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Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of
DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes
and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on
alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a
larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de
novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations.
Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of
X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals
with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic
variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and
challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of
structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the
contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important
implications for genetic counseling.
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The developmental and epileptic encephalopathies (DEEs)

once thought to be largely due to environmental insults are now

primarily attributed to genetic causes. This spectrum of rare

disorders is characterized by early-onset, refractory seizures

that also occur in the context of developmental regression or

plateauing.1 Individuals with these disorders have high rates of

comorbid conditions, including intellectual disability (ID), aut-

ism spectrum disorder (ASD), and behavioral problems. High-

throughput sequencing approaches, in particular exome

sequencing (ES), have redefined the genetic landscape of this

condition; still, roughly half of patients and families lack a

definitive molecular diagnosis. We discuss the current genetic

architecture, focusing on the last 2 to 3 years of discovery and

then considering the future of genetic research in the DEEs.

Current Genetic Architecture

Some of the earliest genetic studies in the DEEs highlighted the

role for de novo copy number variants (CNVs) in the pathogen-

esis of these disorders. Using array comparative genomic

hybridization (array-CGH) techniques, up to 8% of individuals

with DEE were found to carry pathogenic CNVs.2 Similar

analyses using single nucleotide polymorphism microarrays

revealed pathogenic CNVs in *3% of individuals.3 These

CNVs, in particular microdeletions, can also be identified by

analysis of read depth from ES and other high-throughput

sequencing approaches. Using ES analysis, *3% of individu-

als with infantile spasms or Lennox-Gastaut syndrome (LGS)

were found to have causative CNVs.4 These CNVs can be
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either recurrent, as in the case of the 5q13.3 and 16p11.2 micro-

deletions,2,5 or nonrecurrent.

High-throughput resequencing of candidate genes within

pathogenic nonrecurrent CNVs led to some of the earliest gene

discoveries, including CHD2 and SYNGAP1.6 Since then,

given the ease with which 1 to 2 de novo variants can be

identified per trio exome, the majority of gene discovery has

focused on the contribution of these new mutations to DEE. In

general, between 30% and 50% of the DEEs can now be attrib-

uted to a pathogenic variant, the majority of which arise de

novo.7-9 However, these estimates vary widely based on the

technology used for variant detection as well as the clinical

criteria used to define the cohort. For instance, epilepsy of

infancy with migrating focal seizures is one of the most severe

DEEs, and pathogenic variants have been identified in 69% of

patients.10 Conversely, patients with infantile spasms, charac-

terized by early-onset spasms and hypsarrhythmia on EEG,

were found to carry de novo variants in 28% of cases.11 There

are myriad genes that harbor de novo pathogenic variants, and

these have been recently reviewed elsewhere12,13; rather, here

we focus on alternative genetic inheritance patterns that have

only begun to be appreciated more recently.

The contribution of autosomal recessive (AR) inheritance to

DEEs was originally thought to be exceedingly rare in outbred

populations, and most early gene discoveries (eg, SLC25A22,

PLCB1, and PNPO) were made in consanguineous popula-

tions.14-16 More recently, a small cohort study showed that

*13% of DEE could be attributed to AR variants in an outbred

population, and the majority of these variants followed com-

pound heterozygous inheritance.17 This contribution is likely to

grow; in just the last couple of years, at least 15 new AR genes

have been identified, including PLPBP,18,19 UBA5,20 UGP2,21

and VARS.22,23

There are also an increasing number of case reports of bial-

lelic pathogenic variants in genes more commonly associated

with de novo variants (Table 1). For most of these genes (CAC-

NA1A, GRIN1, SCN1B, and KCNMA1),25-28,30,31,38,39 the clin-

ical presentation for individuals with AR variants is more

severe than that of individuals with de novo variants. For 2

of these genes, CACNA1A and SCN1B, increased severity is

likely due to the complete absence of functional channel versus

haploinsufficiency in the instance of de novo variants.25,26,30,31

GRIN1 and SLC1A2 de novo variants are hypothesized to act in

a dominant negative manner such that there is very little resi-

dual functional protein in individuals with DEE.25,27,28,34 Thus,

individuals with no functional protein (null) are only modestly

more severely affected than those with de novo variants, while

others with homozygous hypomorph alleles have a milder pre-

sentation of ID and ASD. Patients with de novo STXBP1 var-

iants present with a variable DEE phenotype likely as a result

of haploinsufficiency.36 Two siblings with LGS were recently

identified with a homozygous missense variant in STXBP1 that

seems to act in a gain-of-function manner; the parents and

heterozygous carrier sibs were unaffected.37 Heterozygous car-

riers for variants in other genes (GRIN1,28,29 SCN1B,32

SLC1A234) were similarly unaffected. In other instances

(SCN1B), carrier parents had milder epilepsies or febrile sei-

zures.33 These findings collectively highlight that variants can

cause DEE and other epilepsies by eliciting variable effects on

protein function and that recessively inherited variants can be

associated with more severe clinical presentation. However,

many of these instances of recessive inheritance are from single

case reports, and a number of individuals were from families

with consanguinity. These families tend to have large regions

of homozygosity and a number of shared variants; variants

falling in known genes are more likely to be reported, and this

is likely true for instances of compound heterozygosity as well.

For instance, a recent report of an in-frame CACNA1A 3 bp

insertion was reported as a cause of progressive myoclonic

epilepsy, while this is in fact a polymorphism and not at all

associated with this disease.40,41 Thus, caution is warranted in

interpreting pathogenicity, and additional cases of recessive

inheritance need to be identified and functional studies per-

formed prior to these genes being considered bona fide auto-

somal dominant and recessive causes of DEE.

