summa-
rized as follows:

Computation of the joint posterior of the hyper-parameters through nested approximations
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Next, a simplified Laplace approximation approach based on Taylor’s series expansion is used to approximate 
the posterior marginal ψp y( )1 . Thus
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where  ψ ψ ψ−p , , y( )i i 21 1  is the Laplace-Gaussian approximation to p , , y( )i i 21 1ψ ψ ψ−  and ⁎ ,( )i i 21 1ψ ψ ψ−  is its 
mode. Lastly, the marginal posteriors are computed as   p p py , y y d( ) ( ) ( )i i 2 2 21 1∫ψ ψ ψ ψ ψ≈ .

Application
Study area and data.  Ghana is centrally located on the west coast of Africa. It has a total land area of 
238,589 km2 and bordered by Cote d’Ivoire to the west, Togo to the east, Burkina Faso to the north, and the 
Atlantic Ocean to the south. The country consists of ten administrative regions which are subdivided into 216 
districts. Population projection by the Ghana Statistical Service (GSS) at the end of 2014 puts Ghana’s population 
at 27,043,093. The disease data used for this study consist of yearly diarrhea morbidity records of outpatient 
departments (OPD) from 2010 to 2014. We obtained the data from the Centre for Health Information and 
Management (CHIM) of the Ghana Health Services (GHS). These data exist in aggregated format per administra-
tive districts. The geographical scale of analysis was restricted to the 170 administrative districts of which data had 
been recorded. We obtained population and sociodemographic data from the Ghana Statistical Service (GSS). We 
constructed four sociodemographic indicators as risk factors of diarrhea. These included unsafe drinking water 
(uw), unsafe toilet (ut), and unsafe liquid waste disposal (ud), and urbanization (ur). We estimated uw as the per-
centage of the district’s population who do not have access to pipe-borne water (either in dwellings, outside 
dwellings, or public standpipes). We estimated ut as the percentage of the district’s population who do not have 
access to flush toilet, and ud as the percentage of the district’s population who dispose liquid waste either on the 
streets or the compound. The variable ur indicates the percentage of the district’s population who live in urban 
communities. We classified ur as rural (less than 30% urban population), peri-urban (30–70% of urban popula-
tion) and urban (greater than 70% urban population).

Model implementation.  The case study for model specification involved diarrhea outcomes disaggregated 
by i 1, , 170= ...  districts over = ...t 1, , 5 years. We fitted three separate models. We specified v N(0, )i v

2~ σ  for 
the unstructured spatial effects, σu ICAR w( , )i u

2~  for the structured spatial effects. For the temporal effects, we 
specified first-order random walk prior ρ ρ ∆ρ= +−t t 1 , ~ N(0, )2∆ρ σρ  because of the short temporal span of the 
data. Since ui and ρt capture the spatially and temporally structured variabilities, we specified ϕ σϕN(0, )it

2~ .
Model 1: Spatio-temporal fixed effect regression model.

v u
uw ut ud ur
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(12)
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β β β γ

= + + + + +
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Model 2: This is a spatially varying coefficients model where {δuw,i, δut,i, δud,I, δur,i} σδ~N(0, )2 . The premise of this 
model derives from the assumption that the varying coefficients are Gaussian random processes.
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Model 3: The premise of Model 3 derives from evidence of spatial autocorrelation of the sociodemographic 
risk factors uw, ut, ud, ur. This will suggest ICAR process δ σδ~ ICAR w( , )i

2  for the covariates with significant 
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spatial autocorrelation. We tested the risk factors for evidence of spatial autocorrelation using the Moran’s index. 
We then fitted Model 3 as:

ς α ρ ϕ β δ

β δ β δ
γ δ

= + + + + + +

+ + + +
+ +

v u wat
toi ud
ur

log ( )
( ) ( )
( ) (14)
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ur ur i

,

, ,

,

where

ICAR w if Moran s index is significant
N Otherwise
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2
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For the prior parameters, we assigned non-informative Gaussian prior distribution with zero mean and preci-
sion 10−5 for the fixed effects ~ N{ , , , } (0, 10 )uw ut ud ur

