
OPEN

EXPERT REVIEW

Connectome imaging for mapping human brain pathways
Y Shi and AW Toga

With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo
at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for
the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an
emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human
Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to
the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based
tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon
these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing
challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future
directions in connectome imaging and its interaction with other aspects of brain imaging research.
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INTRODUCTION
Mapping the connectivity of brain circuits is fundamentally
important for our understanding of the functions of human brain.
Various neurological and mental disorders have been linked to the
disruption of brain connectivity in circuits such as the cortico–
striato–thalamo–cortical network,1–3 reward circuits4 and limbic
system.5 Tracer injection studies have been historically utilized for
this mapping and continue to be the most reliable way of inferring
axonal connection in mammalian brains,3,6 but their usability is
limited to animal studies. For in vivo mapping of human brain
connectivity, magnetic resonance imaging (MRI) is the most
powerful modality with its non-invasive nature and versatility in
examining both the structure and function of the brain.
There are two main modalities for studying brain connectivity

with MRI: diffusion and functional MRI (fMRI). Diffusion MRI (dMRI)
collects signals that are sensitive to the diffusion of water
molecules along different directions.7,8 dMRI data can be used
to compute the probabilistic distribution of axonal orientations,
which are then concatenated to establish structural connectivity
across brain regions with tractography techniques.9,10 fMRI
measures the fluctuation of blood-oxygen level dependent (BOLD)
signals and establishes connectivity as the synchronization of fMRI
signals at different brain locations.11–13 Since the invention of both
techniques two decades ago, tremendous progress has been
made both technologically and scientifically, which culminated in
the funding of the Human Connectome Project (HCP: http://www.
humanconnectomeproject.org/) by NIH in 2009.14,15 In particular,
we have witnessed over the last few years the dramatic advances
and maturation of multiband imaging techniques and their
adoption in connectome imaging protocols.16–18 This has resulted
in almost two orders of magnitude increase of imaging data with
much improved resolution spanning the spatial, temporal and
angular dimensions.19–21

These rich resources in connectome imaging present great
opportunities to map human brain pathways at unprecedented
accuracy. On the other hand, this avalanche of BIG DATA22,23 in
connectomics24,25 also poses challenges for existing image
analysis algorithms. This has stimulated the development of novel
analytic solutions for studying brain connectivity in various
aspects of connectome imaging. In this article, we focus on the
review of recent progresses of connectome imaging with dMRI
methods. We first introduce the basic concepts of diffusion
imaging and related techniques for modeling brain microstruc-
ture. We also discuss the tractography techniques and how they
can be used to reconstruct fiber bundles and study network
connectivity. Finally, future research directions in connectome
imaging and their application in neuroscientific research are
presented.

BACKGROUND OF DIFFUSION IMAGING
Understanding the diffusion imaging signal
In a dMRI experiment, the data we collect are a series of 3D
volumes. Among these volumes, some of them, called B0 images,
are generated without the application of diffusion gradients. The
rest of the images are acquired with varying diffusion gradients
that are useful for characterizing axons in different spatial
arrangements. As summarized in Table 1, key parameters in dMRI
experiments include diffusion time, gradient strength and
gradient directions.26,27 In principle, the diffusion signal is from
the dephasing of the spins due to their displacement
during a dMRI experiment. The diffusion time determines
probabilistically how far the distance the water molecules, or
the spins, will travel in a dMRI experiment. With the increase
of the diffusion time, the spins will likely travel farther away
from their original location and thus result in more attenuation in

Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Correspondence: Dr AW Toga, Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern
California, 2025 Zonal Avenue, Los Angeles, CA 90032, USA.
E-mail: toga@loni.usc.edu
Received 9 December 2016; revised 6 February 2017; accepted 24 February 2017; published online 2 May 2017

Molecular Psychiatry (2017) 22, 1230–1240

www.nature.com/mp

http://dx.doi.org/10.1038/mp.2017.92
http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
mailto:toga@loni.usc.edu
http://www.nature.com/mp


the MR signal. Besides the diffusion time, the gradient strength
also affects the diffusion signal. The stronger the gradient
strength, the more attenuation we have in the dMRI image. The
effect of both diffusion time and gradient strength is summarized
in the quantity called b-value. In conventional dMRI experiments,
the b-value is fixed and only the gradient directions were changed
to acquire a series of 3D volumes. This is the so-called single-shell
Q-ball acquisition28 in contrast to the multi-shell acquisition
scheme (Figures 1d–f) used in the connectome imaging
protocols.20 In multi-shell experiments, a small set of different
b-values is used in addition to the change of gradient directions.
This provides an opportunity of more sophisticated modeling of
water diffusion in human brain. More generally, we can have a
different b-value for each gradient direction. This is the acquisition
scheme adopted in the diffusion spectrum imaging.29 By fully
sampling the q-space, diffusion spectrum imaging can theoreti-
cally recover the diffusion profile at each voxel, but it faces
the challenges of long scan time and low signal to noise at high
b-values.

