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Parkinson’s disease (PD) is caused by progressive neurodegeneration and characterised
by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes
aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been
hypothesised to lead to non-motor symptoms such as depression. Individuals with
PD have both lower synaptic density and changes in neuronal metabolic function in
the basal ganglia, as measured using [11C]UCB-J and [18F]FDG positron emission
tomography (PET), respectively. However, the two radioligands have not been directly
compared in the same PD subject or in neurodegeneration animal models. Here, we
investigate [11C]UCB-J binding and [18F]FDG uptake in the CSTC circuit following
a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats
received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the
medial forebrain bundle and rostral substantia nigra (n = 4/group). After 3 weeks, all
rats underwent two PET scans using [18F]FDG, followed by [11C]UCB-J on a separate
day. [18F]FDG uptake and [11C]UCB-J binding were both lower in the ipsilateral striatal
regions compared to the contralateral regions. Using [11C]UCB-J, we could detect
an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease
in ventral midbrain using [18F]FDG. Differential changes between hemispheres for
[11C]UCB-J and [18F]FDG outcomes were also evident in the CSTC circuit’s cortical
regions, especially in the orbitofrontal cortex and medial prefrontal cortex where
higher synaptic density yet lower neuronal metabolic function was observed, following
lesioning. In conclusion, [11C]UCB-J and [18F]FDG PET can detect divergent changes
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following a dopaminergic lesion in rats, especially in cortical regions that are not directly
affected by the neurotoxin. These results suggest that combined [11C]UCB-J and
[18F]FDG scans could yield a better picture of the heterogeneous cerebral changes in
neurodegenerative disorders.

Keywords: Parkinson’s disease (PD), dopamine neurodegeneration, 6-OHDA = 6-hydroxydopamine,
CSTC = cortico-striato-thalamo-cortical, FDG – PET, SV2A, SV2 proteins, UCB-J

INTRODUCTION

Several techniques have been developed to identify disease-
related neuronal patterns to aid early detection and differential
diagnoses of Parkinson’s disease (PD). Examples of such
methods are positron emission tomography (PET) imaging to
measure glucose metabolism (Loane and Politis, 2011), dopamine
synthesis, transporters, or receptors (Kerstens and Varrone,
2020). In PD, one affected neuronal circuit is the cortico-striato-
thalamo-cortical (CSTC) circuit (Vriend et al., 2014). The CSTC
circuit connects the cortex with the basal ganglia to control and
coordinate goal-directed behaviour. This circuit can be further
divided into three loops: the motor, limbic, and associative
circuits (Groenewegen and Trimble, 2007; Vriend et al., 2014).
The dopamine system innervates the striatal regions of the CSTC
circuits and is critical in modulating their output. A model
of 6-hydroxydopamine (6-OHDA) induced dopaminergic lesion
leads to modulation within the CSTC, which will further help
understand this circuit (Schwarting and Huston, 1996).

[11C]UCB-J is a PET radioligand showing high affinity to
synaptic vesicle glycoprotein 2A (SV2A) (Nabulsi et al., 2016).
SV2A is ubiquitously expressed throughout the brain (Bajjalieh
et al., 1994; Südhof, 2004) and is a suitable proxy for synaptic
density (Finnema et al., 2016). Accordingly, [11C]UCB-J PET
may serve as a biomarker in neurodegenerative disorders, where
the loss of synapses is thought to play a vital role in the
pathophysiology (Holland et al., 2020; Matuskey et al., 2020;
Mecca et al., 2020; Nicastro et al., 2020; Wilson et al., 2020; O’Dell
et al., 2021). [18F]fluorodeoxyglucose (FDG) is a glucose analog
used to measure neuronal glucose consumption and metabolic
function. [18F]FDG PET has also been used as a surrogate marker
for neuronal integrity and function (Mosconi, 2013). Only very
recently, [18F]FDG and [11C]UCB-J were tested in the same
Alzheimer patients (Chen et al., 2021), where [11C]UCB-J proved
valuable as a clinical tracer and marker for disease progression,
which may be helpful in drug development. This combination of
radioligands has not been tested in human PD subjects or animal
models of neurodegeneration.

Here, we present a multimodal PET study using dynamic
[11C]UCB-J and static [18F]FDG scans in the rat model of
6-OHDA severe unilateral-dopaminergic lesioning induced by
combined unilateral 6-OHDA injection in the medial forebrain
bundle and rostral substantia nigra (Yuan et al., 2005; Blandini
et al., 2008). We have previously shown that 6-OHDA lesioning
lowers postsynaptic dopamine receptor density and presynaptic
capacity to release amphetamine (Palner et al., 2011). Thus,
we hypothesise that the loss of dopaminergic neurons will
cause a decrease in [11C]UCB-J binding and [18F]FDG uptake,