5β β β γ , and independent diffuse prior for the intercept 
p const( )α ∝ . For the precision parameters,τ σ= 1/l l

2, l u v, , , ,δ ρ ϕ=  which are at the lowest level of the hier-
archy, the Gamma family are often chosen as conjugate priors. We assigned Gamma distribution of the form 

~ Gammalog log (1, 0 0005)lτ . .
We compared the predictive performances of the models using the deviance information criterion (DIC) and 

the mean square error (MSE). We estimated MSE y y0 5 ( )it it
2⁎= . Σ − , where ⁎yit  are the predicted counts of diar-

rhea. The DIC D pD= +  is the sum of the model fit and model complexity26. Negative twice the log-likelihood of 
the deviance pD y ,( ) 2 log ( )1 2 1 2ψ ψ ψ ψ= −  informs the model fit, while the effective number of parameter 
informs the model complexity. The effective number of parameters, ψ ψ − ψ ψ=p D , D ,()( ) ( )D 1 2 1 2 , is measured 
through the difference between the posterior mean deviance D E D ,( ) [ ( )]1 2 1 2ψ ψ = ψ ψ  and the deviance of the 
posterior mean ψ ψ = ψ ψD D E ,( ) ( [( )])1 2 1 2 . Like the MSE, the smaller the DIC value, the better the predictive 
performance of the model. We fitted all models using the R-INLA package27 together with the R software28 (R 
Development Core Team 2016).

Figure 1.  Mapped cases of diarrhea, 2010 to 2014. These maps were created using R software (R Development 
Core Team 2016)28.
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Results and Analysis
Distribution of covariates.  Mapped distribution of diarrhea counts from 2010 to 2014 are shown in Fig. 1. 
Cases ranged from 390 to 3140 in 2010, 590 to 45580 in 2011, 1345 to 54840 in 2012, 357 to 44670 in 2013, and 
1069 to 45430 in 2014. Mapped estimates of the covariates are also shown in Fig. 2. The proportion of the pop-
ulation without safe toilets ranged from ≈19% to ≈98%; the proportion without safe drinking sources ranged 
from ≈8% to ≈98%; the proportion without access to safe liquid waste disposal ranged from ≈42% to ≈99%. Per 
our classification, 76 out of the 170 districts were dominated by rural dwellers, 67 out of the 170 districts were 
peri-urban, and urban dwellers dominated 27 out of 170 districts.

Model selection.  We fitted multiple models and systematically increased the complexity from Model 1 to 
Model 3. Model 1 is a spatio-temporal regression model with fixed effects. Model 2 and Model 3 rather highlight 
the spatially varying effects of the sociodemographic factors, an indication of epidemiological benefits. Model 2 
is also a spatio-temporal regression model that includes spatially unstructured varying coefficients of the covari-
ates. Moving from Model 1 to Model 2 saw a change in fit as the DIC and the MSE values were reduced from 
10601.95 to 10580.32 and from 209.55 to 201.42, respectively (See Table 1). Table 2 shows the results of the test of 
spatial autocorrelation on the sociodemographic risk factors. We found significant spatial autocorrelation for all 
the sociodemographic factors except for ut. Subsequently, we fitted Model 3 by specifying spatially structured 
varying coefficients ICAR w( , )i

2~δ σδ  for uw, ud, ur, and spatially unstructured varying coefficients δ σδN(0, )i
2~  

Figure 2.  Mapped estimates of the covariates. These maps were created using R software (R Development Core 
Team 2016)28.
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for ut. With the increased complexity, Model 3 adds some improvement regarding fit to Model 2 as the DIC and 
MSE values were slightly reduced. Both models 2 and 3 highlight a fundamental gain regarding the epidemiolog-
ical implications on understanding the varying impacts of the covariates. Since the present analysis is concerned 
with the epidemiological implications of the varying regression coefficients, we focus our further analyses and 
discussions on Model 3, though the epidemiological implications of Models 2 and 3 will not be different. The 
relatively lower residual Gaussian random effects of Models 2 and 3 compared with Model 1 (Fig. 3) provide 
additional support for choosing the varying coefficients models over the fixed effect model.

