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Abstract

The last decade has seen the emergence of new views about the mechanisms underlying

specificity (or, conversely, generalization) of visual skill learning. Here, we trained partici-

pants at orientation discrimination paradigm at a peripheral position to induce position and

orientation specificity and to test its underlying mechanisms. Specifically, we aimed to test

whether the within-quadrant spatial gradient of generalization is determined by cortical mag-

nification, which would show that retinotopic plasticity contributes to learning and specificity.

Additionally, we aimed to test whether late parts of the learning relate differently to specificity

compared to early parts. This is relevant in the context of double training papers, which sug-

gest that rule-based mechanisms of specificity in fast, early learning also would apply to

late, slower learning. Our data showed partial but significant position and orientation speci-

ficity within quadrants. Interestingly, specificity was greatest for those participants who had

continued to show threshold decreases during the last five sessions of training (late, asymp-

totic learning). Performance gains during early learning were less related to specificity. A

trend for skill to spread over larger distances towards periphery than towards central vision

suggested contributions to transfer of early visual areas showing cortical magnification of

central vision. Control experiments however did not support this hypothesis. In summary,

our study demonstrates significant specificity after extensive perceptual learning, and indi-

cates that asymptotic learning recruits specific mechanisms that promote specificity, and

that may not be recruited yet in early parts of the learning. The contributions of different

mechanisms to early and late learning suggests that following these different learning peri-

ods, generalization relies on different principles and is subjected to different limits.

1 Introduction

A long tradition of research has emphasized the characteristic time course of perceptual lean-

ing as well as its specificity (or the lack of generalization/transfer). Its time course includes a
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few sessions of fast progress during early learning, followed by slower learning and ultimately

a late period in which daily performance gains are small and progressively become even

smaller [1, 2], also referred to as asymptotic learning [3]. Specificity of training-induced per-

formance enhancement has been reported for the trained eye [4], retinotopic position [4–8],

direction [9, 10], orientation [4–6, 11–14], spatial frequency [11], stimulus size [6, 13], and the

requirements of the task [7, 13]. However, in the last decade, specificity as a core feature of per-

ceptual learning has been challenged by a series of studies that demonstrated transfer of visual

skills for the above-mentioned low-level stimulus characteristics [15–21].

Along with these apparently conflicting data on specificity, it has become increasingly rec-

ognized that many mechanisms can contribute to training-induced performance gains during

perceptual learning [22, 23]. Sensory signals can be enhanced by the reduction of internal sen-

sory or external (stimulus) noise [24], by the reduction of correlated internal noise during

attentive task performance [25], or by a strengthening of the signal for example by a gain

change [26] or a sharpening of tuning [12]. It furthermore has been debated to what extent

noise reduction and signal enhancement is accomplished by plastic changes in low-level corti-

cal areas [27], or by a reweighing and selection of the most informative inputs by higher-level

read-out mechanisms [28, 29].

According to the lowest-level hypothesis [2], prolonged training will lead to plasticity at the

lowest levels in the visual system where the trained stimulus dimension is best represented.

When a skill involves discriminating an elementary feature of a stimulus, plastic changes

involving neurons at low levels of the visual system, with small receptive fields and strong stim-

ulus-tuning to the relevant feature are thought to lead to specificity of the trained visual skill.

Neuronal recording studies [30] as well as fMRI studies [31, 32] support training-induced low-

level visual plasticity. Studies inspired by the lowest-level hypothesis suggest that the plastic

changes in low-level areas that contribute to specificity depend on continued performance

gains during late, asymptotic learning [2, 12]. By contrast, during early visual learning, subcor-

tical centers such as the basal ganglia [33] as well as high-level areas including temporal,

fronto-parietal and cingulate regions [34–37] are involved and contribute to the processing of

task context, feedback, and establishment of visuo-motor associations. Compared to low-level

visual areas, high-level areas lack (precise) retinotopy and have neurons with large receptive

fields [38–40]. For the basal ganglia and its subdivisions, there is evidence for topographic

biases but no evidence for precise retinotopy [41–43]. Therefore, the early learning processes

driven by high level cortical areas, and subcortical centers such as the basal ganglia, are not

expected to be very position and stimulus specific.

According to read-out theories, training-induced performance gains do not require plastic

changes in low-levels of the visual system, but instead are based on an increased efficiency of

readout, e.g., by improving the selection of and access to the most informative neurons [28,

44]. The increased precision of spatial and featural selection may be aided by cooperation

among both prefrontal and parietal areas including LIP and FEF [45–47], as well as the supe-

rior colliculus [48, 49]. According to a specific instantiation of readout, the reverse hierarchy

theory [29, 50], easier tasks depend on read-out from relatively higher levels of the visual hier-

archy, while more difficult tasks requiring finer analysis depend on read-out from neurons at

lower levels, where neurons show smaller receptive fields and show precise stimulus tuning. In

line with this, easy tasks (e.g., discriminating lines with a large orientation difference) have

been shown to generalize, while more difficult tasks lead to more specificity for the same

amount of training [50–52]. Similarly, specificity has been shown to depend on the precision

of the task with which transfer is tested (transfer task) after initial training on another task

[18]. Notably, because in reverse hierarchy theories, learning relates to reweighing the connec-

tions that are most relevant at increasingly lower levels of the visual hierarchy, they predict–
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just like the lowest-level hypothesis–that specificity will emerge during late, asymptotic learn-

ing, when the task is hard and the lowest levels of the visual system are read out. It is also possi-

ble that access to early visual areas is established from the beginning [53] but that the selection

of informative neurons and reweighing of their inputs takes time and is only achieved in late

learning.

The contributions to specificity from difficulty and effortful attention during skill acquisi-

tion have been confirmed by a variety of observations. It has been shown that the difficulty of

the training task (i.e., the sensory challenge), but not the difficulty of the transfer task deter-

mines whether there is generalization [54]. Furthermore, it has been suggested that the num-

ber of training trials determines the degree of specificity [15, 17, 55]. This is in line with a

recent report from Hung and Seitz [56], who showed that prolonged training at threshold

leads to retinotopic specificity. The importance of repeated presentations of the training sti-

muli is also in line with a contribution of adaptation to learning and specificity as proposed by

Harris, Gliksberg and Sagi [57], who showed that when adaptation was prevented, position

specificity was abolished. Attentional mechanisms also contribute strongly to perceptual learn-

ing [1, 4, 13, 58].

Hence, irrespective of their theoretical viewpoints, there are many studies indicating that

perceptual skills can become specific to stimulus features and position after sufficiently long

(asymptotic) learning in a task that pushes the limits of the system. This concept has been chal-

lenged however in orientation discrimination experiments in which training at a given posi-

tion largely generalized to another position if that position was pre-exposed to the stimulus in

the context of an irrelevant task [20, 21, 59]. Moreover, an additional study [60] also showed

that a brief pre-test was sufficient to enable substantial transfer from foveal to peripheral posi-

tions in an orientation discrimination task using Gabor stimuli and unidimensional noise

fields as used by Schoups et al. [8]. These new findings of substantial generalization of orienta-

tion discrimination across trained and exposed positions were interpreted as a challenge to the

view that plasticity in retinotopic areas could contribute to position specificity, as had been

supported by prior studies [8, 12]. Xiao et al. [21] suggested that perceptual learning “involves

higher nonretinotopic brain areas that enable location transfer” (p.1922), which would suggest

a complete transfer of training-induced read-out enhancement across the visual field. As such,

this explanation is different from both classical read-out theories in which high-level areas

interact with low-level areas to optimize the connectivity with the most informative low-level

channels [28, 61], and from lowest-level theories according to which skill training induces

changes in tuning and other properties of neurons that support memory formation.

This highlights a crucial difference between reverse hierarchy and lowest level theories on

the one hand, and the theoretical framework behind double-training studies on the other

hand. Lowest-level and reverse hierarchy theories assume a transition from non-retinotopic

learning mechanisms during early learning to respectively retinotopic plasticity or selective

reweighing of retinotopic inputs in late, asymptotic learning. This leads to the prediction that

the smaller performance increments during late learning should be more related to specificity

than the larger performance increments during earlier learning. The double-training theoreti-

cal framework assumes high-level and non-retinotopic sources of learning in which the pres-

ence of specificity depends on task specific or contextual manipulations that can enable or

disable generalization [21]. Essentially, the factors that set the amount of specificity are not

directly linked with the total magnitude of learning. Moreover, this theoretical view does not

provide a basis for a stronger relationship between specificity and the magnitude of perfor-

mance gains in late asymptotic compared to earlier learning stages.

In addition, the lowest-level theory predicts different spatial gradients of generalization

compared to read-out/reverse hierarchy and double training theoretical frameworks. We
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reasoned that if specificity/generalization were entirely due to processes in non-retinotopic

high-level areas, and would not involve any plasticity in retinotopic areas, then expertise

should spread equally in the visual field in all directions around a peripheral trained location.

Alternatively, if retinotopic areas, which are characterized by cortical magnification of central

vision [62], contributed to specificity, then generalization in the visual field from a trained

location should be greater towards the periphery than towards the center of vision. Plasticity

in horizontal connections [63, 64] may be instrumental in transferring training-induced tun-

ing or signal processing changes from directly stimulated neurons to non-stimulated neurons

in retinotopic areas.

To address these hypotheses, we first administered extensive training in Gabor orientation

discrimination at a peripheral location, and then tested the magnitude of position specificity

by comparing performance in the trained position to performance in neighboring positions of

equal polar angle within a visual field quadrant. We also tested orientation specificity in the

trained (and other) locations. Secondly, we aimed to derive information from the gradient of

generalization among neighboring positions placed both closer to the fovea than the trained

location and more peripherally along the same polar angle line. We had expected an asymmet-

ric gradient of generalization, larger towards the periphery than towards central vision, in line

with cortical magnification in early visual cortex. Thirdly, we wished to test whether specificity

could be predicted from the extent of learning, to gain insight into mechanisms contributing

to specificity. We were especially interested in determining whether progress in early or late

parts of learning was more strongly correlated with specificity. Note that we were not inter-

ested in maximizing generalization, but rather in inducing specificity and then testing hypoth-

eses about its determinants.

2 Material and methods

2.1 Participants

Ten participants (mean age 25.51, SD 5.62, 6 female) naïve to the purpose of the study partici-

pated in the main experiment involving orientation discrimination training followed by tests

of position and orientation specificity (main experiment). Additionally, ten naïve participants

(mean age 21.38, SD 2.34, 7 female) were recruited for testing the effect of eccentricity and spa-

tial frequency on orientation discrimination performance (control experiment). All partici-

pants had normal or corrected-to normal visual acuity. Informed, written and verbal consent

was obtained according to the Helsinki Declaration, after full information about all procedures

and the right to withdraw participation at any time. All procedures were approved by the local

Ethical Committee of the Faculty of Psychology and Neuroscience (ECP). For their participa-

tion in the study, participants received monetary reward, credits to fulfill course requirements,

or a combination of both.