especially in the ipsilateral basal ganglia (substantia nigra,
ventral tegmental area, whole striatum, dorsolateral striatum,
dorsomedial striatum, and nucleus accumbens). Furthermore,
we compare the effect sizes of [18F]FDG uptake and [11C]UCB-
J binding to detect changes after a unilateral dopaminergic
lesioning of the rat brain. As a control to assess differential
changes, we used both the contralateral hemisphere and
compared the 6-OHDA model to a group of sham-lesioned rats.
Several studies have successfully detected changes in regional
[18F]FDG uptake after a 6-OHDA lesion in both rats (Casteels
et al., 2008; Jang et al., 2012; Silva et al., 2013; Kordys et al., 2017)
and mice (Im et al., 2016). One recent study has also performed
[11C]UCB-J PET in the 6-OHDA lesion model, although with
some methodological differences (Thomsen et al., 2021b).

The results of our study indicate that dopaminergic lesions
lead to a loss of presynaptic density in the striatal regions, as
measured by [11C]UCB-J, which is similar to changes in neuronal
metabolic function, as measured by [18F]FDG. Interestingly, the
dopaminergic lesion caused divergent changes between the two
radioligands in cortical regions of the CSTC circuit.

MATERIALS AND METHODS

Animals
Sixteen female Long-Evans WT rats (216 ± 25 g, 10–11 weeks
old when scanned) (Janvier) were used in this study. Eight
animals used in the model study and eight animals used in the
baseline study (Supplementary Data 1.1). The animals were
held under standard laboratory conditions with 12-h light/12-
h dark cycles and ad libitum access to food and water. All
animal experiments conformed to the European Commission’s
Directive 2010/63/EU with approval from the Danish Council
of Animal Ethics (Journal No. 2017-15-0201-01375 and 2017-
15-0201-01283) and the Department of Experimental Medicine,
University of Copenhagen.

Stereotactic Surgery and 6-OHDA Lesion
The animals were acclimatised in the surgery room for at
least 1 h. Analgesia was provided with carprofen (Rimadyl,
Zoetis, NJ, United States) 5 mg/kg, subcutaneous (SC), 45 min
before the surgery and 24 and 48 h postoperative. Before
commencing the surgery, animals received desmethylimipramine
(25 mg/kg, intraperitoneal (IP) mixed in physiological saline.
Desmethylimipramine protects the noradrenergic neurons from
the neurotoxic effects (Esteban et al., 1999). Anaesthesia was
induced with 3% isoflurane in oxygen and maintained through
surgery with 1.2–1.8% isoflurane in oxygen. The rats were fixed
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on a stereotaxic apparatus (Kopf Instruments, Tujunga, CA,
United States) with the incisor bar set 3.3 mm below the level
of the ear bars. An incision was made on the scalp, and two
bur-holes were drilled on one side of the skull using a dental
micromotor and round bur (0.5 mm). A 2 µg/µL solution of 6-
OHDA (2,5-Dihydroxytyramine hydrobromide, Sigma-Aldrich,
Søborg, Denmark) in physiological saline containing 0.02%
ascorbic acid or physiological saline (containing 0.02% ascorbic
acid) was drawn into a 10 µL syringe with a 33 g needle (World
Precision Instruments, Sarasota, FL, United States). Three µL
were infused into the medial forebrain bundle (coordinates:
AP = 4.8 mm, ML = 1.7 mm, DV = 8 mm) and 3 µL
infused rostral to substantia nigra (coordinates: AP = 3.6 mm,
ML = 2 mm, DV = 8.3 mm) relative to the bregma to
ensure unilateral dopaminergic degeneration. The infusion was
delivered at 151 nL/minutes driven by an infusion pump (World
Precision Instruments, Sarasota, FL, United States), followed by
a 7 min pause prior to a slow withdrawal of the syringe needle.
The incision was sutured back. After recovery from anaesthesia,
rats were returned to the recovery cage and housed alone for 48 h
and then housed in pairs for recovery of 21 days to allow the
development of the lesions.

Study Design and Confirmation of Lesion
Four rats were injected unilaterally with 6-OHDA, while another
four were injected with physiological saline and divided into
two groups, i.e., dopamine lesioned and sham lesioned; Figure 1
shows the study’s overall design. After the recovery period, the
rats were subjected to two PET scans [18F]FDG at day 21 and
[11C]UCB-J at approximately day 23. One month (26–33 days)
after the injection, the rats were euthanised by decapitation, and
the brains rapidly removed and frozen on dry ice.