Artifacts in diffusion imaging
The main artifacts in diffusion imaging include head motion, eddy
currents30 and susceptibility-induced distortion.31 Head motion
and eddy currents lead to misalignment of brain regions across
image volumes acquired with different gradient directions. These
two types of artifacts are global in nature, so they are typically
corrected in the same framework with image registration
methods.32 The challenge, however, is the dramatic change of
image signals with the variation of gradient directions. Early works
relied on registration to the B0 images by modeling the head
motion and eddy currents as affine transformations.30 With the
availability of data from densely sampled gradient direction, more
sophisticated models that rely on the prediction of the signals
from neighboring gradient directions were developed.33 Under
this framework, polynomial transformations can be applied to
achieve improved performance in correcting distortions from
eddy currents.34

Susceptibility-induced distortion is due to the inhomogeneity in
the magnetic field. It is subject dependent, so every brain scan can
have varying degrees of distortion. It is most severe in regions

Table 1. Some key parameters in diffusion imaging

Diffusion time Δ Longer Δ results in more attenuation in diffusion signal
Gradient strength G Stronger G results in more attenuation in diffusion signal
b-value b ¼ γδGð Þ2ðΔ- δ

3Þ Summarizes the effect of gradient strength and diffusion time, where γ is the gyromagnetic ratio (a constant) and δ is
the duration of gradient encoding

Single-shell dMRI Varying gradient directions with a fixed b-value
Multi-shell dMRI Varying gradient directions with a small set of b-values. Three different b-values were used in HCP protocol

Abbreviations: dMRI, diffusion MRI; HCP, Human Connectome Project.

Figure 1. Multi-shell diffusion imaging from the Human Connectome Project. B0 images from L/R phase encoding (a) and R/L phase encoding
(b) show the images were distorted in opposite phase encoding directions due to susceptibility in the magnetic field. (c) Corrected B0 image
after removing susceptibility-induced distortion and merging the data from L/R and R/L phase encodings. Multi-shell diffusion imaging
acquires data from several b-values. For the gradient directions along the x axis, the images from b= 1000, 2000, 3000 s mm−2 are shown in
(d–f), respectively. Note the greater attenuation in the image intensity with an increased b-value.
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with a tissue–air boundary such as the orbital frontal cortex or
brainstem, so the distortion field is inherently local. Susceptibility-
induced distortion not only distorts the brain image, but also
results in the loss of signals. This is caused by the piling up of
signals from multiple voxels into a single voxel. To correct for
susceptibility-induced distortion, early work relied on the mea-
surement of a field map and used that to correct for the geometric
distortion,35 but this method is time consuming and cannot
reverse the signal loss due to piling up of signals. More recently,
methods based on collecting two copies of dMRI data with
opposite phase encodings were developed (Figures 1a–c).36–38

This approach is based on the observation that the distortions
from opposite phase encodings mirror each other. Technically this
is also feasible with the dramatic increase of acquisition speed in
the connectome imaging protocol. Compared with corrections
based on field maps, better correction has been achieved with
data from opposite phase encodings.37

Besides the artifacts mentioned above, other subtler artifacts
such as bulk motion from cardiac pulsation are receiving more
attention.39 The bulk motion from pulsation can cause the loss of
diffusion signal in regions such as the brainstem. Cardiac gating
has been proposed,40,41 but it leads to a reduction of acquisition
speed. For connectome imaging data, automated algorithms have
been proposed recently to identify voxels with such artifacts and
alter their numbers with predicted values from uncorrupted
signals.42

MICROSTRUCTURAL MODELS
Besides the MRI parameters such as diffusion time and gradient
strength, the local microstructure of the brain also affects the
diffusion imaging signal. For spins inside the myelinated axons,
their diffusion is restricted in the transverse direction. For spins
outside the axons, their diffusion is hindered by the surrounding
cellular environment, which includes the walls of the axons.43 With
dMRI data, our goal is to quantitatively characterize the
microstructure of brain tissues and detect changes due to
pathology.

