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Temporal metabolic response
yields a dynamic biosignature of inflammation

Jesse T. Peach,1 Stephanie M. Wilson,2 Logan D. Gunderson,1 Lizzi Frothingham,1 Tan Tran,3 Seth T. Walk,4

Carl J. Yeoman,5 Brian Bothner,1,* and Mary P. Miles2,6,*

SUMMARY

Chronic low-grade inflammation is a subclinical condition directly and indirectly
linked to the development of a wide range of diseases responsible for the vast
majority of morbidity. To examine mechanisms coupled to chronic disease, a
group of overweight and obese human subjects without known inflammatory dis-
eases participated in a high-fat meal challenge as an acute inflammation stimulus.
Analysis of serum metabolites grouped by baseline cytokine levels revealed that
single samples had little power in differentiating groups. However, an analysis
that incorporated temporal response separated inflammatory response pheno-
types and allowed us to create a metabolic signature of inflammation which re-
vealed metabolic components that are crucial to a cytokine-mediated inflamma-
tion response. The use of temporal response, rather than a single time point,
improved metabolomic prediction of high postprandial inflammation responses
and led to the development of a dynamic biosignature as a potential tool for strat-
ifying risk to a wide range of diseases.

INTRODUCTION

Inflammatory diseases including type 2 diabetes, ischemic heart disease, neurodegenerative diseases, and

cancer represent a group of human illnesses increasing in prevalence and causing the bulk of human deaths

worldwide (Katakami, 2018; Denver and Mcclean, 2018; Park et al., 2018). While there are many causes of

low-grade inflammation, one of the most common is upregulation of inflammatory activity in response

to hypertrophy-induced adipose tissue dysfunction, particularly visceral adipose tissue located within

the abdominal compartment (Ringseis, et al., 2015; Engin, 2017). Thus, low-grade inflammation is a putative

driver of obesity-related disease. However, a substantial proportion of obese individuals are metabolically

healthy in that they do not meet the criteria for metabolic syndrome (Denis and Obin, 2013; Bagheri, et al.,

2018). The extent to which low-grade chronic inflammation alters metabolism in overweight and obese in-

dividuals is unclear. Elucidation of the metabolic impacts of being overweight or obese with and without

inflammation is needed.

Metabolic impacts of inflammation stem from the actions of inflammatory cytokines and mediators on

metabolic pathways (Gregor and Hotamisligil, 2011; Hotamisligil, 2017). Low-grade inflammation is charac-

terized by persistent elevation in pro-inflammatory markers stemming from increased abundance of clas-

sically activated M1 macrophages, particularly the cytokines tumor necrosis factor (TNF)-a, interleukin (IL)-

1b, and IL-6 (Hotamisligil, 2017). These cytokines have impacts on nutrient metabolism, including the

impairment of glucose metabolism. However, impacts of nutrients on inflammation have also been identi-

fied, creating a complex web of interactions that is difficult to assess from static biomarkers.

Metabolomic-based biomarkers have been shown to be indicators of disease states while also providing

insight into mechanistic causes of disease (Soga, et al., 2006; Considine, 2019). Biomarkers have been iden-

tified for many diseases, including ones with a known inflammatory component such as diabetes and

atherosclerosis (Stenvinkel, et al., 1999; Wheelock et al., 2013). Patients with chronic low-grade inflamma-

tion have different metabolomic profiles that correlate with inflammation status (Pietzner et al., 2017; Fitz-

patrick and Young, 2013). Although biomarkers for chronic low-grade inflammation have been reported,

biomarkers for progression from chronic low-grade inflammation to inflammatory diseases are limited.

This may be due to the challenge of tracking temporal biological processes, with a static, single time point

measurement (Bansal, et al., 2007; Tokmina-Lukaszewska, et al., 2014). The purpose of this study is to
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compare static and temporal metabolomic approaches for predicting the magnitude of inflammatory

response and then to elucidate metabolic impacts of those inflammatory responses. The power of our

approach arises from looking at metabolite levels over time leading to the generation of a ‘‘dynamic

biosignature’’.

RESULTS

Participants with a bodymass index (BMI) >27 and <35 kg$m�2 and no overt health concerns were screened

for metabolic syndrome via measurement of waist circumference, blood pressure, and fasting glucose tri-

glycerides and high-density lipoprotein (HDL) (Grundy, 2016). Inflammation cytokine concentration and

other factors were also determined before consumption of a high-fat meal, which is an established test

to induce inflammation in humans (Herieka and Erridge, 2014). Subsequent glucose and cytokine concen-

trations were determined at 1, 2, 3, and 4 hr after consumption. Inflammation was determined using a high

sensitivity cytokine panel that included TNFa, GM-CSF, IL-1B, IL-6, IL-17, and IL-23. The maximum differ-

ence between basal and post meal value for each cytokine over the five time points was used to generate

an inflammation response value for each participant. A comprehensive response value was then calculated

for each participant by summing the normalized response values for each cytokine. The comprehensive

response values were then grouped using a k-means analysis, and participants were designated as either

high, mid, or low inflammation responders based on the magnitude of their inflammation response (Harti-

gan and Wong, 1979) (Figure 1A). Seventeen subjects were classified as low responders, fourteen as mid

responders and nine as high responders (Figure 1B, Table S1). High and mid responders had lower fasting

cholesterol levels than low responders andweremore likely tomeet the criteria for metabolic syndrome but

did not vary in other measured anthropomorphic or static metabolic characteristics (Table S1). To generate

a metabolic profile for each participant, a non-targeted metabolomic analysis of serum samples was con-

ducted using liquid chromatography mass spectrometry (LCMS). An established hydrophilic interaction

chromatography (HILIC) method facilitated rapid, reproducible, and deep sample profiling (Awwad,

et al., 2016). Raw data were retention time aligned, and background signals were removed using mzMine