To validate the extent of the lesion, tyrosine hydroxylase
(TH) immunostaining was performed on 20 µm coronal
cryosections containing the striatum. Frozen brains were
sectioned on a cryostat (Leica CM1800, Leica Biosystems,
Buffalo Grove, IL, United States) and mounted on Superfrost
PlusTM adhesion microscope slides (Thermo Fischer Scientific,
MS, United States). Sections were stored at −80◦C for the
remaining period of the study. The sections were dried and
processed for standard TH immunohistochemistry. Briefly, the
frozen sections were first fixed in cold (4◦C) 4% formaldehyde
for 15 min. The sections were then prewashed in 0.05 M
phosphate-buffered saline (PBS, pH 7.4) with 1% bovine serum
albumin and then incubated overnight in a purified antiserum
against TH generated in rabbits (Sigma-Aldrich, Søborg,
Denmark; cat#AB152) diluted 1:500 in PBS + 0.1% Triton-
X overnight at 4◦C. The immunoreactivity was detected using
the avidin-biotin detection method (biotinylated donkey-anti
rabbit IgG (Sigma-Aldrich, Søborg, Denmark, #SAB3700966);
avidin-biotin-peroxidase complex (Thermo Fischer Scientific,
MS, United States #32020) and reacted for peroxidase activity
in 0.1% diaminobenzidine mixed with 0.003% H2O2 in PBS for
15 min. Finally, the sections were washed in distilled water and
embedded in Pertex.

The stained slides were imaged on a Zeiss Axio Observer
7 using an EC Plan-Neofluoar 5×/0.16 objective by stitching

multiple fields of view to cover the entire section. The
resulting colour image was analysed in ImageJ 1.53G (NIH
Image, Bethesda, MD, United States) by a workflow involving
masking potential artefacts by automatic threshold (Moment)
and conversion to 16-bit grayscale. From these, crude regions
of interest encompassing the striatum were identified for
quantification. Automated thresholds were used to measure the
intensities in mean grey values (Minimum) and stained areas in
pixel values (Moment). The intensities and areas of the ipsilateral
striatum were normalised to the contralateral striatum and are
presented as percentages.

[18F]FDG and [11C]UCB-J Positron
Emission Tomography Scans
All scans were performed on the Siemens HRRT (High-
Resolution Research Tomography), and all rats were examined
using both [11C]UCB-J and [18F]FDG. The rats were transported
to the scanner at least 2 h before the scan. Anaesthesia was
induced using 3% isoflurane in oxygen. All rats were placed in a
2× 2 custom made rat holder (illustration in Figure 1), enabling
simultaneous scanning of four rats (Keller et al., 2017; Shalgunov
et al., 2020; Casado-Sainz et al., 2021). While in the custom-
made rat holder, the rats were kept under anaesthesia with a
constant flow of isoflurane (∼2% isoflurane in oxygen). They
were placed in the HRRT scanner for the time of the scan. The
rats were kept warm using an infrared lamp and monitored for
respiration throughout the entire scan. A rotating point source
137Cs transmission scan (Keller et al., 2013) was carried out before
or after each emission scan.

[18F]FDG was acquired from the in-house clinical production
of the department of clinical physiology, nuclear medicine and
PET, Rigshospitalet, Denmark. Rats were fasted overnight before
the scan. The animals were briefly anaesthetised, and [18F]FDG
was administered intraperitoneal with an average injected dose of
25.05± 3.1 MBq. The rats were placed back in their home cage to
wake up from the anaesthesia to achieve [18F]FDG uptake while
awake. Forty-five minutes after the [18F]FDG injection, the rats
were anaesthetised, placed in the holder, and a PET emission scan
was acquired for 45 min.

[11C]UCB-J was produced in-house using a modified protocol
(see Supplementary Data 1.4) adapted from Nabulsi et al. (2016).
The tail veins were canulated (BD Neoflon 25G, Stockholm,
Sweden) before the scan. At the start of the scan, intravenous
(IV) injections were given over 7–10 s through the tail vein
catheter, with an average dose of 20.8 ± 2.1 MBq (injected
mass = 0.04 ± 0.01 µg). Heparinised saline (500–600 µL)
was flushed through the catheter after tracer injection. The
acquisition time for [11C]UCB-J was 60 min.

Positron Emission Tomography Image
Reconstruction
All list-mode data was dynamically reconstructed using
ordinary Poisson 3D ordered subset expectation maximisation
with point spread function modelling, resulting in PET
image frames consisting of 207 planes of 256 x 256 voxels
(1.22 × 1.22 × 1.22 mm). The reconstruction of the attenuation

Frontiers in Synaptic Neuroscience | www.frontiersin.org 3 November 2021 | Volume 13 | Article 715811

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-13-715811 November 13, 2021 Time: 13:38 # 4

Raval et al. [11C]UCB-J [18F]FDG 6-OHDA Rats

FIGURE 1 | Study design. Eight rats received two intracranial injections of either 6-OHDA or saline in the medial forebrain bundle (MFB) and rostral to substantia
nigra and hence divided into two groups sham lesioned (saline) or dopamine lesioned (6-OHDA). Approximately 21 days after the injections, all rats underwent an
[18F]FDG PET scan followed by [11C]UCB-J PET scan 2 days after in a Siemen’s high-resolution research tomography (HRRT). All animals were euthanised 30 days
after the intracranial injection.

map from the transmission scan was performed using the
maximum a posteriori algorithm for transmission data. All
[11C]UCB-J scans were transformed into 33 dynamic frames
(6× 10, 6× 20, 6× 60, 8× 120, and 7× 300 s), while [18F]FDG
scans were transformed into 5-min frames and then averaged
into a single frame.