2.2 Task, Stimuli, and Apparatus

Participants performed a forced-choice orientation discrimination task with two response

options in which participants had to compare a single stimulus to an implicit oblique reference

orientation. They indicated the direction of the orientation offset of a Gabor stimulus from the

oblique reference by pressing either the left or right arrow key for counterclockwise and clock-

wise rotations respectively (Fig 1A). In all experiments, Gabor patches around the 135˚ or 45˚

reference were used as stimuli (2.37 cycles/degree spatial frequency, 50% Michelson contrast,

0.5˚ standard deviation, 4 different phases: 0˚, 45˚, 90˚, and 135˚, 3˚ diameter, 500ms dura-

tion). The Gabor stimulus was presented at eccentricities of 3˚, 6˚, 9˚, 12˚, or 15˚, and its aver-

age luminance was 56 cd/m2, which was equal to the luminance of the background. The most
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foveal (3˚) and peripheral positions (15˚) were chosen such that they were approximately equi-

distant in V1 in terms of cortical distance [62] from the trained position. The stimuli were pre-

sented in the upper or lower left or right hemifield along respectively a 135˚ or 45˚ iso-polar

line. In all experiments, the fixation dot was a small, white disc (0.2˚). Participants were placed

in a dimly lit room; their head was supported by a chin and head rest keeping eye-screen dis-

tance constant at 57 cm. Visual stimuli were displayed on a 19” Samsung SyncMaster 940BF

LCD monitor (Samsung, Seoul, South Korea; 60Hz refresh rate, 1280x1024 resolution). The

screen was covered by a gray mask with an oval aperture so that the screen borders were not

visible to participants and thus could not be used as reference for the orientation discrimina-

tion task (the center of the Gabor stimuli was always at least 18.5˚ from the exterior border of

Fig 1. Orientation discrimination task and experimental design. A, Stimuli and task. Thresholds were determined

using an identification design, with left key responses for counterclockwise orientation offsets from a 135˚ reference

(dashed line, not shown to participants), and right key responses for clockwise orientation offsets. Here, stimuli are

enlarged for illustration purposes. B, Training phase (top) and the two experimental conditions of the testing phase

(bottom), one testing position specificity (P135) and the other testing orientation specificity (O45). Solid circles

represent the position (6˚ eccentricity) at which training took place. Dashed circles indicate the positions at which

specificity was tested: 3˚, 9˚, 12˚, and 15˚ eccentricity. Dashed and solid circles were not present in actual display and

are shown here only for illustration purposes. In the P135 and O45 conditions, a Gabor stimulus is shown for

illustration in the position trained at the 135˚ reference orientation. Here, the Gabor stimuli are shown to scale.

https://doi.org/10.1371/journal.pone.0201520.g001
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the mask). Fixation control was monitored with a Viewpoint Eyetracker v.2.8.3 (Arrington

Research, Inc., Scottsdale, Arizona, USA; 60Hz sampling rate). Stimulus presentation and

response recording was performed by Cortex v.5.9.6 (NIH freeware for psychophysical and

neurophysiological experimentation). Since the screen dimensions did not permit the presen-

tation of a stimulus at 15˚ eccentricity while having the fixation spot in the middle of the

screen, the screen in that condition was shifted 7cm up or down and 7cm to the left or right

(depending on the tested visual field quadrant). The fixation spot was moved oppositely, keep-

ing it in the center of vision. Both the main and control experiment were done with a gaze-

contingent display in which trials only started after a period of accurate fixation within 1.5˚

from the fixation point. Trials were aborted if the participant’s gaze fell outside that specified

range.

2.3 Training and generalization testing protocols

The experiment consisted of a training protocol followed by a phase of generalization (specific-

ity) testing. Importantly, at the beginning of training, we did not include a pre-test at the trans-

fer positions in the light of experiments showing that even very few trials may lead to

substantial position generalization [60]. The complete training protocol comprised a training
scheme for the trained position in a single quadrant of interest (see Fig 1) as well as various lev-

els of training in other quadrants, to which we refer as the experimental context (see Table 1).

The training scheme consisted of a phase comprising extensive daily training, which resulted

in asymptotic performance levels in a trained position, and was followed by a phase of general-

ization (specificity) testing. Over the course of 10–15 daily sessions, participants performed the

orientation discrimination task (Fig 1A) on a 135˚ oblique stimulus in an upper quadrant at 6˚

eccentricity (Fig 1B). A training session consisted of one or two blocks of four staircase mea-

surements (mean 88.55 trials/staircase) determining 84% correct orientation difference thresh-

olds (see Data and Statistical analyses). The complete training scheme led to learning curves

composed of at least 60 staircases.

There were some inter-individual differences in training scheme related to the stimulus, the

organization of training, and the time interval between training and generalization testing

(Table 1). Seven participants were trained for fifteen sessions with four staircases per session

(60 thresholds), whereas three more participants (P2-4) were trained for 10 sessions with 8

staircases per session (total of 80 thresholds). In three of the participants (P8-10) with 15 ses-

sions, training was supplemented with 26–39 refresher staircases (see Results section).

Refresher sessions were aimed to counter potential forgetting in participants who were invited

to perform the generalization testing several months after completion of training. The time

delay between end of learning and refresher sessions was 4, 10 and 10 months in P8, P9 and

P10, respectively. Generalization testing immediately followed the refresher sessions in P8-10,

or the end of learning in the seven other participants.

There were also differences among participants in experimental context; notably, there were

different levels of orientation discrimination training at the same reference orientation of 135˚

or others, in quadrants other than the quadrant of interest for the present study. The presence

of training in extra quadrants as well as at how many references this training took place is sum-

marized in the right-hand column of Table 1 (see legend for details). We demonstrated that

neither the variations among participants in experimental context nor training scheme influ-

enced our measures of specificity (see Results, section 3.3 and 3.7).

Because one half of participants was trained (with the 135˚ reference) in the left upper

quadrant, and the other half in the right upper or left lower quadrant, the reference orientation

was aligned with polar angle line in the former but not the latter group (Table 1). Alignment
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could render the fixation spot a potential cue for orientation discrimination. During position

specificity testing (with the 135˚ reference), the alignment condition present during training

was maintained. However, during orientation specificity testing (with the 45˚ reference), the

participants in which the reference orientation was aligned during training, underwent the ori-

entation specificity testing at a reference orientation orthogonal to polar angle, whereas in the

Table 1. Training schemes.

P sessions

(thresholds)

trained

quadrant

aligned with polar

angle and fixation dot

delay training-

transfer

test

delay

training

-refresher

delay refresher

—transfer

test

number of

refresher

sessions

number of

refresher

staircases

experimental

context

1 15 (4) right upper during orientation

specificity test

32 days na na na na 1Q-3R

2 10 (8) left upper during training 1 day na na na na 0Q

3 10 (8) left upper during training 5 days na na na na 0Q

4 10 (8) right upper during orientation

specificity test

32 days na na na na 0Q

5 15 (4) left upper during training 5 days na na na na 3Q-1R

6 15 (4) left upper during training 31 days na na na na 1Q-3R

7 15 (4) right upper during orientation

specificity test

11 days na na na na 3Q-1R

8 15 (4) &

refresher

left lower during orientation

specificity test

97 days 90 days 7 days 3 26 1Q-3R

9 15 (4) &

refresher

left upper during training 370 days 367 days 3 days 3 35 2Q-1R & 1Q-3R

10 15 (4)&

refresher

right upper during orientation

specificity test

389 days 388 days 1 day 3 39 2Q-1R & 1Q-3R

Detailed differences in training schemes and experimental context among participants. The first 9 columns show details about training schemes. From left to right,

columns show (1) participant number (P), (2) numbers of daily sessions and number of thresholds per session, (3) quadrant used for training (and transfer testing), and

(4) whether reference orientation was aligned with polar angle and fixation dot. The next columns show (5) the delay between the end of training and the beginning of

transfer testing, and (6) when applicable (na = non-applicable) the delay between the end of training and start of refresher training, (7) the delay between end of

refresher training and the beginning of transfer testing as well as (8) the number of refresher sessions and (9) refresher staircases. The study focused on training and

generalization within a single quadrant of the visual field (right upper or left upper or lower quadrant). In this quadrant of interest, participants underwent extensive

training at a single reference orientation (135˚) after which generalization was tested along a set of equi-polar positions within the same quadrant. For the training

within this quadrant of interest, participants underwent slightly different training schemes. Three groups can be distinguished. Firstly, three participants (P2, 3, 4) were

trained only in a single quadrant and underwent 10 sessions with 8 staircases each, immediately followed by transfer tests. Secondly, four participants (P1, 5, 6, 7)

trained for 15 sessions with 4 staircases in the quadrant of interest for the present study, again closely followed by transfer testing. Thirdly, three participants (P8, 9, 10)

were trained for 15 sessions with 4 staircases. Here, there was a long delay in inviting the participants for the generalization tests, which therefore were preceded by

refresher training sessions. In the second and third group, the data in the quadrant of interest for the present study were collected in the context of other experiments

performed in other quadrants, falling outside the focus of interest of the present study.

Column 10 summarizes the experimental contexts in which the data for the present paper were collected. With the term experimental context, we refer to the presence or

absence of threshold measurements obtained in other studies outside the quadrant of interest for the present study. Four groups can be distinguished, marked by 4

codes in column 10, indicating training outside the quadrant of interest. Each code indicates in how many extra quadrants (Q) and for how many references in these

quadrants (R) training was obtained. Firstly, three participants (P2, 3, 4) had trained just for the present experiment in a single quadrant, without training in other

quadrants (context 0Q; zero extra quadrants). Secondly, in three participants (P1, 6, 8) in which training was performed in one extra quadrant with three references

(context 1Q-3R). Thirdly, two participants (P5, 7) underwent training with a single reference orientation in three additional quadrants with a single reference

orientation (3Q-1R), as well as subliminal exposure in the lower two quadrants. The training outside the quadrant of interest in the second and third group occurred in

the same daily sessions during which the training in our quadrant of interest was carried out. Finally, two participants (P9, 10) had participated in training at a single

reference in two extra quadrants, and with three references in a third extra quadrant (2Q-1R & 1Q-3R), prior to training in the quadrant of interest of the present study.

For each extra reference orientation, data were collected in 15 daily sessions composed of 4 staircase measurements, and these data were collected over one or more

months. Statistical analysis (see Results) has demonstrated that neither training scheme nor experimental context had an effect on the thresholds obtained in the

quadrant of interest in the present study or the specificity indices.

https://doi.org/10.1371/journal.pone.0201520.t001
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other group of participants, the opposite was true. Thus, across training and testing of position
generalization, the alignment condition was constant within participants, half of the group

showing alignment, and the other half not. Across training and testing of orientation generali-

zation, the alignment condition was switched from alignment to no alignment in one half of

the group, and vice versa in the other half. In Results (see Section 3.3), we show that alignment

was unlikely to have influenced the magnitude of the thresholds.

The transfer phase of the experiment (lower part of Fig 1B) tested the specificity of training

for Position at the trained reference orientation (P135), and specificity for Orientation using a

45˚ reference orientation (O45), orthogonal to the trained reference. In both conditions, five

different eccentric positions were tested: 3˚, 6˚ (trained position), 9˚, 12˚, and 15˚. In the P135

condition, eight staircase measurements at the 135˚ reference were completed per position

over two subsequent days, resulting in 40 threshold measurements. In the O45 condition,

another 8 staircase measurements per position were collected at the 45˚ reference, yielding

another 40 thresholds. On each day, positions were presented in a pseudorandom manner and

four staircase measurements in all five test positions were completed. The test for position

specificity (P135) was carried out first, followed by the test of orientation specificity (O45).

Note that for the assessment of position specificity, we did not perform a pre-training ver-

sus post-training comparison in the test locations surrounding the trained position. This

would have required including some pre-learning threshold measurements in these test loca-

tions. We purposefully opted against this experimental design to avoid the possibility that

transfer could be due to pre-training measurements in the different test locations (see [60]).

Here, we were interested in the amount of transfer to other nearby locations (or the lack

thereof referred to as specificity) induced by extended training at a single location, not con-

taminated by any prior experience in those locations.

In a control experiment we tested the effect of eccentricity on orientation discrimination

performance in a group of naïve participants (n = 10). The control participants completed two

sessions, in each of which the orientation discrimination task was performed at five different

eccentric positions (3˚, 6˚, 9˚, 12˚, and 15˚). In total, 8 thresholds were obtained at each posi-

tion. The five positions were arranged along an equi-polar line of 45˚ (upper right quadrant,

stimulus orientation 135˚, 5 participants) or 135˚ (upper left quadrant, stimulus orientation

45˚, 5 participants). The order of sessions was counterbalanced across participants as was the

order of stimulus positions.

2.4 Data collection and statistical analyses

Thresholds were measured using a Wetherill & Levitt [65] staircase tracking 84% correct per-

formance, in which four correct responses in a row led to a decrease in the orientation differ-

ence (division by 1.2) and a single incorrect response to an increase (multiplication by 1.2).