(Katajamaa, et al., 2006). Through this process, a dataset of 560 unique mass features was obtained. The

high-resolution LCMS data showed that the overall metabolic state was similar across the participant

pool and did not change dramatically for a given individual during the time series (Figure S1).

The composite cytokine response k-means grouping was used to analyze the LCMS at each time point us-

ingMetaboAnalyst (Chong, et al., 2019). Principal component analysis (PCA) was performed to examine the

separation between inflammation response groups and the impact of time. A PCA analysis of response

groupings showed extensive overlap of the groups (Figure 2A, Figure S2). Analysis of variance (ANOVA)

confirmed that the groups could not be differentiated, as no metabolites were significantly different at a

p value of <0.05 across the time series. Metabolomic profiles were examined in closer detail by generating

heatmaps, which showed little to no clustering of specific metabolites based on cytokine-based inflamma-

tion responses (Figure 2B). Our conclusion is that these statistical analyses have limited power to differen-

tiate inflammatory responders at specific time points based on the intensity of metabolic features.

Inflammatory response is a time-dependent process; therefore, we reasoned that even quantitative metab-

olomics data based on a single time point may fail to capture objective differences (Grigorov, 2011). This is

particularly challenging with human subjects as there is a wide range of biological and lifestyle variation. To

address this, we analyzed the metabolomic profiles as dynamic datasets with the addition of a temporal

component to match our cytokine response groupings. Using time series software in MetaboAnalyst, an

analysis of variance-simultaneous component analysis (ASCA) was performed to identify features which

contribute to systemic variation in a time-resolvedmanner. ASCA is accomplished by producing interaction

matrices for each feature and then determining the contribution of each feature to systemic variation, much

like a PCA model (Saccenti, et al., 2018; Smilde, et al., 2005). This method allows for analysis of multivariate

time course data. Discriminating temporal features were then filtered using a squared prediction error

(SPE) and a leverage calculation (Figure 3A). This yielded 17 well-modeled features based on q-values

and leverage criteria that have group specific concentration patterns.

The next step was to identify the 17 selected features. This was completed using tandem mass spectrom-

etry (MSMS) to generate collision-induced fragmentation patterns which were matched using an in-house

standards library and Sum formula Identification by Ranking Isotope patterns Using mass Spectrometry

(SIRIUS) formula and structure prediction software (Dührkop, et al., 2015; Dührkop, et al., 2019). Based
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on high-resolution mass measurement, retention time, and fragmentation pattern, chemical formula could

be assigned for all 17 features, and confident identifications were made for 13 metabolites (Table 1). Iden-

tification of the ions at m/z 133.131, 164.142, 240.151, and 82.026 was inconclusive based on available frag-

mentation databases.

Linear models were then generated and tested using the 17 selected metabolites to describe the pro-in-

flammatory cytokine baseline-to-peak response values, and models with the best Mallow’s Cp values (Fig-

ure 3B) were determined (Table 2). Linear models were created for each of the six individual cytokine re-

sponses that included eleven of the selected metabolites, nine of which were successfully identified

(Table 3). Four of the six models, corresponding to IL1B, IL6, TNFa, and granulocyte-macrophage col-

ony-stimulating factor (GMCSF) response, were significant to a p value of <0.05, while the IL17 and IL23

A

B

Figure 1. Grouping of participants by cytokine response

(A) K-means analysis of the cytokine concentrations for participants in the cohort. The ‘‘elbow’’ of the optimal clusters

graph shows that three groups is the best way to bin the subjects based on cytokine response.

(B) Plots for pro-inflammatory cytokines used in the study at each time point from fasting to four hours after meal. Error

bars are included and indicate 95% confidence intervals. See also Table S1.
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response models had p values of 0.12 and 0.068, respectively. The models associated with IL1B, IL6, TNFa,

and GMCSF had the highest coverage as well, with R2 values between 0.65 and 0.25. In contrast, themodels

for IL17 and IL23 had R2 values below 0.1. Along with individual cytokine models, a composite model was

created to better describe the inflammation response as a whole and was composed of five metabolites. A

key point is that the cytokine models had the power to predict inflammation response phenotype using

only serum metabolite data.