Quantification of Positron Emission
Tomography Data
Pre-processing of all PET scans were done with PMOD 3.7
(PMOD Technologies, Zurich, Switzerland). Kinetic modelling
were done with PMOD 3.0 (PMOD Technologies, Zurich,
Switzerland). All rats were scanned in full-body, and brains were
manually cropped out. For [18F]FDG scans, static images were
manually co-registered to a standard [18F]FDG PET template.
For [11C]UCB-J scans, a summed image of the last 13 frames
were manually co-registered to an average T1-weighted magnetic
resonance brain image in standard space. MR template used
was a summed image from various rats, not part of this study,
generously provided by Kristian Nygaard Mortensen. Volumes
of interest (VOIs)-atlas of selected regions from the CSTC
circuit from Schiffer’s atlas (Schiffer et al., 2006) were applied
to the PET image in standard space. The regions (depicted
in Figure 3 and Supplementary Figure 5) included in this

study were: anterior cingulate cortex, medial prefrontal cortex,
motor cortex, nucleus accumbens, orbitofrontal cortex, striatum,
thalamus, and ventral midbrain (a region covering both the
ventral tegmental area and substantia nigra). The dorsomedial
striatum and dorsolateral striatum were manually delineated and
used in the study (Shalgunov et al., 2020; Casado-Sainz et al.,
2021). All images and co-registration were visually checked for
accuracy following spatial transformation.

For [18F]FDG, the unit of measurement (Bq/mL) for each
cropped image was transformed into standardised uptake values
(SUV) by adjusting for body weight and injected dose. A whole-
brain normalisation factor (WBNF) was calculated for each rat
using (Eq. 1). The SUV values from all the VOIs were normalised
using WBNF .

WBNF =
Average of whole-brain [18F]FDG SUV for all rats

Whole-brain [18F]FDG SUV for rat X
(1)

For [11C]UCB-J, time-activity curves (TACs) for all VOIs
were extracted from the PET images. Estimates for the total
blood activity was acquired using a non-invasive image-derived
input function (IDIF) that was used for estimating a surrogate
of VT . VT was determined in each VOI, using the one-
tissue compartment model (1TCM), which has previously been
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FIGURE 2 | Confirmation of 6-OHDA-induced dopaminergic lesions. (A) Representative example of tyrosine hydroxylate immunostaining: upper section from sham
lesioned rats, lower from dopamine lesioned rats. (B) Quantification of the stained area, threshold emphasised in red. (C) Quantification of staining intensity, intensity
scale insert. (D) Quantification of intensity and area relative to contralateral striatum (n = 4/group). Error bar denotes the mean and the 95% confidence interval. P
values demonstrated from the Mann-Whitney tests.

validated for [11C]UCB-J in mice (Bertoglio et al., 2020; Xiong
et al., 2021). The IDIF was extracted from each PET image by
delineating the whole blood activity in the lumen of the heart’s
left ventricle. This delineation was achieved by using the “region
growing” function in PMOD in the early time frame by dropping
a “seed” at the point of highest activity in the heart and producing
a VOI which is about the size of the rat’s left ventricle (5–6 voxels).
In order to fit the 1TCM to the TACs, the blood volume fraction

(VB) was fixed at 5%. In addition to VT , the micro-parameters
K1 and k2 were also extracted from the kinetic modelling. These
micro-parameters were checked for the difference due to the
surgical procedure or any other reason. 1TC model fit to a
representative region, ipsilateral and contralateral striatum, are
shown in Supplementary Figure 6. All micro parameters (K1
and k2) for all regions are recorded in Supplementary Table 3.
In addition to kinetic modelling, TACs were converted into
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SUVs. Ipsilateral and contralateral striatum and ventral midbrain
(sham and dopamine lesioned) TACs were averaged for visual
representation. This was performed using GraphPad Prism 9
(GraphPad Software, San Diego, CA, United States).

Statistics
Due to the limited sample size and the number of comparisons
undertaken, the study is exploratory in nature, meaning that
caution should be taken around drawing strong confirmatory
conclusions from the data. As such, all p-values reported should
be considered as a continuous assessment of indirect evidence
against the null hypothesis of no difference between groups
or hemispheres, and binary conclusions of “significant” or
“not significant” within the Neyman-Pearson Null-hypothesis-
significance-testing framework should be avoided.

The data were analysed using Jamovi [Version 1.6, The jamovi
project (2021) (Computer Software). Retrieved from https://
www.jamovi.org] and RStudio (v.1.3.1073) (R version 4.0.3;
“Bunny-Wunnies Freak Out,” R core team, Vienna, Austria).
Graph-Pad Prism (v. 9.0.1; GraphPad Software, San Diego, CA,
United States) was used for data visualisation. All data are
presented as mean values ± standard deviation unless otherwise
specified. The TH immunostaining comparison of the dopamine
and sham lesion (ipsilateral side corrected to the contralateral
side) was performed with an independent samples t-test (Mann-
Whitney test).