The staircase was terminated either when 14 reversal points were acquired or 120 trials were

completed, whichever came first. The threshold was computed as the geometric mean of the

last ten reversal points, where the staircase converged on the orientation difference estimating

a 84% correct performance. The first 4 reversal points did not contribute to threshold estima-

tion. Note that the orientation thresholds we report here and in all previous studies testing ori-

entation discrimination from our group [66–71] correspond to the angle between the two

orientations, and not to the absolute deviation of the presented orientation and an imaginary

reference as done in other studies (e.g., [8, 12]). The latter way of reporting thresholds is based

on the idea that participants compare each stimulus with an internal reference. The former

way of reporting thresholds is justified by taking into account that the stimulus presentation

from the previous trial may help in providing a correct response on the current trial.
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For the first training session, the start level of the four staircases was set at an orientation

difference of 15˚. This starting level in the first session was chosen because it is likely above

threshold for most participants (as estimated from a similar study design yielding a mean

threshold in the first session of 9.96, SD = 5.76, n = 29 [66]), but not so high that the threshold-

level could not be reached within a single staircase. With this starting orientation difference, a

level close to the typical first-session threshold (mean 11.44˚ in our current dataset, SD 6.75,

n = 10) can be reached in about two steps, or eight correct responses. In general, well-above

threshold examples are thought to facilitate subsequent learning (Eureka effect, [50]). Even if

the starting orientation difference in the first session may have been too difficult in some par-

ticipants, this should then have led to a number of errors quickly leading to large (exemplary)

orientation differences. Therefore, the use of the staircase procedure guaranteed the presenta-

tion of large orientation differences whenever the starting threshold would have been set too

low in some participants.

For all subsequent sessions, including the transfer phase, the average threshold level of the

previous session was taken as a starting point. This was done to maximize the number of trials

given around threshold level, thereby increasing the extent of asymptotic (late) learning, task

difficulty and specificity [51, 54]. Despite the different starting rule between the first session

and the later ones, staircases in the first session converged to a level close to the expected 84%

correct, as did all other staircases. The last ten reversal points used for threshold calculation

corresponded to an 84.9% performance level in the first session, within the 82.5–85.9% range

for all additional sessions (averaged over all participants). The length of the staircases of the

first session (mean: 93 trials, range: 60–120 trials) was only slightly longer than that for the

other sessions (mean: 90 trials, range: 53–120 trials). These observations indicate that all

thresholds shown during learning from first to last session reflect a good estimation of the

same 84% correct performance level, and hence that the first-session threshold and the faster

rate of learning in the beginning part of the learning was not due to a different functioning of

the staircases during initial learning.

Following computing the individual staircase thresholds, the natural logarithm was taken to

homogenize variance in the sample of participants, after which they were then averaged per

condition. Statistical analysis was based on these ln-transformed average thresholds in each

condition per participant, with each participant contributing one data point per condition.

The term ‘staircase’ is used as shorthand for the staircase threshold measurement procedure,

and ‘threshold ‘or ‘staircase threshold’ are used interchangeably to refer to the outcome of the

staircase procedure (i.e., a threshold).

To assess position and orientation specificity, data was analyzed with repeated-measures

ANOVAs. In cases where the sphericity assumption was violated, the Greenhouse-Geisser cor-

rection was applied. For pairwise comparisons, two-sided t-tests were performed (unless men-

tioned otherwise) and adjusted for multiple comparisons using Bonferroni correction.

In sections 3.1 to 3.3, we used a conventional specificity index based on earlier studies (e.g.,

[17, 18, 51])). This index was defined as the proportion of total improvement in the training

stage that is not transferred to the new position at the point of the transfer test. On average,

participants tended to have lower thresholds at the trained position during transfer testing

compared to during the last session of training. Similarly to Jeter and colleagues [17] we there-

fore also calculated the index using not the end of training but the transfer test threshold for

the trained position and orientation as reference, referred to as Ote :

S0 ¼ ðOtest ðo; eÞ
� Otest ð135� ; 6� eccÞ

Þ=ðOtrain beginð135� ; 6� eccÞ
� Otest ð135� ; 6� eccÞ

Þ ð1Þ

where Otrain beginð135� ; 6� eccÞ
and Otest ð135� ; 6� eccÞ

are the orientation discrimination thresholds for the
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first training session and transfer test respectively at the trained position and reference orienta-

tion, and Otest ðo; eÞ the orientation discrimination threshold during transfer test where o and e

indicate the reference orientation and eccentricity. This index, referred to in our paper as the

conventional specificity index, can range between 0 and 1, where a value of 0 means no speci-

ficity (full transfer), a value of 1 means complete specificity. Partial specificity is assumed when

the index differs significantly from 0. To assess the influence of training scheme and experi-

mental context on the conventional specificity indices, it was necessary to calculate the speci-

ficity indices using the threshold from the last training session as reference (instead of the

transfer test threshold for the trained position and orientation), as otherwise the values for the

trained position and orientation become zero by definition and thus cannot show variance.

We also used specificity indices different from the conventional specificity index (in sec-

tions 3.5 to 3.7). The reason for this was that we wanted to relate the specificity index to differ-

ent stages of learning. To do so, a specificity index is required that is different from the index

that measures progress during training. In Jeter’s conventional index S’, the denominator

reflects the improvement during training, and we would essentially correlate S’ with its own

denominator. It is also not clear how to modify Jeter’s index if one wants to correlate progress

in early, middle, or late phases of learning with specificity.

With the aim in mind to assess training extent and specificity with different indices derived

from non-overlapping data, we quantified position, orientation specificity as well as training-

related performance increases, using a Michelson index. The training index quantified the

amount of performance increase for the total length of training, or within a specific phase of

training and was calculated as:

T ¼
Otrain beginð135� ; 6� eccÞ

� Otrain endð135� ; 6� eccÞ

Otrain beginð135� ; 6� eccÞ
þ Otrain endð135� ; 6� eccÞ

ð2Þ

Here, Otrain beginð135� ; 6� eccÞ
and Otrain endð135� ; 6� eccÞ

represent the average of the first and last group of 4

orientation thresholds obtained in a specific training phase at the eccentricity position of 6˚.

The mean learning curve averaged over all participants was based on 60 individual thresholds.

Hence, thresholds used to compute the training index for the whole learning curve compared

the average of individual thresholds 1–4 with the average of individual thresholds 57–60.

Training indices were also calculated separately for the first, second, and last tertile of the

learning curve. Some participants had done more than 60 staircase thresholds because of a dif-

ferent training protocol (P2-4) or additional refresher thresholds (P8-10). Therefore, for these

participants, we also calculated the training index T using end thresholds 77–80 in P2-4 and

the last 4 refresher thresholds in P8-10 (see Results).

The Michelson-index-based position specificity (PS) index quantified the difference

between performance at the trained position and performance at all other test positions and

was calculated as:

PS ¼
Otest ð135� ; other eccÞ

� Otest ð135� ; 6� eccÞ

Otest ð135� ; other eccÞ
þ Otest ð135� ; 6� eccÞ

ð3Þ

Here, Otest ð135� ; 6� eccÞ
represents the orientation threshold from the trained position in condition

P135 during the transfer phase and Otest ð135� ; other eccÞ
represents the orientation threshold from

either the remaining four positions in the same condition, or the mean of only the two sur-

rounding positions (3˚ and 9˚). Which test positions were included in Otest ð135� ; other eccÞ
for deter-

mining the PS is explicitly indicated in the text.
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The Michelson-index-based orientation specificity (OS) index quantified the difference

between performance at the trained position for the trained orientation (135˚) and the control

orientation (45˚) and was calculated as:

OS ¼
Otest ð45� ; 6� eccÞ

� Otest ð135� ; 6� eccÞ

Otest ð45� ; 6� eccÞ
þ Otest ð135� ; 6� eccÞ

ð4Þ

Here, Otest ð45� ; 6� eccÞ
represents the threshold from the untrained orientation in condition O45 at the

trained position during the transfer phase, and Otest ð135� ; 6� eccÞ
represents the orientation threshold

from the trained orientation in condition P135 at the trained position. For all indices, we performed

1.5 Interquartile Range (IQR) criterion outlier detection, to exclude biasing any correlations based

on those indices by extreme data points. We used ordinary least square (OLS) regression analysis

to predict position and orientation specificity from training indices. Robust regression analysis

was additionally used to further test for the contribution of extreme data points.

3 Results

3.1 Within-quadrant transfer tests after training show significant position

specificity and orientation specificity

Fig 2 shows data from individual participants in ten separate panels, showing in each panel

training thresholds at the 135˚ reference orientation on the left, and the transfer test thresholds

(position and orientation specificity test) on the right. On the left in each panel, the complete

training phase is shown for 15 sessions of four thresholds in seven participants, or for 10 ses-

sions of eight thresholds in three other participants (P2-4). In three participants (P8-10),

refresher thresholds are shown following the learning curve. These thresholds were collected

just prior to generalization testing to counter possible forgetting due to a time delay in inviting

these participants for the generalization test (see Methods). Overall, participants showed con-

siderable learning during the training phase at the 135˚ oblique reference orientation. On the

right in each panel, performance in the transfer-testing phase is shown by comparing the

threshold at the previously trained position (solid lines) with the pooled threshold from all

other neighboring generalization-test positions (dashed lines). This comparison was done sep-

arately for the P135 and O45 generalization tests. Both generalization tests consisted of two ses-

sions of 4 thresholds per test position in each participant, as shown in the right-hand part of

each figure panel. Overall, the transfer data in the P135 condition suggest a trend for test thresh-

olds at the 135˚ reference orientation to be higher in non-trained positions (dashed dark-grey

line) than in the trained position (solid dark-grey line). This difference is not systematically

present for test thresholds measured in the O45 condition (45˚ reference orientation, light grey

solid and dashed lines). Moreover, thresholds in the O45 condition exceeded those in the P135

condition for the initially trained position (compare the solid dark-grey and light-grey lines)

but also for the other positions (dashed dark-grey and light-grey lines).

Fig 3A shows the data averaged over all ten participants. Given the fact that in 3 participants

training data were collected in 10 daily sessions of 8 thresholds, and in 15 daily sessions of 4

thresholds in the other participants (left column Table 1), we took the first 60 thresholds of all

ten participants and divided them into blocks of four thresholds, resulting in 15 data points for

the learning curve in each participant. Henceforth, a ‘block’ refers to a group of four staircase

thresholds, as opposed to a session, which refers to all thresholds collected on the same day

(i.e., two blocks per session in three participants, and 1 block per session in the others). Limit-

ing the learning curve to 60 thresholds (15 blocks) means that neither the last 20 thresholds of
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Fig 2. Individual learning curves for all ten participants. Participants completed slightly different training schemes: In participants 1–7,

the end of training was followed immediately by the two transfer tests. Participants 8–10 received their training ~6 months prior to
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P2-4, nor the refresher thresholds in P8-10 were included in Fig 3A (see also Table 1). Note

furthermore that each data point in the learning curve corresponds to ten average thresholds,

one per participant, with each data point in an individual representing the average of four

generalization testing, and therefore refresher thresholds (26–39 thresholds) were done prior to generalization testing (other details in

Table 1). In all participants, the quadrant where training occurred (upper left or upper right quadrant, see Table 1) had never been exposed

to any training with visual stimuli. For the quadrant in which training occurred in the present study, the training index T for the entire

learning amplitude is shown, as well as the training indices for early learning (Te), intermediate phase learning (Ti), late phase learning (Tl)

as well as the ‘extra-late’ phase learning (Tx). During transfer testing, position transfer at the 135˚ reference orientation (P135) and

orientation transfer to the 45˚ reference orientation (O45) were done back to back in all participants, with position transfer testing always

preceding orientation transfer testing. Overall, the data indicate a difference in the P135 condition between thresholds in the standard

trained position (dark-grey solid lines) and thresholds pooled over all other positions (dark-grey dashed lines). In the O45 condition,

overall, there was no analogous difference between thresholds at the 45˚ reference orientation in the location trained with the 135˚

reference orientation (light-grey solid lines) and thresholds at the 45˚ reference pooled over the other locations (light-grey dashed lines).