Tensor models
To model the distribution of spins using the dMRI data, the
Gaussian distribution was first proposed.7,8 The tensor matrix in
the Gaussian model is symmetric and contains six parameters. This
model only needs six diffusion-weighted images, so the data
acquisition can be conducted fairly efficiently on 1.5T MRI
scanners, which was highly desirable in the early stages of dMRI.
For the robust estimation of the tensor, data from more gradient
directions are typically acquired that range from 12 to 30
directions. Various numerical algorithms have been developed
to estimate the tensor from dMRI data that ranges from direct
least square fitting44 to more sophisticated approaches that
ensure the non-negativity of the tensor matrix.45 Since its
emergence, the tensor model has been used widely in
various brain imaging studies. Presently, the term diffusion tensor
imaging (DTI) is almost synonymous with diffusion imaging even
though the field has advanced dramatically beyond the tensor
models.
The eigen structure of the tensor model provides some of the

most popular features in connectivity studies.46 Since the tensor is
a 3 × 3 matrix, it has three eigenvalues and associated
eigenvectors. The largest eigenvalue is called the axial
diffusivity, the mean value of the other two eigenvalues defines
the radial diffusivities. These definitions reflect our desire to
model the diffusion of spins along axons as elongated ellipsoids.
Using these three eigenvalues, the fractional anisotropy (FA) is
defined to characterize the anisotropy of the underlying
diffusion. The FA can take values between 0 and 1. The FA is 0

when the tensor is purely isotropic, that is, the three eigenvalues
are equal. The FA increases when the tensor becomes more
elongated, that is, the water diffusion is more anisotropic. It
reaches the value 1 when the tensor is a stick model with zero
radial diffusivity.
The diffusivity measures are highly sensitive measures for the

detection of microstructural changes. They have been applied in
studying various neurological47–49 and mental disorders.50,51 Extra
caution must be taken when interpreting these measures because
multiple pathological events can lead to very similar changes in
the diffusivity. This lack of specificity is one of the well-known
limitations of diffusion imaging. While there were efforts that tried
to separate the contributions of demyelination, axonal transection
and edema,52,53 significant research still needs to be done to
translate such research into human studies.

High-order tensors and tensor mixtures
For the modeling of the anisotropy in water diffusion, the tensor
model is most suitable for locations where there is only one fiber
direction. When there are more complicated configurations
including fanning and crossing of fibers, we need more advanced
data acquisition schemes and mathematical models. From the
data acquisition perspective, high-angular resolution diffusion
imaging that collects data from a large number (60–100) of
gradient directions at the same b-value has been helpful.28,54 This
motivates the development of more sophisticated modeling
algorithms to better characterize the water diffusion from a
complicated fiber architecture.
Similar to the Gaussian mixture model in statistics, the mixture

of the tensor models55,56 is a natural extension of the tensor to
characterize the high-angular resolution diffusion imaging signal.
There are several challenges, however, in this approach. First is the
need to select the number of the components. If very few
components are selected, we might miss important fiber
directions and fail to properly characterize the dMRI signal. On
the other hand, numerical problems can arise if too many
components are used since the extra components might be
forced to fit the noise in the dMRI signal. Because the complexity
of the fiber architecture varies across different brain regions, it is
impractical to fix the number of the components. The second
challenge of the tensor mixture model is the nonlinearity of the
optimization problem. In contrast to the tensor model, the
optimization of the tensor mixture model is highly nonlinear,
which means we might encounter local optima frequently. This is
especially challenging given the possibility that the extra tensor
components can fit the noise. To alleviate this difficulty, Monte
Carlo sampling and information-theoretic model selection were
adopted.55

Fiber orientation distribution
Fiber orientation distribution (FOD)57,58 is a non-negative function
defined on the unit sphere with its values representing the
probability of fiber tracts along each direction (Figure 2a). It is
related but different from orientation distribution function, which
is computed with a series of approximation steps in q-ball
imaging.59 Compared with the tensor mixture models, FOD has
the flexibility in representing arbitrary fiber configurations without
the need of specifying the number of fiber crossings a priori. The
numerical solution of FOD is also more tractable as it typically
consists of deconvolution steps that are quadratic or
convex.57,58,60,61–63 For these reasons, FOD is becoming increas-
ingly popular and emerging as a standard representation of fiber
connectivity.
Numerically the FOD is represented as a linear combination of