To allow direct comparison of [18F]FDG normalised SUVs
and [11C]UCB-J VT , Cohen’s dz values (a standardised measure
of within-subject differences) between the ipsilateral regions and
contralateral regions were calculated (Lakens, 2013). Cohen’s
dz (standardised measure of between-group differences) values
were used to compare the effect size measured by the two
tracers. This shows the efficacy of detecting differences with the
two radioligands.

To further explore and compare the different regions, the
difference between the ipsilateral and contralateral side for each
tracer ([18F]FDG and [11C]UCB-J) in the dopamine and sham
lesioned groups was calculated in Jamovi using paired t-test
without correction for multiple comparisons.

We performed tests on [18F]FDG normalised SUVs and
[11C]UCB-J VT between the two lesioned groups in regions
outside the basal ganglia: thalamus, medial prefrontal cortex,
anterior cingulate cortex, orbitofrontal cortex and motor cortex.
These tests were performed using an independent samples t-test
(Mann-Whitney test).

RESULTS

Confirmation of Lesion
Striatal TH immunostaining confirmed unilateral dopaminergic
lesions in the striatum (Figure 2). We observed a 73.9%
decrease (p = 0.03) in the stained area from the sham lesioned
animals (97.50% ± 6.77) to the dopamine lesioned animals
(23.54% ± 9.41). These observations were accompanied by
a 24.68% reduction in staining intensity (p = 0.03) between
sham lesioned (93.39% ± 4.73) and dopamine lesioned animals
(68.72%± 6.62).

Representative [11C]UCB-J and [18F]FDG
Positron Emission Tomography Images
Representative [11C]UCB-J and [18F]FDG PET images from a rat
in the dopamine and sham lesioned group are shown in Figure 3.
A template structural T1 MR image is used for illustrative
purpose only. Regional VOIs are shown on summed PET images
in Supplementary Figure 5. For [11C]UCB-J, a difference was
visually noticed between the ipsilateral and contralateral side
of the 6-OHDA injection, especially in the striatal regions
and ventral midbrain (red arrows in Figure 3). Hemispheric
differences were not evident in the sham lesioned animal. For
[18F]FDG, changes were also evident between the ipsilateral
and contralateral hemisphere in the cortex, striatal regions, and
ventral midbrain in the dopamine lesioned animal (red arrows in
Figure 3), while no apparent differences were seen in the sham
lesioned animal.

Decreased [11C]UCB-J VT in Dopamine
Lesioned Hemisphere
Visually, a lower average [11C]UCB-J uptake can be seen through
averaged TACs in the ipsilateral striatum and ventral midbrain
compared to the contralateral hemisphere in dopamine lesioned
animals (Figures 4A,B). No changes were noticed in the sham
lesioned animals (Figures 4C,D). [11C]UCB-J VT values were
lower in the ipsilateral side of the striatum, dorsolateral striatum
and ventral midbrain but higher in the medial prefrontal cortex
and anterior cingulate cortex compared to the contralateral side
(Figure 4E and Table 1). In the sham lesioned animals, higher
[11C]UCB-J VT values were also seen in the ipsilateral anterior
cingulate cortex compared to the contralateral side. No other
differences were observed in [11C]UCB-J VT (Figure 4F and
Table 1) between the ipsilateral and contralateral sides in the
sham lesioned rats.

Decreased [18F]FDG Uptake in
Dopamine Lesioned Hemisphere
There was a lower uptake of [18F]FDG in all striatal regions (only
statistically significant in dorsolateral striatum), thalamus and
orbitofrontal cortex in the ipsilateral side of dopamine lesioned
rats, compared to the contralateral side (Figure 5 and Table 1).
No substantial differences were found between the ipsilateral and
contralateral sides within the sham lesioned animals.

[11C]UCB-J and [18F]FDG Show
Divergent Effect Sizes in Dopamine and
Sham Lesioned Animals
Both [11C]UCB-J and [18F]FDG show an expected negative
effect of the dopaminergic lesion in all dopamine rich regions,
including the ventral midbrain, striatum, dorsomedial striatum,
dorsolateral striatum and nucleus accumbens (Figure 6). Results
are reported as Cohen’s dz values, showing the within-subject
effect size between the ipsilateral and contralateral hemispheres.
The ventral midbrain and striatum show a larger effect with
[11C]UCB-J than [18F]FDG, although with confidence intervals
overlapping the mean of the other radioligand. The dorsomedial
striatum, dorsolateral striatum and nucleus accumbens also have
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FIGURE 3 | Representative [11C]UCB-J and [18F]FDG PET SUV horizontal brain slices from a dopamine and a sham lesioned rat. Standard structural MRI (for
illustrative purposes) slices show the selected volumes of interest in one hemisphere; mPFC (medium blue), OFC (purple), motor cortex (light blue), ACC (grey),
striatum (red), dorsomedial striatum (yellow), dorsolateral striatum (navy blue), thalamus (green), NAc (dark blue), and ventral midbrain (pink). For [11C]UCB-J, the
SUV image represents the sum of 15–60 min; for [18F]FDG, it is the sum of all 45 min. The red arrow shows decreased tracer uptake in dopamine lesioned animals.

overlapping confidence intervals and shows a similar effect with
[11C]UCB-J or [18F]FDG.