However, using an untrained reference orientation (both light-grey lines) overall seemed more detrimental for the magnitude of thresholds

than using an untrained position (dark-grey dashed line).

https://doi.org/10.1371/journal.pone.0201520.g002

Fig 3. Mean performance during training (A) and transfer testing phase (B, C). A, Each data point of the learning

curve corresponds to the average of ten thresholds (1 per participant), with each participant’s threshold based on four

staircase thresholds. In three participants, blocks do not correspond to daily sessions (details in text). B, The data from

the transfer phase (one data point per participant, based on the average of eight staircase thresholds) shows thresholds

for 135˚ (black symbols) and 45˚ (grey symbols) stimuli conditions at the trained position at 6˚ eccentricity (circles)

and the average of all surrounding generalization test positions–each tested with 8 threshold in all participants

(squares). C, Same data as in B except that the square symbols only represent the data from the two directly

surrounding test positions at 3˚ and 9˚ eccentricity. Error bars represent the standard error of the mean. Some

participants underwent four staircases in each of 15 sessions (P 1, 5, 6, 7,8, 9,10), whereas others underwent eight

staircases in each of 10 sessions (P 2, 3, 4), with session referring to a single testing period in a single day in which

either 4 or 8 staircases thresholds were collected. Participants with 15 sessions of 4 staircases had a mean of 90.06 trials

per staircase (sd 15.97) (average of 360.24 trials/session) and the participants with 10 sessions of 8 staircases had a

mean of 88.04 trials per staircase (sd 14.02) (704.32 trials/session). We wanted to compare and average the learning

curves over participants despite the different distribution of numbers of staircase thresholds over daily sessions in the

above-referred participants. To do this, we chose here to display average thresholds as a function of blocks of 4

staircases in all participants. In 7 out of 10 participants, blocks correspond to sessions. In the other three participants,

each single training session of 8 staircases is split in 2 blocks. This means that for P2-4 data based on the final 20

thresholds are not included here, but their effect in generalization is evaluated in separate analyses (see results in

section 3.5 and 3.6).

https://doi.org/10.1371/journal.pone.0201520.g003
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individual staircase thresholds. In the transfer phase, each data point represents the average of

ten participants, each contributing the average threshold of eight staircase thresholds. Analysis

showed that there was no difference between the first and last four thresholds obtained during

transfer testing for any of the combinations of position (3˚, 6˚, 9˚, 12˚, 15˚) and condition

(P135, O45) (all p> .242) , which is why we here show transfer thresholds that per participant

are based on 8 staircase thresholds.

Note that the thresholds in the test positions were averaged in two ways, either including all

test positions surrounding the trained position (Fig 3B), or only including the two test posi-

tions next to the trained position (Fig 3C). The latter representation of the data will be dis-

cussed in section 3.4 Position and orientation specificity based on immediately surrounding
positions. Taken together, when compared to the amplitude of learning shown in Fig 3A, the

data show large within-quadrant generalization of orientation discrimination performance.

Nevertheless Fig 3B (and similarly, Fig 3C), also demonstrates a difference in the P135 condi-

tion between thresholds in the standard trained position (black circle) and in the test positions

(black square), in line with significant position specificity. An analogous difference was not

present for the O45 condition (grey symbols). In addition, compared with thresholds at the

135˚ reference in the trained position (black circle), thresholds at the untrained 45˚ reference

orientation in the same position (grey circle) showed a pronounced increase, suggesting sub-

stantial specificity for reference orientation. The increased thresholds at the 45˚ reference ori-

entation in test positions surrounding the trained position (grey black square) also support

specificity.

To statistically test the data obtained during generalization testing, we used a repeated mea-

sures ANOVA on the transfer test data as shown in Fig 3B. This analysis revealed a significant

main effect of condition (P135, O45) (F(1, 9) = 41.339; p< .001), a non-significant main effect of

test position (trained, others) (F(1, 9) = 5.464; p = .044), and a significant interaction between

these two factors (F(1, 9) = 31.792; p< .001). As the interaction indicated that the position effect

differed between the two reference orientations, a repeated measures ANOVA on position

(trained, others) was performed for condition P135 and O45 separately. For the P135 condition

there was a highly significant effect of position (F(1, 9) = 38.898; p< .001), with the orientation

discrimination test threshold at the trained position (Fig 3B, black circle) being lower than the

average threshold of all other test positions (Fig 3B, black square). In the O45 condition (grey

symbols), in which orientation discrimination was tested with the untrained 45˚ reference ori-

entation, the repeated measure ANOVA resulted in no significant main effect of position (F(1,

9) = 1.747; p = .219). This indicates that the emergence of position specificity at the end of

learning was specific for the trained reference orientation. Interestingly, overall, the thresholds

in the O45 conditions in Fig 3 were considerably higher than the thresholds for asymptotic

learning of the trained 135˚ reference orientation, returning roughly to the performance level

observed in the fourth training session. This suggests a relatively large amount of orientation

specificity.

Next, we wished to control for potential influences of training scheme and experimental

context on specificity. To that aim, we repeated the statistical comparison of thresholds at the

135˚ reference between trained and test positions (assessing position specificity), and the com-

parison of thresholds when switching from the 135˚ reference to the 45˚ reference orientation

in the position trained with the 135˚ reference. However, this time we used training scheme

and experimental context as covariates. In neither analysis were these covariates significant (all

p> .798). When comparing the size of the position and orientation effect over participants,

the data revealed larger orientation specificity indices than position specificity indices (t(9) =

-4.203, p = .016). To assess the precise magnitude of specificity relative to the amount of learn-

ing during training, we calculated the conventional position specificity index for the average of
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all non-trained test positions and the conventional orientation specificity index across all

eccentricities. This showed that despite a large amount of generalization of performance

within a quadrant there was partial position specificity (S’ = 0.251, p = .007) and partial orien-

tation specificity (S’ = .513, p = .001). These values show that after switching to a different posi-

tion, 25.1% of original learning was lost, whereas after switching reference orientation, 51.3%

of original learning was lost. The conventional specificity indices thus showed that orientation

specificity was twofold larger than position specificity, which was confirmed by a statistically

significant difference between the two (t(9) = 3.839, p = .004). This result however is linked

with our experimental design, and should not be taken as evidence that orientation specificity

is generally larger than position specificity. In the present experiment, the orientation differ-

ence during generalization testing was maximized (testing at an orthogonal reference orienta-

tion), whereas the position difference over which generalization was tested was minimized

(limiting ourselves to close locations within a quadrant).

Furthermore, we noticed a remarkable trend in the data related to orientation specificity. In

the non-trained test positions that were tested at the 45˚ and the 135˚ reference orientation

(compare square symbols), there was a near-significant trend for orientation specificity (t(9) =

-3.446, p = .051). This suggests that there can be orientation specificity in locations that have not

been exposed to any training, but at threshold levels that exceed the level attained after complete

training. For completeness, we also report that for the untrained orientation (45˚) the difference

in thresholds between the trained and the untrained, surrounding positions was not significant

(compare grey symbols: t(9) = 1.322, p =>.999), demonstrating that position specificity did not

extend to the untrained orientation. Accordingly, the difference in threshold between trained

and non-trained locations for the 135˚ reference orientation was significantly larger than the

difference in thresholds between trained and non-trained locations for the 45˚ reference orien-

tation (t(9) = 5.651, p = .002). This supports the idea that full training at the 135˚ reference orien-

tation at the 6˚ eccentricity position creates a form of expertise that is linked to both the trained

position and the trained reference orientation. Overall, the data also show that the variation in

thresholds due to position and orientation specificity was relatively small compared to the

decrease in thresholds from the beginning to the end of learning. However, analysis of thresh-

olds as well as the use of the S’ specificity index supported the presence of significant specificity.

Hence, the data indicate that much, but not all, of the performance benefit of learning can gen-

eralize over position and orientation for test positions in the same quadrant as the training loca-

tion. Accordingly, testing the trained 135˚ reference orientation at a neighboring transfer

position yields a threshold that corresponds closely to the threshold in the trained position in

session 8, whereas testing an orthogonal (45˚) reference orientation in the trained position

yields a threshold closely corresponding to the threshold in session 4. The loss of the late part of

learning during generalization testing suggested that performance gains in later parts of learn-

ing may be preferentially related to specificity (see 3.5 Position specificity is related to the extent
of late learning and 3.6 Orientation specificity is related to the extent of late learning).

3.2 Does asymmetric transfer suggest retinotopic contributions to position

specificity?

We had hypothesized that due to cortical magnification in retinotopic areas, there would be

less transfer from the trained position towards the fovea than towards the periphery for

matched distances in the visual field. To test this asymmetric transfer hypothesis, we per-

formed a repeated measures ANOVA with thresholds of each of the five eccentric positions

(3˚, 6˚, 9˚, 12˚ and 15˚, see Fig 4A) as a within-subjects factor. The results showed that the

main effect of stimulus position was highly significant (F(4, 36) = 17.162; p< .001). Pairwise
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comparisons (Fig 4A) showed that thresholds at the most central position differed from

thresholds at all other eccentricities (3˚ vs. 6˚—t(9) = 8.162, p = .001; 3˚ vs. 9˚—t(9) = 5.459, p =

.004; 3˚ vs. 12˚—t(9) = 4.335, p = .019; 3˚ vs. 15˚—t(9) = 4.611, p = .013). The trained position

also differed significantly from the 12˚ position (6˚ vs. 12˚: t(9) = -5.595, p = .003). The remain-

ing comparisons between positions did not differ significantly from each other (6˚ vs. 9˚: t(9) =

-2.714, p = .239; 6˚ vs. 15˚: t(9) = -3.453, p = .072; 9˚ vs. 12˚: t(9) = 0.109, p> .999; 9˚ vs. 15˚: t(9)
= 0.547 p> .999; 12˚ vs. 15˚: t(9) = 0.819, p> .999). Hence, the data seem to suggest that the

expertise gained at the 6˚ trained position generalized more towards peripheral positions than

to the more central position. For example, there was a larger threshold increase from the

trained position (6˚) to the most central 3˚ position compared to the threshold increase at the

9˚ position. This may suggest a contribution of retinotopic mechanisms to position specificity,

with less transfer towards the foveal position (corresponding to larger cortical distance) and

more transfer towards a peripheral position (over the same visual field distance but a smaller

cortical distance).

Fig 4. Orientation discrimination thresholds as a function of stimulus position eccentricity. A, Transfer test with

trained reference orientation. Trained participants completed 15 sessions of training at a reference orientation of 135˚

and subsequently performed the transfer test at that reference (black line: P135) (� p< .05, �� p< .01). B, Transfer test

with an orientation reference orthogonal to that used during training. The same participants whose data is shown in

(A) for P135 performed the transfer test at the non-trained reference orientations of 45˚ (grey line: O45). Data from the

P135 transfer condition are copied for comparison (black line). Asterisks indicate significance of threshold differences

(� p< .05, �� p< .01). C, Specificity index for the P135 and O45 condition for all eccentricities. The index used the 6˚

eccentricity condition for the trained orientation as a reference to assess the amount of specificity (for details see

Methods). Partial specificity was found for all eccentricities and orientations except at 9˚ in the P135 condition.

Asterisks indicate significance of differences in S’ (� p< .05, �� p< .01) for position (P135) and orientation (O45). D,

Control experiment testing effect of eccentricity on orientation thresholds in untrained participants. Naïve control

participants without any prior training performed orientation discrimination at either a 135˚ or a 45˚ reference

orientation (with quadrant choices avoiding alignment of reference orientation with the polar line) at five different

stimulus position eccentricities. Error bars show standard error.

https://doi.org/10.1371/journal.pone.0201520.g004
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This interpretation can be questioned however based on thresholds obtained at the

untrained 45˚ reference orientation in all test positions. Considering the data for the 45˚ refer-

ence orientation alone (grey line in Fig 4B), the data simply suggest that orientation discrimi-

nation improved with eccentricity (repeated measures ANOVA, F(4, 36) = 4.389, p = .005). To

test whether the advantage with increasing eccentricity was dependent on reference orienta-

tion, we performed a repeated measures ANOVA combining the data from the two reference

orientations. The analysis included reference orientation (P135, O45) and position (3˚, 6˚, 9˚,

12˚ and 15˚) as within-subject factors and revealed a significant main effect of reference orien-

tation (F(1, 9) = 22.981; p = .001), a significant main effect of eccentric position (F(4, 36) =

11.429; p< .001) and a significant interaction (F(4, 36) = 8.337; p< .001). A comparison of ori-

entation discrimination thresholds for reference orientations 45˚ and 135˚ per eccentricity

revealed that all thresholds except at 12˚ were significantly different (3˚: p = .036; 6˚: p< .001;

9˚: p = .009; 12˚: p = 0.057; 15˚: p = .025; see asterisks in Fig 4B).