spherical harmonics.65 Most existing tools for computing FODs
were developed for single-shell dMRI data. The multi-shell
imaging data from HCP have motivated the development of
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novel FOD reconstruction algorithms.64,66–70 With the multi-shell
and high-angular resolution data from HCP, we can estimate FODs
with high-order spherical harmonics.64 This generates very-sharp
FODs that will improve the resolution of crossing fibers at each
voxel, which will no doubt assist the tractography algorithms for
brain connectivity modeling (Figure 2). Besides FOD estimation,
the multi-shell HCP data have enabled the incorporation of
compartment modeling43,71 into the estimation of FODs.64 These
compartment parameters provide novel measures about the
integrity of white matter microstructure. The compartment
models also improve the robustness of FOD estimation in regions
with complicated tissue compositions such as the thalamus and
gray matter/white matter boundaries.

TRACTOGRAPHY-BASED MAPPING OF BRAIN PATHWAYS
Tractography methods
While there are many exciting advances in sophisticated
tractography algorithms,72–74 the streamline approach is still the
most widely applied method for fiber tractography using tensor or
FODs.9,10,75 Intuitively, we can imagine this tractography algorithm
is simulating the movement of a water molecule along the axons.
The starting position of this tracking process is called a seed point.
At each point of the tracking process, we utilize the FOD or tensor
at the current location to generate the next direction to extend
the tract. The water molecule is then moved along this direction
for a specific distance, which is called the step size. The process is

repeated until a stopping criterion is satisfied. The tract is
accepted if it meets certain anatomical requirements that are
typically problem specific.
There are several key factors that affect the results of fiber

tractography. The first factor is the anatomical protocol that we
prescribe to determine if a fiber tract is valid. This represents the
anatomical knowledge we have about the specific circuits under
study. Practically, they are represented as the regions of interest
(ROIs) that a fiber tract needs to pass or avoid. The second factor is
the overall shape of the fiber tract has to be biologically plausible.
Overall a smooth trajectory is expected. This is controlled by a
combination of several parameters including the step size and
maximum turning angle at each step. The third factor is how we
generate the movement direction at each step. This is where the
deterministic and probabilistic tractography deviate from each
other.55,75 For deterministic tractography, the peak direction of the
tensor or FOD is selected. Since FODs have multiple peaks, one of
them, typically the direction with the smallest angle with the
incoming direction, will be selected. For probabilistic tractography,
we view the FOD or tensor as mathematical representations of the
probabilistic distribution of fiber directions. To obtain the next
direction to move the water molecule, a stochastic procedure is
run to draw a sample direction from this distribution. For each
direction, the chance of it being selected is in proportion to its
magnitude in the probabilistic distribution. This direction is
accepted if it satisfies the shape constraints.

Figure 2. An illustration of fiber orientation distribution (FOD) reconstructed from Human Connectome Project (HCP) data with the method
we developed recently.64 (a) FOD is a function on the unit sphere (top) and can be visualized as a 3D shape (bottom) by modulating the radius
of the shape according to the magnitude of the FOD function. For an region of interest (ROI) shown as the red box in (b), the FODs are
visualized in (c). (d) With FOD-based tractography, a more complete representation of the corpus callosum can be reconstructed. The lateral
projections of the corpus callosum were successfully captured. As shown in (e), a volume rendering can be created with 3 million fiber tracts
to visualize the connectome of the human brain.
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Fiber bundle reconstruction
One main application of tractography is reconstructing a digital
representation of major white matter bundles (Figure 3). This is
achieved via a carefully designed anatomical protocol including a
set of AND ROIs that a fiber tract should pass and a set of NOT
ROIs that the fiber tract should not touch.76–78 Because the
number of AND ROIs is typically small (2–3), we need the NOT ROIs
to add more control over the trajectory of the fiber bundle. In early
studies, the ROIs were manually drawn on anatomical MRI images.
This approach is time consuming and can only be conducted in
studies with small sample sizes. For large-scale studies such as the
HCP, we need to develop automated algorithms that can leverage
the recent development in brain image analysis algorithms. Using
software tools such as FreeSurfer79 and FSL,80 we can extract a set
of generic cortical and sub-cortical ROIs, but this is usually not
enough. For additional ROIs that are needed for specific bundles,
the label fusion framework81–83 provides a general strategy for
automated volumetric ROI segmentation, which we have also
extended to surface ROIs.84 This entails the manual delineation of
the necessary ROIs on a set of representative subjects. After that,
these masks are warped to the image space of new subjects with a
non-linear registration software tool.85 The ROIs of the new
subjects are finally formed via the fusion of these warped ROIs
based on a weighted voting process. The general workflow can be
applied to both gray matter and white matter regions. For
challenging situations where there is a lack of visible contrast in
available MRIs for manual segmentation, innovative strategies
must be developed. For example, a combination of contextual
information from surrounding nuclei and the continuity of the

retinofugal tracts in the digital space were proposed to
automatically define the lateral geniculate nuclei for the
reconstruction of the optical radiation.86