Distribution of posterior estimates of diarrhea risk.  All parameters have been transformed on the 
natural scale to facilitate easy interpretation of their impacts. In this respect, an additive change in the covariates 
has a multiplicative effect on the risk. Figure 4 shows the spatio-temporal distribution of the posterior estimates 
of the relative risks itς  from 2010 to 2014 after accounting for spatially random and structured effects, space-time 
interactions, temporal effects, and varying coefficient effects. We interpret these as model-based relative risks. The 
relative risks considerably contrast across space and appear consistent and notable over time with indistinguish-
able temporal trends. Areas with 1itς >  have higher than expected risk, while those with 1itς <  have lower than 
expected risk. We observed few isolated instances of exceptionally high risk and low risk which appear to emerge 
and disappear over time. The corresponding exceedance probabilities, ς >p( 1)it  and p( 1 25)itς > . , are shown in 
Figs 5 and 6, respectively. The darker colors show areas of high probabilities, while the white colors show areas of 
low probabilities. Supported by the exceedance probability maps, patterns of districts with relative risk 1itς >  or 
ς > .1 25it  seem spatially continuous. Increasing the exceedance from 1 to 1.25 still showed a majority of the dis-
tricts with 25% higher than expected risks, except for 2011 and 2012 which had fewer districts. This is in coher-
ence with the temporal patterns which showed a sharp decline in the risk from 2010 to 2012 and increased again 
from 2012 to 2014 (Fig. 7).

Structured, unstructured, and temporal effects.  The proportion of variance explained by ui out of the 
total spatial random effects is ≈1%, suggesting that unstructured heterogeneity vi dominates the spatial variability. 
Additionally, maps of the residual spatial effects indicate unstructured heterogeneity outweighed the structured 
spatial effects (Fig. 3). The plots of the space-time interaction terms are shown in Fig. 8. These are viewed as resid-
ual effects after the spatially structured and unstructured, temporal, and covariates effects have been accounted 
for in the model. We observed notable spatial patterns as areas of similar values cluster. The temporal patterns 
appear random, which is in agreement with the modeling assumption. Districts with elevated estimates indicate 

Variables Model 1 Model 2 Model 3

αe
1.283 1.648 1.648

(0.249–3.980) (0.140–7.051) (0.140–7.051)

Continuous

e uwβ
0.996 0.996 0.996

(0.991–1.001) (0.994–1.001) (0.991–1.001)

e utβ
0.998 0.998 0.998

(0.994–1.002) (0.991–1.001) (0.993–1.002)

βe ud
1.117 1.095 1.115

(0.998–1.257) (0.961–1.240) (0.961–1.240)

Categorical
γe ur(Rural) (Reference) 1.00 1.00 1.00

γe ur(Peri-Urban)
1.129 1.146 1.132

(0.936–1.347) (0.953–1.362) (0.985–1.254)

e urγ (Urban)
1.114 1.104 1.108

(0.773–1.550) (0.760–1.545) (0.759–1.547)

DIC 10601.95 10580.32 10567.47

MSE 209.55 201.42 198.53

Table 1.  Results of the various models fitted.

Variable Moran’s I p-value

uw 0.364 <0.0001

ut −0.092 0.0964

ud 0.388 <0.0001

ur 0.238 <0.0001

Table 2.  Results of the Moran’s Index of spatial autocorrelation for the varying coefficients in Model 2.
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sporadic or short-term increases in the risk. This appears common amongst many districts in the study area, 
indicating signs of unstable or unusual temporal trend.

Spatially varying effects of sociodemographic factors.  We observed that a unit increase in the pro-
portion of people with unsafe liquid waste disposal increases diarrhea risk by 11.5%. This predisposes that diar-
rhea risk for inhabitants with unsafe liquid waste disposal is 11.5% higher than those with safe liquid waste 
disposal. The risk of diarrhea on average is 10.8% higher in urban ( 1 108urγ = . ) and 13.2% higher in peri-urban 

Figure 3.  Structured and unstructured spatial effects for Models 1, 2, and 3. These maps were created using R 
software (R Development Core Team 2016)28.
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(γ = .1 132ur ) districts than rural areas districts. The coefficients, however, varied marginally amongst districts 
(Fig. 9). For peri-urban districts, relatively higher coefficients occurred within northern and south-western parts, 
while low and no coefficients occurred within the south-eastern parts. The risk in urban districts relative to rural 
districts ranged varied geographically. We observed lower effects dominating within the southern parts and 
higher effects within the western parts (Fig. 9).