Note that the interaction between reference orientation and eccentricity was mainly due to

the difference between thresholds at the 6˚ position, which confirms the strong orientation

specificity at that position. When excluding that position, a repeated measures ANOVA using

reference orientation (E135, C45) and position (3˚, 9˚, 12˚ and 15˚) as within-subjects factors

confirmed the significant main effects of reference orientation (F(1, 9) = 11.742; p = .008) and

eccentricity (F(3, 27) = 13.242; p< .001), but did not show a significant interaction (F(3, 27) =

0.371; p = .774). Thus, orientation discrimination performance at both the 45˚ and the 135˚

reference was better at higher eccentricities. This suggests an advantage in orientation discrim-

ination at higher eccentricities that could be due either the use of a low-frequency Gabor stim-

ulus, or to a learning effect. Therefore, the data do not support that the within-quadrant

gradient in transfer would reflect a contribution of cortical magnification of central vision in

retinotopic areas.

A further argument against a contribution of cortical magnification to the within-quadrant

transfer gradient over positions of skill at the 135˚ reference orientation is related to the differ-

ence in thresholds at the 15˚ and 3˚ positions. These two positions had been chosen to approx-

imately match in cortical distance in V1 and V2 from the trained position (3˚), and hence we

had expected that the thresholds of these two positions would be approximately the same.

Contrary to these expectations, the thresholds differed significantly at these two positions

(p = 0.013) (see Fig 4A).

To further assess the magnitude of position specificity per eccentricity at the 135˚ reference

orientation, we calculated the conventional specificity index S’ (Fig 4C, black line). Partial

specificity was found for 3˚ (S’3˚ = .431, p = .001), 12˚ (S’12˚ = .233, p = .016), and 15˚ (S’15˚ =

.160, p = .011), however at 9˚ there was no evidence for partial specificity (S’9˚ = .181, p = .114).

Thus, moving 3˚ towards the fovea from the trained position resulted in significant specificity,

whereas moving 3˚ towards the periphery from the trained position did not result in signifi-

cant specificity, possibly supporting a retinotopic mechanism for position specificity. How-

ever, specificity expressed by S’ was significantly smaller at 15˚ compared to 3˚ of eccentricity

(t(9) = 3.751, p = .005), which was not expected. Moreover, an eccentricity-dependent gradient

in S’ was present at the 45˚ reference orientation (Fig 4C, grey line), similar to that observed at

the 135˚ reference orientation (when excluding the 6˚ position; Fig 4C, black line). This is in

line with the interpretation that for the chosen stimulus there was a general orientation dis-

crimination performance advantage at the largest eccentricities compared to the smallest one,

thus questioning the interpretation that cortical magnification in retinotopic areas would drive

the observed spatial pattern of generalization.

To evaluate whether the trend towards better performance in the peripheral test positions

reflected an advantage of low spatial frequency stimuli at higher eccentricities, or perhaps a
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learning-related effect, we conducted a control experiment in ten naive participants without

prior orientation discrimination training. They performed orientation discrimination with the

same Gabor stimulus (2.37 cycles/degree) along eccentricities ranging from 3˚ to 15˚ along an

equi-polar line in a single visual field quadrant (see Methods for details). The data of the

untrained participants also showed decreased thresholds for higher eccentricities (Fig 4D). This

was confirmed in a repeated measures ANOVA with eccentricity (3˚, 6˚, 9˚, 12˚, 15˚) as within-

subjects factor, which showed a significant main effect (F(2.214, 19.922) = 5.118, p = .014). Since

participants performed eight staircases in each position spread over two sessions (four per ses-

sion), we wished to test whether this high eccentricity advantage disappeared in the second ses-

sion. Additional analysis including session (session 1 and 2) as a second within-subject factor

revealed decreased orientation discrimination thresholds with increasing eccentricity to the

same extent in sessions 1 and 2, as the interaction between session and position was not signifi-

cant (F(4, 36) = 1.053, p = .394). We also checked for session and position order effects as one

could hypothesize that participants improved over time and thus were performing better at

positions that were trained later in a session. There was a significant session effect (F(1, 9) = 13.088,

p = .006), but the position order effect (F(4, 36) = 1.354, p = .269) and the interaction (F(4, 36) =

1.444, p = .239) were non-significant. Participants thus improved across sessions but in both ses-

sions performance was better for more peripheral stimulus positions irrespective of the order in

which positions were tested. Taken together, the data indicate that the better performance in the

orientation discrimination task for more peripheral stimulus positions was due to an interaction

between stimulus characteristics and eccentricity and not to a learning effect.

It is noteworthy that the data in Fig 4B and 4C also confirm significant orientation specific-

ity. In the experimental design used, OS tended to be larger than PS at all but one position

used (as indicated by asterisks in Fig 4B on top of corresponding threshold measurements),

which is in line with the significant main effect of reference orientation in ANOVA on thresh-

olds in Fig 4B (details in paragraphs above describing the analysis of Fig 4B). In addition, com-

puting the conventional orientation specificity index separately for all eccentricities, partial

but significant orientation specificity was found for 3˚ (S’3˚ = .547, p< .001), 6˚(S’6˚ = .513, p =

.001), 9˚ (S’9˚ = .403, p = .001), 12˚ (S’12˚ = .354, p = .006), and 15˚ (S’15˚ = .316, p = .004) (see

also Fig 4C, grey line). In the experimental design we used, S’ tended to be larger for orienta-

tion than for position specificity (see asterisks in Fig 3C). The differences in S’ for 3˚ (ΔS’3˚ =

.116, p = .062), 6˚(ΔS’6˚ = .513, p = .001), 9˚ (ΔS’9˚ = .222, p = .011), 12˚ (ΔS’12˚ = .089, p =

.006), and 15˚ (ΔS’15˚ = .157, p = .054) were significant for 6˚ and 9˚ but failed to reach signifi-

cance for the remaining eccentricities. Taken together, the data suggest that with training, par-

ticipants acquired a skill with a significant degree of specificity for position and orientation at

the trained 6˚ position. In addition, at the trained reference orientation, there was a tendency

for an asymmetric spread of orientation discrimination skill from the trained position to the

immediate foveal and peripheral neighbors, with higher thresholds at the more foveal than at

the more peripheral position. However, in the light of the described control analyses, this can-

not be convincingly interpreted as support for a contribution to position specificity from

mechanisms in retinotopic areas.

It is possible that specificity would have been higher if only initial thresholds in each test

position with the trained reference orientation, or with the orthogonal reference orientation,

would have been included in the specificity index S’. To assess the influence of within-session

averaging of performance, we ran a repeated-measures ANOVA with reference orientation

(P135, O45) and position (3˚, 6˚, 9˚, 12˚ and 15˚) and threshold measurements (1–8) as within-

subject factors. While the main effect of reference orientation (p = .007) and position (p =

.002) as well as their interaction were significant (p = .004), neither the main effect of threshold

measurements (p = .059) nor any of the interactions with threshold measurements turned out
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significant (all p> .195). This indicates that any threshold differences over the 8 staircase mea-

surements per position and reference orientation were too small to affect our results in a

meaningful way.

3.3 Details of training scheme and differences in experimental context

among participants do not affect within-quadrant transfer

To test effects of slight differences in training scheme as well as differences in experimental

context on generalization, we performed a repeated measures ANOVA with condition (P135,

O45) and eccentricity (3˚, 6˚, 9˚, 12˚, 15˚) as within-subject factors (see Fig 4D) and moreover

training scheme (15x4, 10x8, 15x4-Refresh) and experimental context (4 conditions, see

Table 1) as between subject factor. Neither the between-subject effects for training scheme (p =

.729) and experimental context (p = .709) nor any of the interactions with training scheme

(condition x training scheme: p = .897; eccentricity x training scheme: p = .705; condition x

eccentricity x training scheme: p = .964) or experimental context (condition x experimental

context: p = .519; eccentricity x experimental context: p = .173; condition x eccentricity x

experimental context: p = .876) were significant. So, we found no effect of training scheme or

experimental context on thresholds, indicating these factors cannot be used as an alternative

explanation for differences among participants in thresholds.

To exclude that training scheme and experimental context affected the conventional speci-

ficity indices we calculated the specificity indices using the threshold from the last training ses-

sion as reference. We then performed a repeated measures ANOVA on these indices with

condition (P135, O45) and eccentricity (3˚, 6˚, 9˚, 12˚, 15˚) as within-subject factors (see Fig

4D) and moreover training scheme (15x4, 10x8, 15x4-Refresh) and experimental context (4

conditions, see Table 1) as between subject factor. Again, neither the between-subject effects

for training scheme (p = .392) and experimental context (p = .476) nor any of the interactions

with training scheme (condition x training scheme: p = .888; eccentricity x training scheme: p
= .762; condition x eccentricity x training scheme: p = .823) or experimental context (condi-

tion x experimental context: p = .984; eccentricity x experimental context: p = .996; condition x

eccentricity x experimental context: p = .983) were significant.

To test whether the pattern of position and orientation generalization reported in Section

3.2 was influenced by alignment cues (See Methods and Table 1), we also performed additional

analysis. When re-running the repeated measures ANOVA with reference orientation (P135,

O45) and position (3˚, 6˚, 9˚, 12˚ and 15˚) as within-subject factors separately for the two

halves of participants (according to whether or not alignment was present during training), we

replicated in both cases the two main effects and the interaction (eccentricity effect: p = .012

unaligned, p = .001 aligned; orientation effect: p = .029 unaligned, p = .037 aligned; interaction:

p< .001 unaligned, p = .030 aligned). To further test whether there was any advantage of align-

ment during training, we compared the magnitude of the thresholds along the learning curve

in Fig 3A between participants with aligned and non-aligned reference orientations, and

found no difference (F(14, 112) = 1.745, p = .056). Likewise, there was no difference in the mag-

nitude of thresholds for the two groups neither during testing with the 135˚ reference (F(4, 32)

= 2.134, p = .099; data from Fig 4D), nor during testing with the 45˚ reference (F(4, 32) = 1.415,

p = .251; data from Fig 4D). From this we conclude that the alignment of reference orientation

with polar angle did not influence our results.

3.4 Position specificity based on immediately surrounding positions

To test whether and how specificity is related to the extent of training-induced performance

enhancement, we have designed Michelson-index-based indices that separately quantity
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specificity and training-induced performance enhancement (see Methods). For the position

specificity index, the question can be posed which peripheral positions to include into the

comparison with the trained 6˚ position. Specifically, in section 3.2, we showed that the most

peripheral test positions showed a significantly lower threshold than expected. This difference

was due to an advantage at higher eccentricities and not related to learning or to an effect of

cortical magnification. Therefore, including these more peripheral positions in the evaluation

of position specificity could have artificially lowered specificity, and inflated generalization. To

test this, we compared the effect of including the two most peripheral positions in averaged

test thresholds or not. Note that this comparison was already made in Fig 3 (Section 3.1).

Including the two most-peripheral test positions led indeed to a somewhat smaller averaged

difference between trained and test positions (black symbols Fig 3B) compared to when only

the test positions immediately surrounding the trained position were included (black symbols

Fig 3C) (t(9) = -2.821, p = .020).

Based on the above considerations, we decided for the remainder of this paper to exclude

the two most-peripheral positions from the evaluation of position specificity. In addition, to

verify that our main conclusions so far were not affected by the inclusion or exclusion of the

two most-peripheral test positions into analysis, we re-did the main analysis in section 3.1.