Even with the constraint of multiple ROIs, it is common for the
reconstructed fiber bundle to contain outlier tracts. Possible
causes include the complexity of the anatomy, too much freedom
in probabilistic tractography or noise in the estimated FODs. For
small-scale studies, manual editing can be applied to remove the
outliers in the bundles. For large-scale studies, various automated
filtering strategies have been developed. Intuitively we have two
ways to identify outlier tracts. The first approach is based on the
observation that outlier tracts tend to be far away from the ‘main’
bundle. Mathematically this can be captured as distance measures
between fiber tracts differential geometry. Using the pairwise
distances between tracts, a spectral clustering technique can be
applied to divide the fiber tracts into clusters of tracts.87 After that,
small clusters can be removed as outliers. This has been
successfully applied in various fiber bundle clustering projects.88

The difficulty with this approach is the lack of intuition in tuning
the parameters for the spectral clustering. For individual bundles,
a fine tuning process is needed to find the optimal parameters for
large-scale application. The second possible approach for identify-
ing outliers is based on the density of fiber tracts. This assumes
that outliers are more scattered in space and they have lower
density than the main bundle. To implement this idea numerically,
we can convert the fiber tracts into a tract density image89 and
then remove the outliers following thresholding the tract density
image. On the basis of the tract density image representation of
fiber bundles, topological analysis strategies can also be

Figure 3. With connectome imaging data, we can more accurately reconstruct human brain pathways using fiber orientation distribution
(FOD)-based tractography and anatomical region of interests (ROIs). (a) ROIs in the medulla and thalamus were used to reconstruct the
spinothalamic pathway. (b) For the reconstruction of the fornix bundle, we use multiple ROIs including the hippocampus, a fornix ROI,
mammillary body and basal forebrain. Here two of the ROIs were plotted: red: fornix; green: mammillary body. (c) The reconstructed fornix
bundle is overlaid with the hippocampal surfaces. Note that two branches to the mammillary body (posterior branch) and the basal forebrain
(anterior branch) have been successfully reconstructed. (d) Surface-based ROIs were used for the reconstruction of the uncinated fasciculus.
Green: orbital frontal cortex; Red: anterior temporal cortex. (e) The reconstructed uncinated fasciculi on both hemispheres are overlaid with
the cortical surfaces. (f) Corpus callosum bundle connecting the precentral gyrus (motor cortex) of both hemispheres has been reconstructed
with ROIs including the precentral gyrus and the middle sagittal corpus callosum ROI. Both ROIs are rendered as 3D surfaces in this plot.
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developed to remove the outliers.90 For large-scale brain imaging
studies, a successful reconstruction of fiber bundles might need a
combination of multiple tract filtering approaches since each of
them captures a somewhat different aspect of outlier tracts.

Graph-based modeling
Using fiber tractography, we can also build network models of
brain connectomes91 and apply graph-based measures to study
connectivity.92,93 There are two main steps in conducting network
studies in brain imaging. The first step is graph construction and
the second step is the calculation of various network measures.
A graph is composed of a set of nodes and edges. Two nodes

are connected if there is an edge between them. To define the
nodes for brain connectomes, various approaches have been
proposed to parcellate the brain into many smaller regions. A
popular choice is to use cortical labels produced from software

tools such as FreeSurfer79 or warping an atlas with cortical labels,
such as the LPBA40 atlas,94 to the subject space. More fine-grained
parcellation can be obtained by further dividing these regions.91

These parcellations, based on structural MRIs, can be further
improved with multimodal information. Recent results from HCP
suggest that a detailed parcellation can be obtained using
functional connectivity patterns,95 but it relies on manual
interaction. Overall, the definition of nodes in connectome studies
is still an open question that needs further technical and scientific
investigations. Once we have a set of nodes, we can define the
edges using fiber tractography, which could be weighted or
unweighted. If there are fiber tracts connecting two ROIs, we can
define the connectivity using quantities such as the number of
tracts, mean values of diffusivity and FA. By thresholding the
weights on the edges, we can also obtain a binary graph where
the weight on an edge is either 1 (connected) or 0 (unconnected).