To validate the dynamic biosignature, data from two independent trials were obtained. Participants

were part of food supplementation studies that included a high-fat meal challenge, metabolomic

profile analysis, and pro-inflammatory cytokine determination. The high-fat meal challenge used

in these studies was identical to the challenge used for the cohort analyzed in this paper. The only

criteria for selection was having a BMI >27 and <35 kg$m�2. Each subject was assigned to the appro-

priate cytokine inflammation group, and metabolites in the composite dynamic biosignature were

compiled and placed in the composite linear model. For the 13 participants, the metabolic bio-

signature assigned 9 to the correct inflammation group (Table 4). Three of the four mis-assignments

involved the mid-inflammation designation. Interestingly, the remaining participant had a dynamic bio-

signature that placed them in the low inflammation group, while their cytokine profile was consistent

with high.

A closer investigation of the model shows that between the basal and one hour after high-fat meal

challenge, the high and low inflammation response groups have an inverse slope (Figures 4 and 5).

This diametric relationship between high and low inflammation groups was consistent in 8 of the 11

features included in the individual and composite models. Of the eight features with this pattern, the

mid-inflammation response group trends with the high-response group for seven of the metabolites

and the low-response group for the unknown metabolite m/z 240.151. We describe this and similar pat-

terns of differing metabolic responses between inflammation groups over time as a dynamic bio-

signature. To understand the metabolic impacts of concentration changes in the selected metabolites,

we further examined each metabolite in the context of their metabolic roles and specific patterns in

the time series.

DISCUSSION

A major finding of this study was that temporal metabolomic responses to an inflammatory stimulus

generated clear physiological distinctions not present under basal conditions that were predictive of

A B

Figure 2. Static metabolic profiling of high and low inflammation groups

(A) A principal component analysis (PCA) of response groups at one hour after meal shows little to no separation.

(B) Heatmap for time point two showing the top 25 discriminating features. The dendrogram at the top of the figure shows

little clustering of the inflammation groups. See also Figure S2.
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cytokine-based inflammation responses. A traditional static biosignature can be an effective indicator of

a specific metabolic activity or disease state. However, in our case, a static biosignature was unable to

convincingly differentiate subjects into groups based on inflammation phenotype. Our breakthrough is

the demonstration that the change in metabolic state over time is a more powerful way to differentiate

underlying physiologic states than measuring absolute values at any given time. This is analogous to the

role of derivatives in the analysis of mathematical functions. Values are based on the change in concen-

tration over a change in time and not on absolute initial or final concentration. Correspondingly, while

the group with the lowest inflammation responses had the highest cholesterol and a trend for higher

average blood glucose levels over time (as indicated by a trend for higher glycosylated hemoglobin),

the group with the highest inflammation responses was more likely to meet the criteria for metabolic

syndrome.

Data from 560 serum metabolites collected before and at four time points after a high-fat meal challenge

using LCMS were used to construct a predictive model. By coupling the change in markers of inflammation

and response kinetics, metabolites having a significant difference between inflammation groups were

discovered. Using selected metabolites, linear models were created for each cytokine, and a composite

cytokine model was also created. Models showed overlap with several metabolites, including histidinylhis-

tidine and creatine, belonging to the same cytokinemodel (Table 3). This suggests involvement in the same

metabolic response, i.e. histidinylhistidine and creatine abundance are linked. This is consistent with known

metabolic pathways and validates the approach used to generate the models (Smith and Ning, 1961).

A further investigation of modeled metabolites from inflammation response groups showed distinct and

repeated patterns between the basal and two-hour post-meal metabolomic profiles which includes three

time points (Figures 4 and 5). For each metabolite in the composite model, an initial opposing slope direc-

tion between the basal and one hour post-meal concentration is observed, after which metabolites show a

general trend back to the basal concentration two hours after meal. Three of the five metabolites demon-

strated an increase in the first hour for the high responders and a decrease in the first hour for the remaining

two metabolites. Low responders displayed the opposite trend. The difference in the concentration

changes of the modeled metabolites show that an important temporal component of the cytokine immune

response is correlated to the change in concentration of specific metabolites at one hour after meal. How-

ever, this trend was not universal with the rest of the metabolites in the cytokine models. Of the six selected

A B

Figure 3. Feature interaction based on time and inflammation response

(A) Important features for the interaction between response groups over the time course found by combining SPE scores and leverage.

(B) Cp plot of well-modeled features in a linear regression model predicting cytokine response. Columns represent mass features and rows show BIC values

where the best model is on the top row.
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metabolites not in the composite model, four had the same pattern of inverse slopes between high and low

responders from basal to one hour after meal seen in the composite model metabolites. Modeled metab-

olites were investigated for known associations with cytokine specific inflammation, inflammation in gen-

eral, or an inflammatory disease. Several of the metabolites fit into one or all of these categories with

some having links between the metabolite and the cytokine in a specific model.

Composite model metabolites

The composite model included creatine, hydroxymethyluracil, histidinylhistdine, (5-amino-6-hydroxyhexyl)

carbamic acid, and an unknown metabolite with an m/z value of 240.151.