Hence, for the evaluation of performance at the 135˚ reference orientation we included only

the thresholds at immediately surrounding test positions of 3˚ and 9˚ as a comparison for the

thresholds in the (trained) 6˚ position. For consistency, we did the same with the thresholds

obtained at the 45˚ reference orientation (grey symbols in Fig 3B and 3C). A repeated mea-

sures analysis including the data as shown in Fig 3C now yielded a significant main effect of

position (F(1, 9) = 12.668, p = 0.006). Further, the re-analysis confirmed the main effect of con-

dition (P135, O45) (F(1, 9) = 44.796, p<0.001) and the interaction between position and condi-

tion (F(1, 9) = 23.279, p = 0.001). The latter interaction was related to the larger orientation

than position specificity, which was also confirmed by a t-test comparing the difference

between the threshold for 135˚ in the trained position and neighboring positions with the dif-

ference at the trained position between the 135˚ and 45˚ reference orientation (t(9) = -2.788, p
= .021). In conclusion, using only the test positions neighboring the trained position for evalu-

ating position specificity did not have a large effect on the data and did not affect our main

conclusions of limited but significant position and orientation specificity. Nevertheless, for the

quantification of position specificity (PS) in the following sections, we compared the trained

position with only the two neighboring test positions, as this is conceptually the fairest com-

parison given the eccentricity effect described in Section 3.2.

Note that to relate orientation specificity to the extent of training, we used the Michelson-

index-based orientation specificity index OS, which compares performance at the 6˚ position

between the trained 135˚ reference and the untrained 45˚ reference (see Methods). Thus, for

OS, there is no issue related to which test positions to include into the calculation of

specificity.

3.5 Position specificity is related to the extent of late learning

The position specificity effects reported in Figs 2–4 were small compared to overall learning.

For more insight into the relative size of the training and position specificity effects, we calcu-

lated and compared training and position specificity indices. To make a comparison between

an index of training extent and position specificity, it is important that these indices are based

on non-overlapping datasets. Hence, we used the PS position specificity index in the present

section, which gives a normalized threshold increase in test compared to trained position,

based on data that are different from those used to quantify the training index T (for details,
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see Methods). A paired sample t-test showed that the training index (T = 0.40) was larger than

the position specificity index (PS = 0.19) (t(9) = 4.740, p = 0.001). When including all available

data (extra thresholds 61–80 in P2-4 and refresher thresholds in P8-10), T was 0.43.

Using the data from the first 60 thresholds in all participants, we tested whether the training

index was related to the position specificity index, and found a positive correlation (r = .81,

R2 = 0.66, p = .004). This indicates that the more participants improved during the training

phase, the greater the position specificity effect was (Fig 5A). The training index significantly

predicted position specificity (β = 0.54, t(9) = 3.944, p = .004) and also explained a significant

proportion of variance in position specificity (R2 = 0.66, F(1,9) = 15.6, p = .004). Robust regres-

sion yielded a slightly higher beta weight (β = 0.55, t(9) = 3.683, p = .006) indicating that outliers

did not strongly drive the OLS regression results. This pattern of results was confirmed when

including all available training data in all participants (i.e. estimating end of learning on

thresholds 67–80 in P2-4 and end of refreshing session in P8-10) (β = 0.52, t(9) = 5.216, p =

.001, r = .88, R2 = 0.69, F(1,9) = 17.7, p = .003) (Fig 5B).

To further explore the relationship between the training index and the position specificity

index, we correlated the position specificity index with the training indices from session 1–5, ses-

sion 6–10, and session 11–15, referred to as early, intermediate and late training index, respec-

tively. While the early and intermediate training indices (Fig 6A and 6B) did not significantly

correlate with the position specificity index (early: r = .60, R2 = 0.36, p = .069; intermediate: r =

.62, R2 = 0.38, p = .058), there was a highly significant correlation for the late training index (Fig

6C) (late: r = .79, R2 = 0.62, p = .007). When basing the end of late learning in participants P2-4

and P8-10 on the additional asymptotic data (Fig 6D), the correlation between position specificity

index and late training index was even stronger (r = .90, R2 = 0.81, p< .001). This indicates that

the magnitude of late (asymptotic) learning contributed to the degree of position specificity.

A model combining early, intermediate and late learning as predictors was precluded by

multicollinearity (intermediate and late learning: r = 0.94). Therefore, separate models for

each of the three predictors were calculated (using the 60-threshold training data). Early and

intermediate learning were not a significant factor for predicting position specificity (early: β =

Fig 5. Scatterplot of position specificity and training indices. A, Position specificity correlates positively with the training

index. B, The correlation between position specificity and training index was even stronger when using the complete learning

data (including extra thresholds and refresher training) for calculation of the training index. The black dashed line results from

an ordinary least square regression (r also obtained from that analysis), whereas the grey dotted line was fitted with betas

obtained by using robust regression. Different symbols represent different training schemes: triangle = 15 sessions with 4

staircases, circle = 10 sessions with 8staircases, diamond = 15 sessions with 4 staircases plus 3 refresher sessions. � p< .050,
�� p< .010, ��� p< .005.

https://doi.org/10.1371/journal.pone.0201520.g005
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0.67, t(9) = 2.103, p = .069; intermediate: β = 0.52, t(9) = 2.206, p = .058), whereas late learning

significantly affected position specificity (late: β = 0.57, t(9) = 3.584, p = .007).

Late learning explained a significant proportion of variance in position specificity (R2 =

0.62, F(1,9) = 12.8, p = .007) whereas early and intermediate indices did not significantly explain

variance (early: R2 = 0.36, F(1,9) = 4.42, p = .069; intermediate: R2 = 0.38, F(1,9) = 4.87, p = .058).

Since in intermediate and late training indices, there was one data point that qualified as an

outlier according to a 1.5 IQR criterion (P2), we used a robust regression to see how that data

point influenced the estimates. Beta weights from robust regression were almost identical

(early: β = 0.67, t(9) = 1.928, p = .090; intermediate: β = 0.52, t(9) = 2.060, p = .073; late: β = 0.56,

t(9) = 3.249, p = .012), indicating a negligible contribution of outliers to the OLS regression

analysis. When including the training data from extra thresholds in six participants (P2-4 and

P8-10) into calculations of the late training index, the overall picture remained the same (β =

0.50, t(9) = 5.821, p< .001; R2 = 0.81, F(1, 9) = 33.9, p< .001).

To assess the difference between correlations of training to specificity indices, we per-

formed Lee and Preacher’s test for differences between dependent correlations [72]. As we had

Fig 6. Scatterplot of position specificity and early (A), intermediate (B), and late training indices either based on 60 thresholds

learning data (C) or on additional asymptotic data for participants P2-4 and P8-10 (D). The black dashed line results from an

ordinary least square regression (r also obtained form that analysis), whereas the grey dotted line was fitted with betas obtained

by using robust regression. Different symbols represent different training schemes: triangle = 15 sessions with 4 staircases,

circle = 10 sessions with 8staircases, diamond = 15 sessions with 4 staircases plus 3 refresher sessions. � p< .050, �� p< .010, ���

p< .005.

https://doi.org/10.1371/journal.pone.0201520.g006
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the hypothesis that training to position specificity correlations would become larger for later

phases in learning, we used a one-sided test. No evidence was found in support of a larger corre-

lation for intermediate compared to early learning (p = .470). However, the correlation for late

learning showed a slight non-significant trend to be smaller than for early learning (p = .177),

and a significant trend to be smaller than for intermediate learning (p = .016). In addition, the

correlation for late-extra learning was significantly lower than for early learning (p = .034) and

for intermediate learning (p = .001). Note that the late-extra condition refers to the inclusion of

extra thresholds in six participants (P2-4 and P8-10) into calculations of the late training index.

Overall, we suggest that this pattern of differences among correlations supports the relationship

we propose between the extent of asymptotic learning and specificity (see also Table 2).

It is possible that random factors lead to larger variability in estimating early and intermedi-

ate learning compared to later learning, which might be responsible for the lack of significant

correlations between progress in early training and position specificity. We therefore checked

the variability in all training indices. The variance in the overall training indices was 0.05, and

the variances for the training indices in the tertiles of learning were 0.02 for early training, 0.03

for intermediate learning, and 0.04 for late learning. The variance in late learning when using

all available data increased to 0.08 (i.e., including refresher thresholds in P8-10 and thresholds

61–80 in P2-4). The levels of variance for the training indices of the three tertiles of the learn-

ing curve did not differ significantly (Levene’s test for homogeneity of variances: F = 0.303, p =

.741), and if anything, the early learning tended to showed smaller rather than larger variance.

Therefore, this control analysis supports the proposed positive relationship between the extent

of late asymptotic learning and magnitude of position specificity.

3.6 Orientation specificity is related to the extent of late learning

As done for position specificity, we calculated and compared training and orientation specific-

ity indices. A paired sample t-test showed that the training index (T = 0.40)–based on the first

60 thresholds as shown in Fig 3 —was larger than the orientation specificity index (OS = 0.26)

(t(9) = 2.755, p = 0.022).

Using the data from the first 60 thresholds in all participants, we then tested whether the

training index was related to the orientation specificity index in a similar way as the position

specificity index, and found a positive correlation (r = .71, R2 = 0.51, p = .021). Similar to the

position specificity index, the more participants improved during the training phase, the

greater the orientation specificity effect was (Fig 7A). The training index significantly pre-

dicted orientation specificity (β = 0.39, t(9) = 2.863, p = .021) and also explained a significant

proportion of variance in orientation specificity (R2 = 0.51, F(1,8) = 8.20, p = .021). Robust

Table 2. Comparison of correlations between training and position specificity indices for different parts of the

learning curve.

correlations of training and specificity indices compared for: one-tailed p
position specificity

Early vs. Intermediate 0.470

Early vs. Late 0.177

Intermediate vs. Late 0.016

Early vs. Late-extra 0.034

Intermediate vs. Late-extra 0.001

In the late-extra condition, the training data from extra thresholds in six participants (P2-4 and P8-10) were included

into calculations of the late training index.

https://doi.org/10.1371/journal.pone.0201520.t002
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regression yielded a slightly lower beta weight (β = 0.37, t(9) = 2.498, p = .037) indicating that

outliers did not drive the OLS regression results strongly. This pattern of results was confirmed

when including all available training data in all participants (i.e. estimating end of learning on

thresholds 67–80 in P2-4 and end of refreshing session in P8-10) (β = 0.40, t(9) = 3.967, p =

.004, r = .81 R2 = 0.66, F(1,9) = 15.70, p = .004) (Fig 7B).

To further explore the relationship between training index and orientation specificity

index, we also correlated the orientation specificity index with the early, intermediate and late

training indices. While the early (Fig 8A) and intermediate (Fig 8B) training indices did not

correlate with the orientation specificity index significantly (early: r = .33, R2 = 0.11, p = .358;

intermediate: r = .56, R2 = 0.31, p = .092), there was a significant correlation for the late train-

ing index (Fig 8C), which was based on a comparison between thresholds 41–44 and thresh-

olds 57–60 (r = .72, R2 = 0.52, p = .019). When basing the end of late learning in participants

P2-4 and P8-10 on the additional asymptotic data (Fig 8D), the correlation between orienta-

tion specificity index and late training index was even stronger (r = .87, R2 = 0.76, p = .001).

This indicates that the magnitude of learning in the late asymptotic phase contributed to the

degree of orientation specificity. Having multicollinearity between intermediate and late learn-

ing, only separate models for each of the three predictors were calculated (using the 60-thresh-

old training data). Early and intermediate learning were not a significant factor for predicting

orientation specificity (early: β = 0.30, t(9) = 0.975, p = .358; intermediate: β = 0.39, t(9) = 1.912,

p = .092), whereas late learning significantly affected orientation specificity (β = 0.43, t(9) =

2.945, p = .019). Late learning explained a significant proportion of variance in orientation

specificity (R2 = 0.52, F(1, 9) = 8.68, p = .019). Beta weights from robust regression were almost

identical (early: β = 0.30, t(9) = 0.903, p = .393; intermediate: β = 0.40, t(9) = 1.823, p = .106; late:

β = 0.42, t(9) = 2.684, p = .028), indicating a negligible contribution of outliers to the OLS

regression analysis. When including the training data from extra thresholds in six participants

(P2-4 and P8-10) into calculations of the late training index, the overall picture remained the

same (β = 0.39, t(9) = 4.972, p = .001; R2 = 0.76, F(1, 9) = 24.70, p = .001).