Figure 4. Retinofugal visual pathway reconstruction results. (a) Top: fiber orientation distributions (FODs) at the optic chiasm; Bottom: the
ipsilateral and contralateral branches of the optic tracts were reconstructed from the FODs. Reconstructed fiber bundles from an Human
Connectome Project (HCP) subject. (b) Postmortem dissection result99 shows the retinotopic organization of the optic radiation. (c)
Retinotopic parcellation of the left optic radiation fiber bundle reconstructed by our method as shown in (a). Red, blue, green represent fiber
projecting to the foveal, superior and inferior quadrant of the peripheral visual field, respectively. (d) The reconstructed retinofugal pathways
including the optic tract and optic radiation of both hemispheres. (e) Using the cortical projection of the visual pathway, detailed retinotopic
coordinates (eccentricity, angle) can be assigned to each fiber tract. Here the eccentricity map is plotted as a colored map on the cortex. (f) A
cross section of the optic radiation bundle with tracts colored by the eccentricity as defined through their projection onto V1.
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Once the graph construction is completed, a matrix representa-
tion can be generated where each entry records the edge weight
of corresponding node pairs denoted by the row and column
index of the matrix. Basic measures such as the degree of nodes
and shortest path can be computed easily from the matrix
representation. More advanced measures such as characteristic
path length and clustering coefficients can then be derived from
these basic measures.25,96 On the basis of these measures, small-
worldness can be defined,92 which compares the clustering of
nodes and their distances to random graphs. More recently,
quantitative measures for hubs and rich clubs were proposed and
successfully applied to imaging studies of psychiatry studies.97

Together with fiber bundles for specific circuits, network measures
are valuable to provide complementary, global characterizations
about the connectivity of brain networks.

APPLICATION OF CONNECTOME IMAGING IN MAPPING BRAIN
PATHWAYS
With the high-resolution data from connectome imaging, we have
the opportunity to extend the reconstruction of human brain
pathways with increased completeness and capturing more fine-
grained details. While these high-quality connectome imaging
data of HCP are only available recently, there have already been
active research efforts in utilizing them to reconstruct pathways
that were difficult to achieve with conventional diffusion imaging
techniques. Here, we review the progress of these early studies in
the reconstruction of visual pathways, brainstem pathways and
language pathways. Because the application of the HCP con-
nectome imaging protocol in psychiatry studies has been limited
to date, we provide these examples to demonstrate the utility of
brain pathway reconstruction with cutting-edge MRI methods.
This hopefully will motivate rapid adoption of the connectome
imaging protocol in future psychiatry studies.

Visual pathways
The retinofugal pathways include the optic nerves, optic chiasm,
optic tracts, lateral geniculate nuclei and the optic radiation. While
various methods were proposed to reconstruct these important
pathways with dMRI, the unique complexities of the visual
pathway have impeded the development of a robust and
automated reconstruction method with tractography. The diffi-
culties include the crossing fibers at the chiasm, the tortuous
course of Meyer’s loop, proximity to multiple neighboring fiber
bundles and limited contrast of the lateral geniculate nucleus in
structural MRIs. We have developed an automated system for the
reconstruction of the retinofugal visual pathway from optic chiasm
to the primary visual cortex86 and the corpus callosum. With HCP
data, our group has developed an automated system to overcome
these challenges. The ultra-sharp FODs computed by our method
from HCP data greatly enhance our ability to capture Meyer’s loop
in the temporal stem where multiple major fiber bundles cross.98

Our system also automatically identifies related anatomical ROIs
including the lateral geniculate nucleus and primary visual cortex
(V1), and reconstructs anatomically faithful representations of the
visual pathway. As shown in Figure 4, the sharp FODs from our
method are able to generate highly organized fiber tracts that
follow the retinotopic organization of the visual pathway.
Quantitative measurements also show that our results achieve
excellent agreement with postmortem dissection studies99 and
the Contrack method,100 a DTI study based on manual interven-
tion. Using reconstructed bundles of the 215 HCP subjects, we also
found a statistically significant leftward asymmetry of the optic
radiation volume that is consistent with postmortem studies.101

Brainstem pathways
The brainstem regulates vital and autonomic functions, relays
motor and sensory information between the brain and peripheral
nervous system, and modulates cognition, mood and
emotions.102,103 Fiber pathways from brainstem nuclei innervate
extensive cortical and sub-cortical regions and play important
modulatory roles in various cognitive and behavioral functions.104