Creatine is part of the composite model, as well as three individual cytokine models. Creatine is synthe-

sized from amino acids and can be converted to phosphocreatine which is used to replenish ATP stores

in muscle cells through the action of creatine kinase (Wallimann, et al., 2011). In our cohort, creatine was

included in the IL1B, TNFa, GMCSF, and composite models. Previous work has shown that IL1B and

TNFa are inversely correlated with creatine concentration (Bassit et al., 2008). IL1B and TNFa are both

alarm cytokines that are expressed early in an inflammatory response due to increases in stress hormones

and promote production of other pro-inflammatory cytokines (Baumann and Glaudie 1994; Cupps and

Fauci 1982). Phosphocreatine and creatine help to maintain ATP availability and barrier function in the

intestinal mucosa during inflammation. High fat and sugar intake induces increased creatine uptake in

the intestinal epithelium (Colgan, et al., 2015; Poupin, et al., 2019). Low responders showed an initial in-

crease in creatine concentrations followed by a return to fasting concentrations after two hours

(Figure 4A). Mid and high responders had an opposite trend during the first hour showing increasing cre-

atine concentrations with an eventual return to below fasting levels. Our data are consistent with IL1B

and TNFa being early responders to inflammation as well as being inversely related to creatine

concentration.

Along with creatine, hydroxymethyluracil was included in the composite model, as well as three individual

cytokine models. Hydroxymethyluracil is a uracil derivative and is a biomarker for oxidative stress and DNA

damage (Decarroz, et al., 1986). It has also been shown to be more abundant in disease states such as in

colorectal cancer (Rozalski, et al., 2015). Hydroxymethyluracil fit into models for IL1B, IL6, IL23, and the

Table 1. Identification of important features

Metabolite Mass RT Validation

Acetamide 60.044 1.4 Authentic standard

C4H3NO 82.026 2.4 MSMS

Creatine 114.065 1.8 Authentic standard

Proline 116.106 3.5 Authentic standard

Organonitrogen compound C6H16N2O 133.131 5 MSMS

Hydroxymethyluracil 143.047 1.8 MSMS

Threitol 145.048 1.5 Authentic standard

4-Guanidinobutyrate 146.068 2.4 MSMS

Guanine 152.055 1.5 Authentic standard

Carnitine 162.111 3.5 Authentic standard

Aralkylamin compound C11H17N 164.142 3.4 MSMS

(5-Amino-6-Hydroxyhexyl)carbamate 177.119 4.9 MSMS

Tigylglycine 180.064 1.7 MSMS

Butyrylglycine 184.044 1.2 MSMS

Azacyclic compound C10H17N5O2 240.151 1.3 MSMS

Guanosine 284.097 1.5 Authentic standard

Histidinylhistidine 293.134 3.5 MSMS

See also Table S3.
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cytokine composite model. In a recent study, the removal of thymine DNA glycosylase, a DNA oxidation

repair mechanism, resulted in the increase of hydroxymethyluracil and IL1B (Tricarico, et al., 2019). Alter-

natively, increased intracellular ascorbic acid (vitamin C) has been shown to induce hydroxylation of

thymine leading to an increase of intracellular hydroxymethyuracil in cell culture (Modrzejewska, et al.,

2016). Our data indicate that the high andmid responders showed a decrease in hydroxymethyluracil levels

with the introduction of the high-fat meal, while the low responders showed an increase (Figure 4B). Thus,

the elevation in hydroxymethyluracil may reflect adaptation of the gut to different nutritional environment

between groups that could have conferred some level of resistance to inflammatory stimuli in the low re-

sponders. This is a novel observation worthy of follow-up with respect to the potential of antioxidant sup-

plements to mitigate inflammation in the gut.

The final metabolite to be included in not only the composite model but also three additional cytokine

models is histidinylhistidine. Histidinylhistidine, also known as histidylhistidine, is composed of two histi-

dine residues and is a product of incomplete protein degradation. This dipeptide appeared in four cyto-

kine models: IL1B, TNFa, GMCSF, and the composite model. Both IL1B and TNFa are potent stimulators

of proteolysis, and GMCSF is a pro-inflammatory cytokine that stimulate proliferation and activation of

phagocytic leukocytes capable of producing IL1B and TNFa (Chang and Bistrian, 1998; Shiomi and Usui,

2015). These are the same three cytokines models that creatine appears in, and there has been some

research showing an effect of histidine on creatine concentrations leading us to postulate that histidinyl-

histidine may be involved in creatine metabolism signaling (Smith and Ning, 1961). If so, this effect would

most likely be inhibitory. A clear inverse relationship is seen within response groups between creatine and

histidinylhistidine. Although an association has been observed, this avenue of investigation does not

appear to have not been explored since 1961.

Onehour aftermeal, highandmid respondershavean increase inhistidinylhistidine corresponding toadecrease

in creatine during the same time period (Figure 4C). Low responders have an initial decrease in histidinylhistidine

andan increase in creatine in the first hour.Histidinylhistidine alsohas a link tohumancarbonicanhydrase III (HCA

III), ametalloenzymethatconvertsCO2 toHCO3.This reaction iscompleted ina two-partprocess consistingof the

conversionofCO2 toHCO3 followedby the releaseofHCO3and its replacementwithwater.This reaction is signif-

icantly faster in other human carbonic anhydrases, such as HCA II, and appears to be a result of a residue substi-

tution at Phe 198. This does not hinder the first portion of the reaction but sterically inhibits binding of proton-rich

moleculesneeded to facilitate the releaseofHCO3 fromtheenzyme.Histidinylhistidinehasbeen foundtobind to

Phe 198 and activate the release of HCO3 (Duda, et al., 2005). Changes inHCO3 concentrations have an effect on

inflammatory responses through the modulation of cytokine expression including a direct relationship with

several interleukins (Ori, et al., 2015; Kawakami, et al., 2020). Therefore, histidinylhistidine binding to Phe 198

on HCA III leads to an increase in HCO3 concentrations, which in turn causes an increase in interleukins and an

increased inflammation response.