Note that for the correlation analysis that includes the late-extra data (6 participants, see

Table 3), it should be acknowledged that the further boost in the positive correlation between

Fig 7. Scatterplot of orientation specificity and training indices. A, Orientation specificity correlated positively with the

training index. B, The correlation between orientation specificity and training index was even stronger when using the

complete training data (including extra thresholds and refresher training) for calculation of the training index. The black

dashed line results from an ordinary least square regression, whereas the grey dotted line was fitted with betas obtained by using

robust regression. Different symbols represent different training schemes: triangle = 15 sessions with 4 staircases, circle = 10

sessions with 8staircases, diamond = 15 sessions with 4 staircases plus 3 refresher sessions. � p< .050, �� p< .010, ��� p< .005.

https://doi.org/10.1371/journal.pone.0201520.g007
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specificity and training index incurs a limit in interpretability. This is due to differences in the

numbers of sessions of late-extra training among these 6 participants, and between these 6 par-

ticipants and the other participants in which the late-extra data were not available (and where

hence the training index for the late training condition was entered into the correlations). This

Fig 8. Scatterplot of orientation specificity and early (A), intermediate (B), and late training indices either based on 60

thresholds learning data (C) or on the same data including additional asymptotic data for participants P2-4 and P8-10 (D). The

black dashed line results from an ordinary least square regression, whereas the grey dotted line was fitted with betas obtained by

using robust regression. Different symbols represent different training schemes: triangle = 15 sessions with 4 staircases,

circle = 10 sessions with 8staircases, diamond = 15 sessions with 4 staircases plus 3 refresher sessions. � p< .050, �� p< .010, ���

p< .005.

https://doi.org/10.1371/journal.pone.0201520.g008

Table 3. Correlations between training indices for six participants with late-extra data.

T_early T_middle T_late T_ext_late
T_early 1

T_middle 0.64 1

T_late 0.77 0.94 1

T_ext_late 0.75 0.86 0.95 1

In the late-extra condition, the training data from extra thresholds in six participants (P2-4 and P8-10) were included into calculations of the late training index.

Consequently it becomes possible to correlate this extra index with the remaining training indices for this subgroup of participants only.

https://doi.org/10.1371/journal.pone.0201520.t003
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means that the progress in the late-extra condition over participants was determined both by

whichever mechanisms played a role during asymptotic learning and by the duration of the

asymptotic learning. This should be taken into account in interpreting the correlations involv-

ing the late-extra condition. Nevertheless, the strengthened correlation between specificity and

the training-indices including late-extra data affirm the importance of asymptotic learning in

inducing specificity.

To assess the difference between correlations of training indices with orientation specificity

for different parts of the learning curve, we performed Lee and Preacher’s test for differences

between dependent correlations [72]. Because we had a specific hypothesis about the direction

of the differences, we used a one-tailed statistic. Table 4 shows no support for the hypothesis

that the training index versus orientation specificity correlation was higher for the intermedi-

ate compared to the early part of learning (p = .277). However, the training index versus orien-

tation specificity correlations for the late-extra and the late training phases tended to be

significantly lower compared to correlations for earlier phases of the training (for an overview

see Table 4). This supports the relationship we propose between the extent of asymptotic learn-

ing and specificity (see also section 3.5).

Moreover, the variability in the training indices used for the analyses were not significantly

different (Levene’s test for homogeneity of variances: all p> .077), and thus did not explain

differences in correlations. This pattern of differences between correlations further supports

the relationship between the extent of asymptotic learning and specificity. Note that the train-

ing indices included in Fig 2 (for complete learning curve and the three tertiles) per partici-

pant, can be combined with the specificity indices in Table 5 to yield the training index to

specificity index correlations studied in sections 3.5 and 3.6. It is also noteworthy that the ori-

entation specificity and position specificity indices were highly correlated (r = .90, R2 = 0.81,

p< .001; see Table 5).

The above arguments all support the idea that specificity (both for orientation and position)

is correlated stronger with late asymptotic learning than with early learning. This in turn sug-

gests that the learning mechanisms that drive performance increments are different during

earlier compared to late stages of learning. Specifically, we expected that the correlation in

training index between the late tertile of learning and early tertile of learning (r = 0.63) would

be significantly lower than between the late tertile of learning and the middle tertile of learning

(r = 0.94). We tested this using Lee and Preacher’s test for differences between dependent cor-

relations and found this to be the case (Z = -2.17, p = 0.015, one-tailed). We also found that the

middle-to-late correlation (r = 0.94) was significantly larger than the middle-to-early correla-

tion (r = 0.55) (Z = -2.73, p = 0.003, one-tailed). These confirm that especially in the early part

of the learning training-induced performance enhancements are driven by mechanisms that

Table 4. Comparison of correlations between training and orientation specificity indices for different parts of the

learning curve.

correlations of training and specificity indices compared for: one-tailed p
orientation specificity

Early vs. Intermediate 0.227

Early vs. Late 0.057

Intermediate vs. Late 0.040

Early vs. Late-extra 0.003

Intermediate vs. Late-extra 0.001

In the late-extra condition, the training data from extra thresholds in six participants (P2-4 and P8-10) were included

into calculations of the late training index.

https://doi.org/10.1371/journal.pone.0201520.t004

Asymptotic learning predicts specificity in orientation discrimination

PLOS ONE | https://doi.org/10.1371/journal.pone.0201520 September 10, 2018 26 / 37

https://doi.org/10.1371/journal.pone.0201520.t004
https://doi.org/10.1371/journal.pone.0201520


are rather different from those playing a role in the late part, with the middle part probably

representing a transition from one to the other type of mechanisms. We also computed the

correlations in training index between the late-extra part of the learning curve and preceding

parts, and found trends compatible with this view, with statistical tests narrowly missing signif-

icance due to the fact that only 6 participants had data in the late-extra condition (see Table 3).

3.7 Details of training scheme or differences in experimental context

among participants do not drive correlations between training effects and

specificity

It is possible that differences in training scheme or experimental context would cause individ-

ual differences in either training indices or specificity indices, which could drive the correla-

tion between both. Therefore, we first checked for all training indices whether their mean

differed among different training schemes (15x4, 10x8, 15x4-Refresh) or experimental context

(none, study A, study B, or study A & B), using a one-way ANOVA. The analysis showed that

none of the training indices differed between groups for training scheme (all F-values< 1.501

and all p-values> .287) or experimental context (all F-values< 1.442 and all p-values> .321),

showing that between-group variance was not significantly bigger than within-group variance.

These results thus indicate that progress in training (over the learning curve as a whole, or in

first, second and third tertile) is unrelated to training scheme or experimental context.

Second, we also performed the same analyses on the orientation and position specificity

indices and one-way ANOVAs similarly showed no difference between groups for training

scheme (all F-values< 2.939 and all p-values> .118), or experimental context (all F-

values< 2.003 and all p-values> .215). Variation in specificity indices among participants is

thus not due to differences in training scheme or experimental context. Since both the (posi-

tion/orientation) specificity indices and the training indices were not influenced by training

scheme or experimental context, it seems reasonable to conclude that specificity shows a genu-

ine correlation with training index.

Moreover, we did an additional analysis to test the effects of amount of training in previous

studies (related to experimental context) and differences in amount of training in the present

study (related to training scheme). As seven of our participants had participated in other

Table 5. Orientation and specificity indices for individual participants.

PS all PS surround OS

pp1 0.16 0.16 0.21

pp2 0.40 0.49 0.45

pp3 0.14 0.18 0.23

pp4 0.19 0.24 0.35

pp5 0.14 0.17 0.17

pp6 0.09 0.15 0.12

pp7 0.04 0.00 0.14

pp8 0.11 0.12 0.22

pp9 0.02 0.03 0.19

pp10 0.32 0.41 0.47

PS all refers to the Michelson-based position specificity index taking into account all surrounding test positions; PS

surround refers to the Michelson-based position specificity index computed on just the two immediately

surrounding test positions. OS refers to the Michelson-based orientation specificity index. For the computation of

correlations between position specificity and training indices, we only used the PS surround indices.

https://doi.org/10.1371/journal.pone.0201520.t005
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perceptual learning studies (with training in one or sometimes three quadrants other than the

one used for within-quadrant position specificity testing), we were interested whether the

number of trained orientations, quadrants and trials at which they had been previously trained

(see Table 6) influenced the observed specificity effects or the level of the asymptote defined as

the last 20 thresholds obtained. Furthermore, the number of trials spent in the present study

(see Table 6) differed among participants due to the extra thresholds and refresher thresholds,

which was a potential confounder. We therefore correlated the position specificity index, the

orientation specificity index, and asymptotic performance level with these four factors. No sig-

nificant correlations were found (Table 7). Thus, neither the numbers of trials spent in previ-

ous studies (in quadrant(s) other than the one used for the present study), nor the variation

among participants in numbers of trials spent in the present study seemed to be determining

factors in explaining position and orientation specificity within the quadrant used in the pres-

ent study.

Table 6. Amount of previous training.

previous studies present study

nr. trained orientations nr. trained quadrants nr. of trials nr. of trials for training & refresh

P1 3 2 15669 5352

P2 0 0 0 7193

P3 0 0 0 6711

P4 0 0 0 7146

P5 1 4 17308 5127

P6 3 2 15748 5356

P7 1 4 16013 5302

P8 3 2 15826 8068

P9 3 4 36206 8690

P10 3 4 36847 8711

Number of trained orientations, trained quadrants, and trials for any previous experiments and number of trials performed during training and refresh sessions for the

present experiment. Note that participants P2-4 performed 80 thresholds during training whereas all other participants completed only 60 thresholds.

https://doi.org/10.1371/journal.pone.0201520.t006

Table 7. Effect of previous training.

previous studies present study

N trained reference orientations N trained quadrants N trials Total N trials for training & refresh

position specificity index r 0.34 0.35 0.20 0.18

R2 0.12 0.13 0.04 0.03

p 0.330 0.315 0.581 0.621

orientation specificity index r 0.31 0.30 0.08 0.48

R2 0.09 0.09 0.01 0.23

p 0.387 0.399 0.836 0.158

last 20

thresholds (asymptote)

r 0.23 0.51 0.31 0.41

R2 0.05 0.26 0.10 0.17

p 0.514 0.131 0.376 0.235

Correlation, explained variance and p-values for different correlations. Upper part shows correlation of position specificity index with number of trained orientations,

trained quadrants, and trials of previous studies and number of trials during training for the present study. Middle part shows correlations of orientation specificity

index with the same factors. Lower part shows correlations of last 20 thresholds with the same factors mentioned above.

https://doi.org/10.1371/journal.pone.0201520.t007
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4 Discussion

The study presents two main findings. First, we show that extensive orientation discrimination

training at a single location in a visual field quadrant yields partial but significant position and

orientation specificity. Despite significant specificity, we found more generalization in the

present study within a quadrant than was observed across quadrants or hemifields in another

recent study from our group [68]. The greater within-quadrant generalization may reflect con-

tributions of horizontal connectivity within early visual areas [73]. Second, position and orien-

tation specificity indices correlated strongly and positively with the total performance

increment achieved during the training. Moreover, when comparing the relationship between

specificity and training indices in the first, middle and last tertile of the learning curves, we

found that the more improvement was made during later training phases, the larger the speci-

ficity of learning was. This relationship was not present during the first and middle tertile of

the learning curve. This is to our knowledge the first evidence quantitatively linking training

effects in the later phases of learning with specificity, in agreement with proposals in older

studies [1, 4, 50] that asymptotic learning is necessary to achieve position (and stimulus) spe-

cific perceptual skill. In line with this, the correlation in training progress between early and

late parts of the learning curves was substantially lower than that between early and intermedi-

ate parts. This supports the idea that the mechanisms that underlie training-indices perfor-

mance enhancements in early and late parts of the learning curve are different, in accordance

with our proposal that mechanisms of specificity/generalization are also different after early

and late learning. Additionally, we had designed our study to test whether the spatial distribu-

tion of transfer around a trained location would be influenced by the cortical magnification of

central vision in retinotopic visual areas, but did not find support for this idea.