The multiplicative effect of dis was observed to be = .βe 1 115dis , suggesting that diarrhea risk for inhabitants 
with unsafe liquid waste disposal is 11.5% higher than those with safe liquid waste disposal. The spatially varying 
coefficient model rather highlighted variation in these effects (Fig. 9). Higher effects were observed within the 
south-central parts through to the south-western parts. We observed no multiplicative effect for uw, e 1uw ≈β  and 
that of ut, ≈βe 1ut . This suggests that differences in sources of drinking water and types of toilets could not 
account for variation in diarrhea risk. The varying coefficients e 1uw i, ≈β  and e 1ut i, ≈β  similarly showed no multi-
plicative effects across districts.

Discussion
This study presented and illustrated the application of a Bayesian hierarchical varying coefficient model to study 
the sociodemographic effects on diarrhea morbidities, and developed model-based maps of the relative risks. We 
accounted for local variations in neighborhood covariates effects through spatially varying coefficients. The over-
riding consequence of our findings is that sociodemographic factors are spatially continuous, hence fixed effects 
models are inadequate to quantify covariate impacts. Neighborhood morbidities are often aggregated over dis-
crete administrative units such as regions, districts, or census tracts and do not reasonably match the distribution 
processes of the disease. Disease outcomes misreported across neighborhood boundaries can consequently lead 
to spatial spillovers. Population heterogeneities also cause variance instability in risk estimates. Adopting spatially 
structured and unstructured hierarchical random effects model which pools strength over neighborhoods using 
ICAR and exchangeable intercepts account for the mentioned confounders. An intuitively convenient alternative 
is a hierarchical Poisson-Gamma model where hyper-priors are assigned to the gamma parameters through the 
hierarchy a b G a b, ( , )it ~ς , with ~a h ( )aω ω , ω ω~b h ( )b , where h ( )a ⋅  and ⋅h ( )b  are the hyper-priors distribu-

Figure 4.  Spatio-temporal distribution of the posterior estimates from 2010 to 2014. These maps were created 
using R software (R Development Core Team 2016)28.
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tions for a and b, respectively. The major disadvantage of the Poisson-Gamma model lies in its inability to be 
easily generalized to cope with spatial correlation and covariate adjustment29.

Literature on models which seek to account for varying covariate effects on dependence variables remains 
scarce, especially in epidemiological applications where non-Gaussian outcomes are common. A pioneering 
methodology is Fotheringham et al.’s13 GWR which estimates varying coefficients by fitting n repeated regres-
sion models for separate likelihoods. The departure of our study is that we considered the relative risk as a latent 
random variable within a single likelihood, and adopted a random effects approach to accommodate all possible 
confounders. This approach is easily extendable to jointly accommodate independent Gaussian and Gaussian 
Markov random processes, temporal, and spatio-temporal processes.

Our empirical study indicates evidence of modeling benefit of the spatially varying coefficient models over the 
fixed effect model regarding fit and epidemiological significance. The relatively large number of districts in our 
study, n = 170, adds to the advantage of adding varying coefficients. The results suggest spatially varying effects 
of sociodemographic factors on diarrhea risk. There was minimal contrast in the varying coefficients, especially 
for the continuous covariates, probably because the sociodemographic data were based on population samples. 
Even though the improvement in fit and variations in the effects seem marginal, the epidemiological advantage of 
fitting a varying coefficient model cannot be overlooked. Thus, the varying coefficient models can provide added 
advantage in terms of understanding the substantive epidemiological implications of the varying effects of the 
sociodemographic factors. We argue that estimates of the varying effects could have revolutionary implications 
for guiding and prioritizing interventions.