The fourth metabolite in the composite model is (5-amino-6-hydroxyhexyl)carbamic acid. Carbamic acids

are involved in numerous metabolic processes including the transport of carbon dioxide in hemoglobin.

Table 2. Matrix showing the metabolites in each model

Metabolite IL1B IL6 IL17 IL23 TNF GMCSF Composite

Creatine X X X X

Hydroxymethyluracil X X X X

Histidinylhistidine X X X X

Threitol X X

4-Guanidinobutyric acid X X

Butyrylglycine X X

(5-Amino-6-hydroxyhexyl)carbamic acid X X

240.151 X X

Guanine X

Guanosine X

82.026 X
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Although there are currently no links to inflammation, this metabolite should be investigated further. Con-

centrations of (5-amino-6-hydroxyhexyl)carbamic acid differed between the low-inflammation and high

and mid-inflammation responders from two to three hours after the meal challenge with low-responders

increasing and mid- and high-responders decreasing in concentration (Figure 4D). Carbamic acid was

also part of the TNFa model.

The final metabolite to be included in the composite model was unable to be identified using our standard

library or MSMS fragmentation pattern matching. This unknown metabolite has an m/z value of 240.151 G

0.005. Although not identified, the unknown metabolite could be an integral part of the dynamic bio-

signature for inflammation as it shows two different trends one hour after meal (Figure 4E). Low and mid

responders showed a decrease in concentration while high responders showed an increase in concentra-

tion. This metabolite was also included in the TNFa model.

Cytokine-specific model metabolites

Of the eleven metabolites selected for models, six of them were not included in the composite model.

Three metabolites, glutamine, threitol, and 4-guanidinobutyric acid, were part of two different models.

The final three metabolites, guanine, guanosin,e and the unknown feature with an m/z value of 82.026,

were each included in just one model. However, even though these metabolites were not included in

the composite model or in a large number of cytokine models, it does not mean that they do not have

an important impact on the inflammatory response.

4-Guanidinobutyrate is a product of arginine metabolism and the first of the metabolites included in two

cytokine models. Inflammatory stimuli indirectly affect 4-guanidinobutyric acid production by upregulation

of nitric oxide production, which in turn inhibits production of 4-guanidinobutyric acid (Satriano 2004). In-

creases in 4-guanidinobutyrate were also seen in human monocytes infected with Lyme disease (Kerstholt,

et al., 2018). Corresponding to the increase in 4-guanidinobutyric acid in the Lyme disease-infected mono-

cytes was an increase in pro-inflammatory cytokines. 4-Guanidinobutyrate was part of the IL1B and GMCSF

models. We measured higher fasting 4-guanidinobutyrate in the low responder group which decreased

postprandially (Figure 5A). This shows that 4-guanidinobutyric acid may be part of an initial inflammation

response or part of an early effect from the initial inflammation response.

Threitol was also included in two cytokine models. Threitol is a product of xylose metabolism and has been

associated with several inflammatory diseases including diabetes (Jing and Chengji, 2019). Threitol was

part of our IL1B and GMCSF models and has been linked to IL1B. IL1B and threitol have both shown to

lead to arterial calcification by modulating vascular maintenance cells (Collett and Canfield, 2005; Sage,

et al., 2010). In our model, threitol concentrations increased in the pivotal first hour in the high and mid re-

sponders while decreasing in the low responders (Figure 5B). This pattern reinforces the parallel findings

related to arterial calcification.

Table 3. Models for each cytokine response and the composite cytokine response

Cytokine Metabolites p value R2

IL1B Creatine + hydroxymethyluracil + threitol +

4-guanidinobutyrate + histidinylhistidine

0.014 0.33

IL6 Hydroxymethyluracil + guanine + guanosine 0.016 0.25

IL17 Butyrylglycine 0.12 0.062

IL23 Hydroxymethyluracil 0.068 0.085

TNF m/z 82.026 + creatine + (5-amino6-

hydroxyhexyl)carbamic acid + m/z 240.151 +

histidinylhistidine

9.50 3 10�5 0.52

GMCSF Creatine + threitol + butyrylglycine + 4-

guanidobutyrate + histidinylhistidine

6.21 3 10�7 0.65

Composite Creatine + hydroxymethyluracil + (5-amino6-

hydroxyhexyl)carbamic acid + m/z 240.151 +

histidinylhistidine

0.019 0.32
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The last metabolite selected for two models is butyrylglycine, an acyl glycine and a byproduct of butyryl-

CoA accumulation. As fatty oxidation activity decreases, the initial compounds, like butyryl-CoA, increase

in concentration and are degraded to compounds like butyrylglycine via various metabolic processes.