4.1 Specificity is more related to late learning, than to early and

intermediate learning

Our results are relevant for studies that have been appearing over the last decade suggesting

almost complete generalization of learning in a ‘double training’ paradigm [21, 59]. In these

studies, a brief period of training in an irrelevant task at a first location, followed by training in

a second task in another location, led to generalization of the skill acquired in the second task

towards the first location. Based on these findings, it was suggested that the idea of specificity

as a core property of perceptual skill learning may be altogether incorrect. They suggested

instead that visual perceptual learning may be rule-based, and hence generalization would

reflect processes taking place independent of low-level properties of low-level visual areas. In

this view, there should be full generalization, or generalization should be easily triggered in the

context of specific training paradigms [21, 59]. In the present study, however, even for neigh-

boring positions within a single quadrant, we found partial but significant position and orien-

tation specificity. The position and orientation specificity tests in the present study showed

threshold increases between trained and test positions matching a threshold increase from ses-

sion 15 to session 8 (position specificity) or from 15 to 4 (orientation specificity), which is

approximately where Xiao et al. [21] and J.-Y. Zhang et al. [59] ended their training. We sug-

gest, in line with other studies, that there is a strong tendency for generalization in the first

parts of the learning curve [17]. Hence, Xiao et al.’s [21] findings can be seen as revealing con-

ditions in which learning transfer can be facilitated in the early phase of learning. It is possible

that part of the mechanisms leading to generalization during early learning is rule-based. How-

ever, the mechanisms underlying the amount of transfer (i.e., the amount of specificity) in the

present study were unrelated to early learning, as indicated by a lack of a correlation in our

study between position/orientation specificity and performance improvements in early
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learning. In line with this, a recent study [68] from our group showed that brief pretesting at

the beginning of learning, followed by extensive orientation discrimination training in another

location, led to a small facilitation of transfer towards the pretested location, which however

excluded the performance gains that had been made during asymptotic learning. Our findings

thus indicate that mechanisms and conditions leading to specificity/generalization of learning

are different for early and asymptotic learning, in line with our correlation data that suggests

also differences in the learning mechanisms driving performance increments in earlier and

later parts of the learning curve.

These outcomes are not predicted by the theoretical framework of double training studies,

but gives the first quantitative support for the prominent idea in older literature relating speci-

ficity to asymptotic learning (Fahle, 1997; Karni & Bertini, 1997; Karni et al., 1995; Karni &

Sagi, 1991; Schoups et al., 1995; Schwartz, Maquet, & Frith, 2002). The relationship between

specificity and the extent of asymptotic learning helps to evaluate possible neural mechanisms

underlying specificity. The relationship we documented fits well with training-induced orien-

tation tuning changes in V1 (Raiguel, Vogels, Mysore, & Orban, 2006; Schoups, Vogels, Qian,

& Orban, 2001) (Schoups et al., 2001 and V4 (Raiguel et al., 200x), although these plastic effects

were reported only after training considerably longer than in the present study. Conversely,

studies that consider specificity in the domain of perceptual skill learning as conditional or

rule-based typically used restricted training durations, thereby likely limiting contributions

from the lowest levels of the visual system. Thus, documenting a quantitative relationship

between the magnitude of asymptotic learning and specificity helps to understand mechanisms

of skill learning and its properties. However, the relationship between asymptotic learning and

specificity cannot distinguish between the lowest-level and reverse hierarchy theories, because

both predict the same relationship.

4.2 The within-quadrant spatial gradient in specificity/transfer appears

unrelated to retinotopic mechanisms

To test a potential contribution of low-level visual cortex to the spatial gradient of generaliza-

tion/specificity, we have tested this generalization gradient from a trained peripheral location

towards foveal vision and towards peripheral vision. We had reasoned that generalization

should be influenced by cortical magnification if it were generated by plasticity within early

visual cortex, with generalization over a smaller distance towards central vision and over a

larger distance towards the periphery. No such asymmetry was expected should generalization

be generated at high levels of the visual system not characterized by cortical magnification or

retinotopy (see Introduction).

We collected data during generalization testing that at first sight argued in favour of a reti-

notopic mechanism of generalization. Based on control analyses and a control experiment in

naïve participants, we had to conclude that the observed data did not reveal a mechanism of

generalization, but rather reflected a sensory-based interaction between the Gabor stimulus we

used and eccentricity. This is because, surprisingly, we observed better orientation discrimina-

tion performance with increasing eccentricity even in naïve participants. This contrasts with

the more common finding that visual performance declines with eccentricity, also referred to

as the ‘eccentricity effect’ (e.g., [74, 75]). Eccentricity effects in orientation discrimination how-

ever have been documented in only a few studies [75–78]. Interestingly, among those studies,

Vandenbussche et al. [78] reported that orientation discrimination of a single line at oblique

standard orientations did not change at all with eccentricity, in contrast to principal orienta-

tions. The cited studies investigating orientation discrimination that did find an eccentricity

effect [75–77], used a vertical reference orientation. The lack of the expected eccentricity effect
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in our data hence is to some extent in line with Vandenbussche et al. [78]. Nevertheless, the

increase in performance with eccentricity in our data (in 20 participants) is remarkable, and

asks for new parametric investigations of the effect of eccentricity on naïve and skilled percep-

tion of gratings or Gabor stimuli using a range of spatial frequencies and contrasts.

Hence, we could not resolve the question whether retinotopic or reverse hierarchy read-out

mechanisms contribute to the specificity that emerges during asymptotic learning. To do so

would require finding a stimulus that is equally well discriminated at a training location and

neighboring equipolar test locations. In addition, it is possible that the present training dura-

tions were too limited to reveal the full impact of low-level tuning changes and of cortical mag-

nification effects on the spatial generalization gradient. Notably, low-level tuning changes in

V1 and V4 have been reported after much longer training durations (of several months, see [8,

12]) than those applied in the present study. Hence, future studies of specificity in perceptual

skill learning may benefit from comparing the properties of generalization between shorter

periods of training (e.g., seven sessions) and much longer periods of training (e.g., 30 or more

sessions). It is possible that in experimental designs similar to ours, more extended training

will reveal a pattern of specificity compatible with contributions of cortical magnification in

retinotopic areas.

4.3 Other factors affecting specificity

With respect to our findings of (partial) specificity and its relationship with the extent of per-

formance enhancement during asymptotic learning, we have done a number of control analy-

ses to exclude alternative explanations. One interesting finding from these analyses is that

differences in experimental context among participants (who underwent varying amounts of

training in other quadrants for other experiments not included in the present paper) did not
affect estimates of within-quadrant specificity/transfer, or correlations between specificity and
amounts of training. Although the different history of our participants could be perceived as a

downside, this finding is interesting as it indicates there is limited transfer of skill across quad-

rants, at least when the skill is sufficiently trained. This is in line with previous work from our

group showing that different quadrants subjected to different experimental treatments during

extensive learning yield very different thresholds [66]. Different experimental manipulations

to influence learning can therefore be applied in different quadrants in a fairly independent

manner. This is also in line with another recent study [68] that demonstrated almost no trans-

fer after extensive training among relatively distant locations in the visual field. Other studies

that used extensive training in different quadrants also have reported relatively robust specific-

ity [4, 7, 8]. Hence, we suggest that the irrelevance of training history in quadrants other than

the one considered in the present study for the assessment of specificity is consistent with

existing literature.

Another finding coming out of our control analyses was that the variation in position speci-
ficity and orientation specificity among participants in our study was not correlated significantly
with the variation in the number of trials during training among participants. This seems to con-

flict with findings of Jeter et al. [17], who reported that more training trials lead to more speci-

ficity. To interpret our finding, it is useful to compare the numbers of trials used in our study

with those in Jeter et al. [17]. In our experiment, participants were trained over a period of ten

to fifteen sessions and completed a total of 60–80 staircases which amounted to total training

trial numbers ranging between 5127 and 8711 when including the extra trials in P2-4 and the

refresher trials in P8-10 (see Table 2). Jeter et al. [17] report that shorter training (i.e., up to

2496 trials) resulted in transferable performance levels, whereas extensive training (i.e., 4992

or 7488) resulted in partial specificity. Given the overall number of trials (mean number of
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trials 6766) it is therefore fully in line with Jeter et al.’s results that we see specificity in our

data. It is possible that the range in total trial numbers among participants was not sufficient to

induce a sufficiently large variation in position specificity to produce a correlation between

total trial numbers and position specificity.

Another factor that can play a role in influencing specificity is the number of trials within a

session, which, when sufficiently large could lead to adaptation effects that could enhance the

specificity of learning [57]. Despite that fact that some participants performed more trials per

session than other participants (see Table 1), these variations in numbers of trials per sessions
did not lead to differences in specificity among participants, which might be due to the consider-
able total length of training both in terms of sessions and trials. In our study the number of trials

per session was relatively low for the seven participants doing 15 training sessions (mean of

354 trials/session) and higher for three participants (P2-4) doing ten training sessions (mean

of 702 trials/session). Situated in the entire group of ten participants, the specificity index was

largest in P2, sixth largest in P3, and third largest in P4. Thus, the specificity indices for P3 and

P4 fell within the range of the other participants, and outlier analysis showed that the index for

P2 fell within the normal range. It therefore seems unlikely that there were strong additional

adaptation effects in P2-4 that would have led to greater position specificity in those subjects,

and hence in our hands, sessions with roughly 350 or roughly 700 trials per session can both

lead to specificity. This contrasts with Aberg et al. [15], who observed generalization in a chev-

ron task with 400 trials per session and specificity with 800 trials per session with the overall

amount of training being identical.

The fact that a reduction in the number of trials per session from ~700–800 trials to ~350–

400 trials led to the disappearance of specificity in Aberg et al.’s (14) study, whereas in ours a

similar reduction did not eliminate specificity might be understood in the context of differ-

ences in the total number of trials and amount of asymptotic learning. Aberg et al. [15] only

used 1600 trials for the total length of training, whereas we used 5127–8711 trials. Hence, our

finding of partial specificity to the trained position, even with rather low trial numbers per ses-

sion for seven participants, might be explained by the more extensive total amount of training

in our study, which continued until participants reached an asymptotic performance level.

Recently, Hung and Seitz [56] showed in an orientation discrimination task that there was

greater transfer to another location for training with multiple short staircases in contrast to a

single, long staircase [56]. Our training procedure resembled that of Hung and Seitz (26) in

the sense that the start level of each staircase in a given session was set to the average threshold

level of the previous session. Hence, the specificity in our data and theirs could be related to

the presentation of many trials at threshold. It could be asked whether the lack of easy orienta-

tion differences at the start of individual staircases was the sole reason for the (partial) specific-

ity observed in Hung and Seitz’ (26) study and in ours. With respect to that question, it is

relevant that in Hung and Seitz (26), final thresholds prior to generalization testing appeared

to be larger in the multiple compared to the single staircase condition, which favored generali-

zation to the other location given that performance in the test location following training in

the multiple versus single staircases conditions was about the same. Moreover, the intermixing

of high with threshold-level orientation differences may have counteracted reaching the best

performance level, thus preventing the task from increasing the challenge, which in turn may

have favored generalization. Thus we suggest that it is not the lack of easy orientation differ-

ences at the start of individual staircases in our study that induced specificity. We suggest that

any manipulation that prevents participants from reaching the stage of cumulative asymptotic

learning at threshold will limit specificity and favor generalization. Compared to the 6 sessions

of training performed by participants in Hung and Seitz (26), participants in our study per-

formed 10–19 sessions, which may have promoted asymptotic learning and specificity.

Asymptotic learning predicts specificity in orientation discrimination

PLOS ONE | https://doi.org/10.1371/journal.pone.0201520 September 10, 2018 32 / 37

https://doi.org/10.1371/journal.pone.0201520


In the context of the reviewed studies, our finding that the number of trials does not play a

role in predicting differences in specificity among participants suggests that the lowest num-

bers of trials administered (in total, and per session) are high enough to induce a ceiling level

of plasticity. As a consequence, trial numbers in themselves are not a determinant of the mag-

nitude of learning or specificity. Instead, differences in learning and specificity among partici-

pants may reflect differences in the capacity for plastic change in their visual systems, rather

than differences in induced plasticity due to differences in numbers of trials per session or in

total. This reasoning is in line with our finding that the magnitude of threshold decrease (espe-

cially in the late part of learning) correlates best with position and orientation specificity, and

not with the number of training trials performed.

In conclusion, many factors determine the extent to which a skill remains specific after

training or can generalize to other conditions. The present study suggests that the set of factors

that determines the extent of generalization is at least partially different in early and late phases

of visual skill learning. More research is required to identify the mechanisms contributing to

early and late-phase generalization.
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