Besides dopamine rich regions, there is a seemingly larger
reduction with [18F]FDG compared to [11C]UCB-J in the
thalamus; however, the [18F]FDG confidence interval still
includes the mean of [11C]UCB-J. Divergent changes can
be seen in cortical regions when comparing [11C]UCB-J
and [18F]FDG except for the motor cortex, which shows
no effect of the dopamine lesion. In particular, the medial
prefrontal cortex and orbitofrontal cortex shows a negative
effect with [18F]FDG (higher SUV on the lesioned side),
while it shows a positive effect with [11C]UCB-J (lower
VT on the lesioned side). The anterior cingulate cortex

shows no effect with [18F]FDG but a positive effect with
[11C]UCB-J. Sham lesioned animals do not show differences
between hemispheres, except for [11C]UCB-J in the anterior
cingulate cortex.

Changes in Cortical Regions Between
[11C]UCB-J Binding and [18F]FDG Uptake
A post hoc analysis of changes in the cortical regions and thalamus
between the lesion and sham group (Figure 7) showed an increase
in [11C]UCB-J VT values in the anterior cingulate cortex (37.36%,
p = 0.03) whereas there is no difference in [18F]FDG uptake
(2.6%, p = 0.68). On the contrary, a lower [18F]FDG uptake
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FIGURE 4 | Average [11C]UCB-J binding. Average time-activity curves from all the animals in the striatum (A,C) and ventral midbrain (B,D). Comparison of ipsilateral
and contralateral [11C]UCB-J VT values in the selected regions of interest within the dopamine lesioned (E) and sham lesioned (F) rats. Notable differences are
marked with their p values. Stri = striatum, DMS = dorsomedial striatum, DLS = dorsolateral striatum, NAc = nucleus accumbens, vMB = ventral midbrain,
Thal = thalamus, mPFC = medial prefrontal cortex, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, MoC = motor cortex.

TABLE 1 | Group-wise summary of the paired t-test between the ipsilateral and contralateral regions for each tracer and group.

[11C]UCB-J VT [18F]FDG Normalized SUVs

Dopamine lesioned Sham lesioned Dopamine lesioned Sham lesioned

Region % diff p value % diff p value % diff p value % diff p value

Stri −8.86% 0.003* −0.99% 0.66 −5.66% 0.093 0.25% 0.926

DMS −3.48% 0.085 0.39% 0.919 −7.42% 0.077 −1.84% 0.553

DLS −5.58% 0.046* 0.02% 0.998 −6.30% 0.022* −0.45% 0.893

NAc −5.35% 0.122 0.56% 0.173 −7.26% 0.071 0.93% 0.62

vMB −8.72% 0.052 3.35% 0.486 −2.89% 0.343 0.18% 0.821

Thal −2.55% 0.465 1.20% 0.233 −4.11% 0.013* 1.09% 0.425

mPFC 2.59% 0.009* 1.33% 0.621 −2.02% 0.147 1.25% 0.47

ACC 2.62% 0.043* 14.08% 0.023* −0.23% 0.832 0.47% 0.757

OFC 2.88% 0.209 5.71% 0.141 −6.32% 0.020* 0.45% 0.67

MoC 1.85% 0.435 5.27% 0.169 −1.32% 0.407 3.25% 0.223

To aid overview, notable differences are marked as *. Stri = striatum, DMS = dorsomedial striatum, DLS = dorsolateral striatum, NAc = nucleus accumbens, vMB = ventral
midbrain, Thal = thalamus, mPFC = medial prefrontal cortex, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, MoC = motor cortex.

is observed in the motor cortex (−16.42%, p = 0.03) and the
orbitofrontal cortex (−11.08%, p = 0.03), which is not the case
for [11C]UCB-J VT (16.8%, p = 0.34 and 19.8%, p = 0.20).

DISCUSSION

This study explored regional differences in [11C]UCB-J binding
and [18F]FDG uptake using a unilateral 6-OHDA dopaminergic
lesion in rats, a commonly used animal model for PD. We

observed differences in SV2A density and neuronal metabolic
function between ipsilateral and contralateral hemispheres,
especially the basal ganglia, which are well known to be
innervated by dopaminergic terminals. This suggests a decline in
dopaminergic neurons and synapses due to the 6-OHDA lesion,
consistent with TH immunostaining (Figure 2).