Due to the complexity of brainstem anatomy and limited
resolution of conventional dMRI, it has been a challenge to
reliably map the brainstem pathways. With the much improved
resolution from connectome imaging techniques, there has been
growing interest in studying the brainstem-related pathways.
Using an averaged data set created from 488 HCP subjects, a
comprehensive set of brainstem pathways was reconstructed.105

The validity of the trajectories of the reconstruction results was
compared with histology images of five postmortem brains at
various sections of the brainstem. A probabilistic atlas of cerebellar
peduncles was also developed recently with data from 90 HCP
subjects.106 The inferior, middle and superior cerebellar peduncles
were reconstructed from each brain and aligned to create the
probabilistic atlas. For the in vivo reconstruction of the pathways
in the homeostatic network of human brains,107 high-resolution
diffusion spectrum imaging data were collected with the MGH-
USC Connectome scanner that has 300 mT m− 1 maximum
gradient strengths and a 64-channel coil. The 55 min diffusion
spectrum imaging protocol included 515 q-space samples, and its
maximum b-value is 10 000 s mm− 2. With this data set, a central
homeostatic network between six brainstem nuclei and seven
forebrain regions was reconstructed. The connectivity matrix was
formed by counting streamline probability between each pair of
brainstem and forebrain regions. Detailed examination of the fiber
tracts was conducted and branches of the medical forebrain
bundles, and a lateral forebrain bundle from brainstem to medial
temporal lobe were identified.

Language pathways
The superior longitudinal fasciculus (SLF) and arcuate fasciculus
(AF) are important components of the language networks. The
exact pathways of these two fiber systems, however, are still under
debate in previous DTI studies. While some DTI studies considered
the AF as composed of the ventral and dorsal segments,108 others
classified the most ventral segment of SLF (SLF III) as part of
indirect segments of AF.109 By comparing the tractography
reconstruction of HCP data with the dissection results of 25
postmortem brains, the detailed pathways of the SLF and AF were
examined by Yagmurlu et al.110 Three SLF segments (dorsal SLF I,
middle SLF II and ventral SLF III segments) and two AF segments
(ventral and dorsal) were robustly reconstructed on both
dissection and tractography reconstruction. In particular, the
topographic relation of the AF pathways and the SLF3 segments
were clearly identified.
These results provided a glimpse of the possibility with

connectome imaging data for improving the state-of-the-art in
fiber pathway reconstruction. Overall, we can see more faithful
characterization of brain anatomy could be achieved with careful
application of the connectome image techniques. With the wider
application of these methods to other under-explored brain
regions, it is anticipated more exciting progress will be made in
the coming years.

FUTURE DIRECTIONS
The connectome imaging techniques represent a leap in brain
imaging capabilities that provide a whole new paradigm for
studying human brains in vivo. While great advances have been
achieved in the last decade, this is a fast moving field and we
anticipate major advances in the following areas.
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Continued improvement in imaging technology
Current connectome imaging protocols have already achieved
more than one order of magnitude speed up in acquiring diffusion
and fMRI data. However, the relative long acquisition time of the
full HCP protocol poses serious challenges for their adoption in
disease studies. Even with the state-of-the-art 3T MRI scanners,
only a portion of the HCP protocol can be included in disease
studies. There is thus a great need to further optimize imaging
protocols for multiple time frames suitable for imaging research
and clinical applications. Continued research in multiband and
parallel imaging techniques will no doubt help in this aspect.
Optimization of existing connectome protocols for a given time
frame should also be investigated, where the challenge is the
definition of a gold standard for the trade-off between spatial
resolution, number of gradient directions and distribution of b-
values. In our current research, we find that the retinotopic
organization of the visual pathway provides an ideal test bed for
the in vivo validation of tractography techniques.111 There are
other brain regions that also have well-characterized anatomy
such as the cortical–striatum connections.3 These can serve as
valuable resources for quantification of the performance of
different acquisition schemes. The extension of connectome
imaging to 7T MRI is another exciting direction.112 Major advances
have been achieved for 7T diffusion and function MRI acquisition
in HCP. In principle, 7T MRI will provide higher signal to noise and
improved resolution, thus there is a great opportunity for more
fine-grained mapping of brain pathways. Besides advances in
image acquisition, we will witness continued research and
improvement in image processing algorithms. Novel preproces-
sing methods will help the correction of imaging artifacts such as
eddy current and susceptibility distortion, and signal dropout due
to bulk movement. The fusion of data from multiple phase
encodings also needs more dedicated research to improve signal
quality for connectome modeling. Innovations in post-processing
algorithms will lead to better tractography algorithms that can
more faithfully represent brain anatomy such as the topographic
organization fiber bundles.111 Compartment modeling has the
potential of separating intra- and extra axonal changes in tissue
microstructure.43,113–115 More sophisticated algorithms in com-
partment modeling, such as the NODDI model,116 could provide
novel opportunities for improving the specificity in the character-
ization of connectivity changes.