Accumulation of short-chain fatty acids is seen in individuals with short-chain acyl-CoA dehydrogenase

deficiency as short-chain acyl-dehydrogenase (SCAD) catalyzes the first step in beta-oxidation for small

fatty acids with four to six carbon chains (Lisyová et al., 2018). Fatty acid oxidation rates have an inflamma-

tion specific outcome in macrophage mitochondria where increases in fatty acid oxidation, indirectly lead-

ing to decreases in butyrylglycine, have been indicated in a decreased inflammatory response (Namga-

ladze and Brüne, 2016). Butyrylglycine has also been shown to be differentially regulated in obese mice

in response to stress associated with a differential inflammatory response (Haley, et al., 2017). Our cohort

did not differentiate with respect to slope from the basal time to two hours after meal. However, the high

response group continued to increase from two hours after meal to three hours after meal, contrasting the

static trend seen in the low and mid responders over the same time period (Figure 5C). As differential pro-

cessing of fatty acids from the high-fat meal challenge occurs over time, so would differential accumulation

of butyryl-CoA and therefore butyrylglycine. This could be due to many factors including SCAD differences

in either effectiveness or concentration. Increased butyrylglycine would indicate a decrease in fatty acid

oxidation and, if occurring in macrophages, a decrease in inflammation which aligns with our data. High

responders show a relatively large increase in butyrylglycine two hours after meal while low responders

stay relatively stable. Fittingly, this metabolite was part of the GMCSF model, as well as the IL17 model.

The next twometabolites to be selected for amodel were guanine and guanosine. Guanine is a nucleobase

and a purine derivative while guanosine is a nucleoside comprising a guanine attached to ribose. Guanine

and guanosine have been shown to modulate T-cell-mediated inflammation responses. They accomplish

this via an anti-inflammatory effect by inhibiting cytokine production, including IL6 and IL2 (Shinohara and

Tsukimoto, 2018). Guanine and guanosine were part of the IL6 model, and both exhibit a pattern where low

responders showed increased levels in the first hour while high and mid responders showed decreased

levels (Figures 5D and 5E). As an inhibitor of cytokine production, the decrease in the high and mid re-

sponders would be expected.

Finally, the unknown feature with an m/z value of 82.026 was also selected for one model. This feature was

unable to be identified by either the in-house standard library or by MSMS. The unknown feature is in the

TNFa model, and our data show a much higher fasting concentration in the high responder group (Fig-

ure 5F). However, this concentration dramatically decreases relative to the other groups to such a degree

that after one hour, the high responders have a lower concentration than the other groups.

Table 4. Validation studies

Participant Study Predicted Actual

1* Lentil LO MID

2 Lentil LO LO

3 Lentil LO LO

4 Lentil HI HI

5 Lentil LO LO

6 Lentil LO LO

7 Lentil HI HI

8* Lentil MID LO

9* Lentil LO HI

1 Aronia LO LO

2 Aronia LO LO

3* Aronia HI MID

4 Aronia LO LO

* indicates participants who were incorrectly predicted.

LO, MID and HI indicate participants who were determined to be low-, mid- and high-inflammation responders, respectively.

See also Table S4.
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Taken together, these results paint a complex picture of dynamic inflammation response. Inclusion of me-

tabolites in our models with ample support for roles in inflammation responses, such as creatine and hy-

droxymethyluracil, reinforces the importance of these metabolites in pro-inflammatory responses. By hav-

ing well-documented connections between cytokines and specific metabolites in several models,

credibility is lent to our statistical methodology and to ourmodels. At the same time, this also provides sup-

port for the importance of the metabolites without corresponding inflammation associations in the litera-

ture, such as (5-amino-6-hydroxyhexyl) carbamic acid and the unknown metabolites with the m/z values of

240.151 and 82.026, respectively.

This analysis also shows how specificmetabolites can beused todescribe a dynamic inflammatory response.

Previous studies describe the inverse relationship between creatine and cytokines such as IL1B (Bassit et al.,

2008). Our work takes this a step further in showing that the inverse relationship is most prominent in the first

hour of an inflammatory response in individuals having a low inflammation response. We propose that the

increase in creatine is likely contributing to their lower cytokine response. Although the clinical significance

of the magnitude of inflammatory responses is unknown, investigating the metabolic profiles of different

responses can elucidate vital health information. A further examination could find parameters describing

healthy magnitudes of inflammatory response for distinct groups and use these data to provide treatment.

A B

C D

E

Figure 4. Composite model

Plots of the five metabolites found in the composite model including error bars indicating 95% confidence intervals. Relative concentrations are shown for

the entirety of the time course. Creatine, hydroxymethyluracil, and histidinylhistidine represent the three most commonmetabolites, found in three cytokine

models and the composite model while carbamic acid and the unknownmetabolite were found in onemodel each and the composite model. Note the slope

change between the high and low response groups at one hour after meal.
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Inflammation responses are complex and variable between individuals so untangling the intricate web of

interactions is challenging. Although many compounds in biological systems modulate or are modulated

by immune responses, this analysis determined a suite of metabolites that may be predictive of immune

response. This study also shows that temporal cytokine responses are correlated with temporal metabolic

changes, which we refer to as a dynamic biosignature. By using a temporal interaction model, we were able

to correlate changes in cytokines and metabolites which lead to distinct patterns of metabolic activity

differentiating overweight and obese adults who responded differently to a dietary inflammation stimulus.