We derived effect sizes between the ipsilateral and
contralateral regions to directly compare [11C]UCB-J and
[18F]FDG. The regions within the basal ganglia show similar
effects with the two radioligands, lower SV2A density and
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FIGURE 5 | [18F]FDG uptake. Direct comparison between ipsilateral and contralateral hemispheres of normalised [18F]FDG uptake in all regions of interest within the
dopamine lesioned (A) and sham lesioned (B) rats. Notable differences were marked with their uncorrected p values. Stri = striatum, DMS = dorsomedial striatum,
DLS = dorsolateral striatum, NAc = nucleus accumbens, vMB = ventral midbrain, Thal = thalamus, mPFC = medial prefrontal cortex, ACC = anterior cingulate
cortex, OFC = orbitofrontal cortex, MoC = motor cortex.

FIGURE 6 | Direct comparison of effect size (Cohen’s dz values) as measured by [11C]UCB-J and [18F]FDG PET in (A) dopamine lesioned and (B) sham lesioned
animals. All regions within the dopamine and sham lesioned animals in the study are compared. Error bar denotes the mean and the 95% confidence interval. Stri =
striatum, DMS = dorsomedial striatum, DLS = dorsolateral striatum, NAc = nucleus accumbens, vMB = ventral midbrain, Thal = thalamus, mPFC = medial prefrontal
cortex, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, and MoC = motor cortex.

metabolic function, in the ipsilateral region compared to the
contralateral region. Especially lower SV2A density in the
striatum, dorsolateral striatum, and ventral midbrain compared
to the contralateral regions. We see a strong correlation between
in vitro autoradiography ([3H]UCB-J fmol/mg tissue equivalent)
and PET quantification ([11C]UCB-J VT) in the sham and

dopamine lesioned animal (Supplementary Data 1.2). This
further confirms the validity of the [11C]UCB-J PET data.
A lower ipsilateral metabolic function is also observed in the
regions of basal ganglia, which is consistent with previous
6-OHDA lesion studies showing an ipsilateral decrease in
[18F]FDG uptake in the striatal regions compared to the
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FIGURE 7 | Analysis of [11C]UCB-J VT values (A) and [18F]FDG (B) uptake in the ipsilateral side of dopamine lesioned and sham lesioned animals. Error bar denotes
the mean and the 95% confidence interval. Thal = thalamus, mPFC = medial prefrontal cortex, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex,
MoC = motor cortex.

contralateral regions (Casteels et al., 2008; Jang et al., 2012;
Kordys et al., 2017). No such changes are evident in baseline
animals (Supplementary Data 1.1). Our observations are in
line with the common understanding of the CSTC circuitry,
in which the striatal response is in part sculptured by the
dopaminergic input from substantia nigra (Vriend et al., 2014).
Hence, diminished activity in dopamine neurons projecting
to the striatum due to the 6-OHDA lesion would lead to a
decline in striatal activity, as is evident from the changes in
[18F]FDG uptake.

A difference of moderate magnitude between the ipsilateral
and contralateral thalamus was noted for [18F]FDG but not
for [11C]UCB-J. Although dopamine denervation of the rodent
thalamus is scant (Papadopoulos and Parnavelas, 1990), we still
observe decreased metabolic function. This may be due to the
overall decreased function of the lesioned thalamus.

The cortical regions also show divergent group differences
with [11C]UCB-J and [18F]FDG. In the orbitofrontal cortex
and medial prefrontal cortex, [18F]FDG uptake is lower in the
ipsilateral regions compared to contralateral regions. By contrast,
[11C]UCB-J shows higher SV2A density in the ipsilateral regions
compared to the contralateral regions. To our knowledge, it is the
first time that a lower orbitofrontal cortex metabolic function is
demonstrated in this rat model; a decrease has previously only
been reported in the prefrontal cortex (Casteels et al., 2008), while
other studies show unaltered metabolism (Kurachi et al., 1995).
The decrease in orbitofrontal and medial prefrontal cortical
metabolic function may be due to the disrupted dopaminergic
innervation from the substantia nigra to the orbitofrontal cortex
(Murphy and Deutch, 2018).

[11C]UCB-J binding is higher in the anterior cingulate cortex
in most of the tests that we perform, except baseline animals

(Supplementary Data 1.1). While showing no effect in metabolic
function, the anterior cingulate cortex’s SV2A density was higher
ipsilaterally, both in the sham and dopamine lesioned animals.
Likewise, the anterior cingulate cortex had higher SV2A density
in the dopamine lesioned animals than sham lesioned animals,
both in ipsilateral (Figure 7) and contralateral hemispheres
(Supplementary Figure 4). These changes are also evident
in vitro using [3H]UCB-J autoradiography (Supplementary
Data 1.2) in the sham and dopamine lesioned animals
(Supplementary Figure 3; Supplementary Table 2). Such
changes in the cingulate cortex have not been previously shown
in this model. We speculate that the cause is the surgery itself,
as the anterior cingulate cortex is part of the pain matrix (Bliss
et al., 2016), but further testing is necessary to understand
this observation. In addition, a reduced mechanical nociceptive
threshold has been extensively reported in the 6-OHDA model,
which maybe is directly related to changes in synaptic density in
the anterior cingulate cortex (Buhidma et al., 2020).