Validation of microstructure and tractography methods
One fundamental question in connectome imaging is the
validation of the digital connectivity from MRI data. While it is
generally difficult to obtain ground truth about human brain
connections, detailed anatomical knowledge is available for
certain pathways that can be used to quantitatively evaluate the
performance of tractography methods. One particular example is
the topographic organization of sensory pathways such as the
retinotopic organization of the visual pathway117 and the
somatotopic organization of the somatosensory pathway.118 Such
topographic organization provides an ideal opportunity for
examining the pathway integrity at specific locations when the
topographic location of atrophy is known from separate
measurements such as retinal imaging. More generally, animal
tracing studies provide the ground truth about brain connectivity,
but the number of injection sites were usually limited.119–121 For
mouse brain tracing studies, tremendous progress has been made
with the creation of detailed connectomes with whole-brain
coverage.6,122 These are highly valuable resources for examining
the performance of tractography algorithms.123,124 Such validation
experiments will improve our understanding about the impact of
model selection and various parameters in tractography. For
postmortem tissues, immunohistochemistry-based staining will
provide valuable information for the validation of compartment

models.125 By measuring myelin content and the volume of extra
axonal cellular structures, we can quantify the agreement between
compartment models and tissue compositions. Overall there is a
great need to validate the cutting-edge connectome imaging
methods and we believe this need will be met with additional
validation studies using biological ground truth. While these
validation experiments using postmortem samples are critical,
their translation to in vivo studies should also be carefully
investigated. This could be achieved with carefully designed and
streamlined experiments that include in vivo MRI, tracer injections
and postmortem MRI, and measurement from immune histology.
To carry out these sophisticated experiments and data analysis, it
is important to foster the collaboration between multidisciplinary
teams with complimentary expertise.

Multimodal connectivity fusion
The functional connectivity from resting fMRI is mainly derived
from the correlation of the BOLD signal in gray matter regions.
Tractography methods are capable of mapping pathways across
white matter regions. In principle, these two modalities provide
complimentary information. The challenges, however, are to
develop effective methods to fuse the connectivity information
from these two approaches.126 Existing methods are mostly
limited to post hoc analysis that either tests the functional
connectivity between the two ends of a fiber bundle or the
structural connectivity between functional ROIs, such as the nodes
of default mode networks. For future development, more focus
will be devoted to improving the structural connectomes with
functional connectivity or vice versa. For example, one key
question is the enhancement of the predictive power of functional
connectivity with structural connectivity. The focus will be on
tractography methods with reduced false positives and negatives
such as the novel methods that aim to preserving the topographic
regularity of fiber tracts.111 Dynamic functional connectivity is
another promising direction that holds the potential for detecting
transient connectivity between brain regions.127,128 This could
boost the anatomical priors for computing structural connectivity.
Besides function MRI, other imaging modalities can also improve
the computation of structural connectivity. The myelin content
from quantitative T2 can potentially be combined with the
compartment modeling from multi-shell dMRI.129,130

Deep connectome phenotyping for brain imaging studies
With conventional DTI technology, major cortical bundles have
been successfully reconstructed and widely used in various
imaging studies. The high-resolution connectome imaging meth-
ods will no doubt improve the reliability and accuracy for these
major bundles. Furthermore, the FOD-based tractography from
connectome imaging data will enable the reconstruction of more
detailed fascicles and allow us to generate a more complete
description of systems such as the cortico–striato–thalamo–
cortical network and the limbic system. Using connectome
imaging, we have the opportunity to develop robust algorithms
and software tools to systematically characterize the integrity of
these circuits. In addition to in-depth modeling and quantification
of these brain circuits, connectome-based parcellation95,131,132 will
produce whole-brain network models at much finer resolution
than existing works. Together with multimodal fusion strategies,
these connectome features will form a set of deep phenotypes for
mining with genetic and behavioral data. This matches perfectly
with current developments in Big Data and deep learning
methods.133
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