In this way, a dynamic lens can provide insight into possible interventions for inflammatory diseases but can

also pinpoint relevant interactions and time-dependent modalities.

Limitations of the study

Inflammatory responses measured in this study are to a specific dietary stimulus in a population of over-

weight and obese adults and demonstrate the utility of our dynamic biosignature approach. Therefore,

the specific dynamic biosignature identified in response to this stimulus may not be generalizable to other

inflammatory stimuli or populations.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

A B

C D

E F

Figure 5. Six of the metabolites from the cytokine models

Each of these metabolites were found in specific cytokine models but were not included in the composite model. 4-Guanidinobutyrate, butyrylglycine, and

threitol were part of two cytokine models. The other metabolites were found in one model each. Relative concentrations are shown for the entirety of the

time course with error bars indicating 95% confidence intervals.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

� Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Mary Miles (mmiles@montana.edu).

Materials availability

� The study did not generate new unique reagents.

Data and code availability

� Mass spectrometry data generated in this study have been deposited to Mendeley Data and are

publicly available as of the date of publication. DOIs are listed in the key resources table (https://

data.mendeley.com/datasets/j9rfpwbjhj/1).

� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

The protocol was approved by the Institutional Review Board at Montana State University. Written

informed consent was obtained from all participants prior to their participation. The IRB protocol number

is MM021116-FC. The protocol was also approved for the separate studies used in the validation analysis by

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human serum Mary Miles Lab IRB# MM021116-FC

Human serum validation data #1 Mary Miles Lab IRB#MM010320

Human serum validation data #2 Mary Miles Lab IRB#MM100918

Chemicals, peptides, and recombinant proteins

HPLC grade methanol Fisher Scientific Cat#A454

HPLC grade acetonitrile Fisher Scientific Cat#A998

HPLC grade water Fisher Scientific Cat#W5

Acetone Sigma Aldrich Product#650501

Ammonium formate Sigma Aldrich Product#70221

Critical commercial assays

Picollo Xpress Chemistry Analyzer lipid panels Abaxis, Inc. Part#400

MILLIPLEX Map Human High Sensitivity T Cell Panel –

Immunology Multiplex Assay

Millipore Sigma Product #HSTCMAG-28SK

Deposited data

Mass spectrometry data Mendeley Data https://doi.org/10.17632/j9rfpwbjhj.1

Software and algorithms

MetaboAnalyst Chong, et al., 2019 RRID:SCR_015539

SIRIUS Dührkop, et al., 2019 https://bio.informatik.unijena.de/software/sirius/
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the Institutional Review Board at Montana State University. The associated IRB protocol numbers are

MM010320 and MM100918.

Participant selection

Forty overweight and obese (BMI >25), although otherwise apparently healthy men and women partici-

pated in testing of anthropometric and metabolic markers and ingestion of a 50g high-fat meal challenge.

Participants were 18-55 years old within a body mass index (BMI) of 27 - 36 kg/m2 (Table S1). Potential par-

ticipants were excluded if they had taken oral antibiotics within 90 days of study enrollment, regularly used

anti-inflammatory medications, used estrogen-only contraceptive, had a wheat and/or dairy allergies, were

pregnant, or had any musculoskeletal, cardiovascular, gastrointestinal, or immunological condition that

could interfere with the study. The second cohort used in the validation study consisted of participants

in two separate studies exploring food supplementation. This group had the same BMI criteria

(BMI>25), was otherwise healthy, and underwent the same high-fat meal challenge (Table S4).

METHOD DETAILS

Anthropometrics

Measurements were collected from participants using the validated segmental multifrequency bioelec-

trical impedance analysis (SECA mBCA 515, Hamburg, Germany) (Bosy-Westphal et al., 2013). Fat mass

(%) and estimated visceral adipose (L) were used for analysis.

High-fat meal challenge

The high-fat meal contained salted butter (58.3 g, Tillamook) over 3 pieces of whole wheat toast (127.5 g;

Wheat Montana). Total energy content of the meal was 714 kcal, with 43.1% from fat, with a macronutrient

breakdown of 50 g fat, 54 g carbohydrate, and 12 g protein. Water was provided with the meal; caffeinated

black tea was provided for participants who identified as habitual coffee consumers.

Blood sampling

Participants were instructed to avoid alcohol consumption and strenuous physical activity in the 24 hours

prior to their visit and to complete an overnight fast (10 - 12 hours) before blood collection. Participant

blood samples were collected by a certified nurse or physician in the morning before ingestion of the

meal and hourly for 4 hours after meal ingestion, totaling five time points. Whole blood in serum separating

tubes was allowed to clot for 15 minutes before centrifugation at 1200 RPM for 15 minutes with resulting

serum aliquoted and stored at -80�C until analysis.