The area specific relative risk maps can be interpreted as model-based relative risks (Fig. 4). These maps sug-
gest considerable contrast across space and appear consistent and notable over time with indistinguishable tem-
poral trends. This may be explained by the varying effects of sociodemographic factors. Site-specific interventions 
need to consider the relative importance of targeted multiple transmission routes8. The model-based risk maps 
suggest the importance of specific sociodemographic factors at specific locations necessary for reducing morbidi-
ties. We observed spatially varying associations between diarrhea risk and sociodemographic factors. Specifically, 
we found evidence of peri-urban and urban disadvantage as the risk in peri-urban and urban districts were 
higher than the risk in rural districts. Peri-urban areas are mostly transitional zones often neglected by urban 
planners. Constant pressure by increasing populations from rural population influx coupled with the high cost of 

Figure 5.  The exceedance probabilities of ς >p( 1)it , 2010 to 2014. These maps were created using R software 
(R Development Core Team 2016)28.
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housing in urban districts heightens the potential for creating slums and informal settlements in both urban and 
peri-urban areas. Such settlements are often plagued with poor water and sanitation which are the well-known 
driving forces of diarrhea30, 31. This aspect of rural-urban differences in diarrhea risk has also been indicated 
by Kumi-Kyereme and Amo-Adjei32 for childhood diarrhea in Ghana using Multiple Indicator Cluster Survey 
(MICS) data.

Figure 6.  The exceedance probabilities of ς > .p( 1 25)it , 2010 to 2014. These maps were created using R 
software (R Development Core Team 2016)28.

Figure 7.  Temporal patterns of diarrhea risk from 2010 to 2014.
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A percentage increase in the proportion of the population with unsafe liquid waste disposal was observed 
to increase diarrhea risk by 11.5%. The implication is that increasing access to safe liquid waste disposal could 
drastically reduce diarrhea morbidities. This finding was expected as improper disposal of liquid waste increases 
the potential for fecal contamination and increases the soil moisture content in the environment which plays an 
intermediate role in diarrhea transmission33. Some studies have evaluated this role as an important transmission 
concern for all diarrhea pathogens, especially in children34, 35. Mika et al.36 noted that with adequate moisture con-
tent, some diarrhea-causing fecal indicator bacteria diarrhea decays less rapidly in soil. The varying coefficients 
showed relatively lower coefficients for this effect for districts within the northern parts. This is probably because 
the northern parts are dominated by Guinea and Sudan Savannah ecological zones which have much drier soil 
and high temperature, and likely provide unfavorable environmental and ecological conditions for the survival 
of diarrhea-causing pathogens. In fact, high temperature has been shown to have a reduced effect on diarrhea37.

The observance of similar diarrhea risk amongst districts with safe and unsafe drinking water does not follow 
the predictable pattern. In the same manner, a recent study in Ghana observed that the incidence of diarrhea 
was not significantly associated with the quality of household water32. The attributable reason could be due to 
practices associated with fetching, storage, and handling which could contaminate even safe sources of water38. 
In Ghana, the availability of safe water sources in urban populations does not guarantee constant safe water avail-
ability due to intermittent supply prompted by high demands. Such urban dwellers, though have access to safe 
water, constantly resort to alternative water sources such as tanker-supply, and streams and rivers which may have 
higher levels of bacterial and viral counts. These alternative water sources can easily compromise the immune 
system due to their sporadic usage, increasing the susceptibility to infection. On the other hand, these alternative 
water sources for urban and peri-urban dwellers are mostly the main water sources for most rural dwellers who 
might have, due to their continuous usage, developed immunity. Comparable to differences in drinking water, 
differences in toilets also had no effect on diarrhea risk. The plausibility of this finding might be explained by the 
fact that flush toilet, which is considered as the safest, is most common amongst urban dwellers. It is, however, the 
worse in terms of sanitation when water for flushing is unavailable. Intermittent supply of piped water amongst 
urban dwellers with flush toilet may thus increase diarrhea risk. The implication is that the provision of safe water 
sources may not profoundly reduce diarrhea unless other mediating factors such as ensuring a constant supply of 
the safe water and household sanitation are taken into consideration.