We observed a lower metabolic function in the ipsilateral
motor cortex and the orbitofrontal cortex between the 6-OHDA-
injected and saline-injected cortexes. The difference in the motor
cortex is also seen in patients with PD, but reduced metabolic
function in the orbitofrontal cortex are not commonly seen in
PD subjects (Meyer et al., 2017). Such cortical reduction was not
detected with [11C]UCB-J, implying the relative robustness in
detecting circuit changes with [18F]FDG.

Disease-specific changes in SV2A density, i.e., synaptic
loss, has now been demonstrated in rodent models of
neurodegeneration with intracranial injections of neurotoxic
agents or with protein inoculation models of PD (Thomsen
et al., 2021a,b). Such synaptic loss is also demonstrated in other
Alzheimer’s disease and PD mice models (Toyonaga et al., 2019;
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Xiong et al., 2021). Our study supports the recent study’s findings
with lower SV2A density within the basal ganglia as reported
with PET as well as autoradiography in the 6-OHDA rat model
(Binda et al., 2021; Thomsen et al., 2021b), although there are
methodological differences, such as employing different kinetic
models and site of injection.

[11C]UCB-J has now been used in monkeys (Nabulsi et al.,
2016), pigs (Thomsen et al., 2020), mice (Bertoglio et al., 2020),
rats (Thomsen et al., 2021b), and humans (Finnema et al.,
2016) and show favourable brain penetration, fast uptake and
acceptable washout kinetics. In rats and mice, various kinetic
modelling was performed using an arterial blood sampling
scheme or image-derived input function (IDIF) from the heart
(Bertoglio et al., 2020; Glorie et al., 2020; Thomsen et al., 2021b).
The 1TCM and 2TCM both work favourably with [11C]UCB-J
using the heart as an IDIF (Bertoglio et al., 2020; Glorie et al.,
2020). The use of IDIF and whole-brain normalisation allows
longitudinal studies in rodents since blood sampling often is
laborious and error-prone. Although most of these studies use
mice, we assume it translates well to rats.

The small sample size is a limitation of our study, making
it particularly hard to conclude that there are no differences
(type 2 error). For that reason, we took an exploratory approach
without pre-registered predictions and without corrections
for multiple testing. As such, the results should be seen as
preliminary, and we caution against confirmatory conclusions
from the results and encourage future replications using larger
samples and a more limited selection of analyses. Further,
the contralateral hemisphere may not be an ideal control
region because of the inter-hemisphere anatomical connection
of the basal ganglia through the pedunculopontine nucleus
(Breit et al., 2008). [18F]FDG results must be evaluated with
caution. Other factors, such as neuroinflammation due to the
injection or lesion, could evoke increased regional glucose
consumption, thus concealing a decreased neuronal function
(Blandini et al., 2008). Crabbé et al. have shown an increase
in P2X7 receptor (key mediator in neuroinflammation), as well
as translocator protein (TSPO) in 6-OHDA, lesioned animals
compared to sham lesioned animals using autoradiography
(Crabbé et al., 2019). These changes were significant at 21 days;
hence uptake of [18F]FDG in the ventral midbrain may be
due to neuroinflammation, which is hard to differentiate using
[18F]FDG. Our setup in a clinical high-resolution PET scanner
allows for simultaneous scanning of up to four rats, which
further allowed us to perform four [11C]scans with a single
radiosynthesis. Although this saves resources and enables a more
direct comparison between rats, the resolution of the HRRT is
lower than other available single-subject small animal micro-
PET systems. Hence, our ability to identify potentially apparent
biological differences in small regions is limited due to, e.g.,
partial volume effects.

Regardless, we found a pattern in the regional cortical
synaptic density and neuronal metabolic function, which could
be clinically relevant, especially changes within the anterior
cingulate cortex and orbitofrontal cortex. We see a clear
advantage of including both tracers to get a clearer picture of the
neuropathology of neurodegenerative diseases like PD.

CONCLUSION

[11C]UCB-J and [18F]FDG PET revealed similar changes in
the basal ganglia following 6-OHDA dopaminergic lesion in
rats. A region-based analysis suggested a divergent response to
lesions, especially in the cortical regions, orbitofrontal cortex
and medial prefrontal cortex, where higher synaptic density
yet lower neuronal metabolic function was observed. Taken
together, the results suggest that combined [11C]UCB-J and
[18F]FDG scans may yield a better understanding of aberrant
CSTC circuit function and a better diagnostic outcome in patients
with neurodegenerative disorders.
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