Determination of blood markers

Blood markers of metabolic syndrome were determined from whole blood run on Picollo Xpress Chemistry

Analyzer lipid panels (Abaxis, Union City, USA). Cytokine measurement was performed using high-sensi-

tivity multiplexing technology (Bio-Rad Bio-Plex� 200 HTS) following procedures by Millipore (EMD Milli-

pore Corporation, Billerica, USA). Selected pro-inflammatory cytokines include granulocyte macrophage

colony stimulating factor (GM-CSF), four interleukins (IL) including IL-1b, IL-6, IL-17, IL-23, and tumor necro-

sis factor alpha (TNF-a). Serum samples at each time point during the high-fat meal challenge were run in

duplicate.

Low-grade inflammation and inflammation response group assignment

Assignment of participants to low, mid or high low-grade inflammation groups was made based on a k-

means analysis of the cytokine responses (Hartigan and Wong, 1979). K-means analysis is an unsupervised

machine learning algorithm that groups data in the most significant way possible while trying to maintain

the lowest number of groups. To start the analysis, the cytokine response first needed to be determined.

Cytokine response was calculated by taking the time point with the highest post-prandial concentration for

each cytokine and then subtracted this value from the basal cytokine concentration. Response values were

determined for each of the six cytokines using this method. Cytokine responses were then examined using

a k-means analysis in R. The results of the k-means analysis clustered the 40 subjects into three inflammation

groups that correspond to low, medium and high inflammation response. 17 subjects were included in the

low inflammation response group, 14 were included in the medium inflammation response group and 9

were included in the high inflammation response group. Composite response scores were also created
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by normalizing values between cytokines to give each cytokine an equal contribution to the overall

response score.

Metabolite extraction

Frozen serum samples were thawed and 20mL was placed in a clean tube. 80mL of HPLC grademethanol was

added to the sample after which it was vortexed briefly and placed in a -80�C freezer for two hours. After

two hours, the sample was centrifuged at 20,000g for 10 minutes. The metabolite supernatant was

collected and concentrated in a Speed Vac to dryness while the protein pellet was discarded. Samples

were then stored at -80�C until ready for liquid chromatography mass spectrometry (LCMS) analysis at

which time they were reconstituted with 40mL of methanol:water (50:50) and placed in a clean mass spec-

trometry vial.

LCMS conditions

Analysis was completed on an Agilent 6538 Q-TOF MS coupled to an Agilent 1290 UHPLC using a 130Å,

1.7mm, 2.1mm X 100mm Acquity BEH-HILIC HPLC column. Samples were ionized via electrospray ioniza-

tion and runs were completed in positive mode. Mobile phase A was 15mmol/L ammonium formate and

mobile phase B was ACN using a 10-40% A gradient over 6 minutes. Flow was kept at 400mL/minute and

the column compartment temperature was set at 30oC (Awwad, et al., 2016). Pooled serum samples

were included in runs before, during and after sample analysis to ensure LCMS function and repeatability

of analysis. MSMS analysis, or tandem mass spectrometry, was completed using the same LC conditions

while targeting specific ions using retention time and m/z values from previous MS runs.

QUANTIFICATION AND STATISTICAL ANALYSIS

After LCMS analysis completion, raw data files were converted to .mzML files using MSConvert (Chambers,

et al., 2012). Vendor peak picking was used along with a threshold of the 300 most intense ions per scan for

data conversion. Data was thenmined withmzMine using an intensity minimum value of 1,000 counts based

on a visual inspection of the total ion chromatogram to remove noise (Katajamaa, et al., 2006). An error of 20

ppmwas used withmzMine along with a retention time window of 0.2 minutes to differentiate unique peaks

with similar m/z values. Retention times were analyzed for creatine, m/z value 114.065, to determine reten-

tion time drift over the course of the LCMS analysis (Table S2). Blank samples were also run and the resulting

features were removed from the biological data if present at a ratio under 5:1 in the sample compared to

the blank. Mined data were then input to MetaboAnalyst for statistical analysis including an ANOVA anal-

ysis. Sample data was not filtered inMetaboAnalyst due to the number of features and data was normalized

using the auto scaling function. Multiple testing correction was accomplished using Tukey’s test. Repro-

ducibility was confirmed by determining the coefficient of variation for each selected metabolite’s ion in-

tensity from the pooled samples that were ran before, during and after the experimental analysis (Table S3).

MSMS data were converted to .mgf files using MSConvert and analyzed with Sirius software to obtain com-

pound identifications (Dührkop, et al., 2015; Dührkop, et al., 2019). Molecular formula and molecule iden-

tifications were determined by searching the Human Metabolomics Database (HMDB). SIRIUS was used to

generate formulas while CSI:Finger ID was used for molecule identification. Both searches were done

within a 20ppm error window. Reported identifications were the top metabolite selected by CSI:FingerID.

The ZODIAC network tool was used to confirm chemical formula selection and CANOPUS software was uti-

lized to determine the compound class of unknown features.

ADDITIONAL RESOURCES

� This study has been registered with the U.S. National Library of Medicine at clinicaltrials.gov

(NCT04128839).

� The secondary cohort, or validation group, in this study consists of participant data from two sepa-

rate studies, one registered with clinicaltrials.gov (NCT04283448) and a second study that is unreg-

istered.
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