Figure 8.  Space-time interaction terms. These maps were created using R software (R Development Core Team 
2016)28.
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Our study diverges from other studies both in method and scope. Previous diarrhea related studies in Ghana 
and elsewhere have predominantly focused either on single geographic units or the characteristics of the affected 
individuals38–42. Unlike the prior studies, our study explains the spatial patterns and the varying effects of socio-
demographic factors on diarrhea. In addition to the methodological significance, our study also highlights several 
noticeable epidemiological findings. While urbanization is an advantage to reducing water-borne diseases, its 
implication in developing countries can be daunting if not driven by the necessary requirements, such as avail-
ability of continuous safe water supply and access to safe toilet facilities. Although diarrhea risk was found to be 
high amongst peri-urban and urban districts than rural districts, these relativities varied in space. We observed 
comparable diarrhea risks amongst districts with safe and unsafe drinking water, indicating that accessibility 
does not necessarily mean availability. We, however, recognize that these results could be attenuated if all theo-
retically relevant variables were included. For instance, some studies have indicated that the poor in urban areas 
are advertently or inadvertently pushed to marginal areas where environmental health conditions are unsuitable 
for health30, 31. Such unsuitable areas are often associated with the creation of urban slums which lack safe water 
supply and sanitation which potentially combine to increase the risk of diarrhea. Further studies with interaction 
effects of urbanization and locality type (slums or non-slums) could demonstrate additional reasons for these 
findings.

Some limitations of this study deserve to be mentioned. First, this study relied on diarrhea data aggregated 
over districts level spatial units. Hence individual-level inferences would be inappropriate. Thus our study makes 
the implicit assumption of homogenous population and morbidity distribution within the districts which could 
lead to misspecification due to ecological bias43. Further studies using rigorous statistical estimations such as 
the log-Gaussian Cox processes44 would be used in further studies to attenuate any possible misspecification. 
Secondly, the sociodemographic covariates were secondary data based on random sampling of individuals in the 
districts. Sampling size biases and the probability distribution of sampling outcomes of the covariates have not 
been accounted for in this study. Thirdly, only sociodemographic risk factors were included in this study, while 
environmental and climatic factors such as temperature, rainfall, and land use/land cover characteristics which 
might have an important impact on diarrhea have been absent. We have also not considered possible temporal 
changes in the sociodemographic risk factors due to data unavailability. Nonetheless, we believe this will have 
minimal effects on the results since most of the variability was captured by the spatial, temporal, and space-time 

Figure 9.  Spatially varying effects of sociodemographic factors. These maps were created using R software (R 
Development Core Team 2016)28.
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parameters. Our future studies seek to accommodate some of these limitations, especially augmenting sociode-
mographic risk factors with environmental factors extracted from remotely sensed images.

Conclusion
Our study represents a contribution to spatial epidemiology literature by demonstrating both the methodological 
and epidemiological benefits of spatially varying coefficient modeling in estimating diarrhea risk. In contrast to 
the fixed effect model, the spatially varying coefficient model provided an added advantage to highlight varying 
effects of the sociodemographic risk factors. This has a practical implication of providing a scientific basis to facil-
itate precise targeting of site-specific risk factors for intervention. Our study disclosed the spatially varying nature 
of the relationship between diarrhea morbidities and urbanization, unsafe liquid waste disposal, unsafe toilets, 
and unsafe drinking water. The consequence of our results indicates that increased access to safe liquid waste dis-
posal could reduce diarrhea drastically. Moreover, the results suggest that the provision of safe water and toilets 
will not assure reductions in diarrhea morbidities without ensuring a constant supply of the water. The maps of 
relative risk and the nature of the relationships provide empirical basis useful for guiding neighborhood health 
planning and resources allocation. Additionally, the study has provided a framework for health practitioners to 
(1) estimate, and map model-based area specific relative risk of diarrhea, (2) understand the relation between the 
relative risk and important sociodemographic factors. Further studies, identifying the spatially varying effects of 
climatic factors on diarrhea will be worthwhile. Moreover, another question worth further investigation is the 
sensitivity of the spatially varying intercepts and coefficients to complex definitions of proximity.
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