Pathogenic variants in the X-linked genes CDKL5, ARX,

MECP2, and PCDH19 are among the most common and

well-described causes of DEEs.42-45 Additional genes have

been identified, or, in the case of X-linked ID-associated genes

that are subsequently identified in individuals with DEE,

Table 1. Genes With Reports of Epilepsy-Associated Variants Inherited in an Autosomal Recessive Manner and Arising De Novo.

Gene De Novo Phenotype
De Novo Pathogenic
Mechanism AR Phenotype

AR Pathogenic
Mechanism References

CACNA1A DEE Haploinsufficiency24 DEE w/progressive cerebral,
cerebellar, and optic atrophy

Null 25,26

GRIN1 DEE, bilateral polymicrogyria Dominant negative 1. ID and autism
2. Severe DEE, early deatha

1. Hypomorpha

2. Nulla
27-29

SCN1B GEFSþ, TLE Haploinsufficiency24 DEE Nulla 30-33

SLC1A2 DEE Dominant negative DEE with optic atrophy Null 34,35

STXBP1 DEE Haploinsufficiency24 DEE GoF 36,37

KCNMA1 Epilepsy, paroxysmal dyskinesias, and DD GoF DEE þ cerebellar atrophy Nulla 38,39

Abbreviations: DD, developmental delay; DEE, developmental and epileptic encephalopathy, GEFSþ, generalized epilepsy with febrile seizures plus, GoF, gain of
function; ID, intellectual disability; LoF, loss of function; PME, progressive myoclonic epilepsy; TLE, temporal lobe epilepsy
a Parents consanguineous; for SCN1B both consanguineous and nonconsanguineous case reports exist.
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reidentified. These include THOC2,46 GABRA3,47 and CASK.48

The most unusual discovery, however, has been the identifica-

tion of pathogenic variants in X-linked genes that affect both

males and females (Table 2). For some genes (GABRA3, CASK,

IQSEC2, NEXMIF), the phenotype in hemizygous males tends

to be more severe than females, likely due to females having an

active X with the normal allele expressing in at least a subset of

cells.47,52-54 In females, X-chromosome inactivation (XCI) of

one allele occurs to ensure equal gene dosage between the

sexes. Most X-linked disorders show XCI skewing toward the

mutant allele, resulting in expression of the allele that does not

harbor the pathogenic variant, and thus females are unaf-

fected.59 However, for some DEE-associated genes, skewing

is rare, and this likely contributes to clinical expression in

females (Table 2). Nevertheless, where skewing was present,

there was no correlation with clinical presentation. For

instance, a female with a truncating NEXMIF variant had

100% skewing but no NEXMIF expression and had a clinical

presentation similar to other females,54 suggesting the normal

allele was preferentially inactivated. These results should be

interpreted with caution though, as XCI has been shown to be

different in the brain versus the blood in individuals with Rett

syndrome.60 GABRA3 and IQSEC2 escape XCI, which may

also explain the milder phenotype in females.47,54 However,

the severity of clinical presentations of females and males with

WDR45 pathogenic variants is the same. This is unlikely to be

due to skewed XCI, suggesting some other unknown mechan-

ism.57 Finally, only female patients with SMC1A pathogenic

variants have been described with DEE, while male patients

with pathogenic variants present with Cornelia de Lange syn-

drome (CdLS). Truncating variants do not lead to nonsense-

mediated decay, and a dominant negative mechanism has been

proposed. However, DEE in females with truncating variants is

rare, and more commonly CdLS is the clinical presentation.56

Collectively, these studies show that X-linked variants are not

only important in male patients and that both sexes should be

considered although severity varies on a gene-by-gene basis.

The Future of DEE Gene Discovery

Because novel DEE genes are likely to be exceedingly rare,

most gene discoveries in the recent years have been facilitated

by the matchmaker exchange, the most common being Gene-

matcher.61 This webserver allows clinicians and researchers to

enter the genetic details from individual patients into the data-

base, and if the gene “matches,” all parties who entered in the

gene automatically receive e-mails with contact details.

Follow-up exchanges have facilitated the identification of

novel genes, including CACNA1E,62 CUX2,63 KCNQ5,64

RHOBTB2,65 and RNF13.66 Although this approach will likely

continue to uncover new genes, the future of gene discovery

lies in the hands of the commercial diagnostic testing compa-

nies who are now performing ES at a rate greater than any

research endeavors.

Unsolved DEE: Beyond the Exome

Although there will likely continue to be a steady trickle of

very rare novel genes discovered in DEE, most genetics

research is shifting toward using genome sequencing (GS) to

identify pathogenic variants in unsolved cases. Currently,

short-read GS allows for the most comprehensive analysis of

the genome at a feasible cost, which includes (1) better cover-

age of the exome (particularly in GC rich regions) and (2)

detection of structural variants (SVs), including CNVs too

small to be detected by array-CGH and translocations that can

be detected only by karyotypes, and variants outside the

exome, that is, noncoding variants that may affect gene

Table 2. Subset of X-Linked DEE-Associated Genes Affecting Both Males and Females.

Gene Phenotype in Males Mutation Type
Phenotype in
Females Mutation Type Escape XCI49,50

Skewed
XCI References

GABRA3 DEE or ID þ
epilepsy

Mis GTCS þ ID, abs
þ LD

Mis Yes No 47

CASK DEE, MICPH, mild ID Trunc (DEE)
mis or splice
(MICPH, ID)

MICPCH Trunc No No51 52

IQSEC2 DEE but more likely
nonambulatory,
nonverbal, early
seizure onset

Trunc and mis DEE Trunc, mis less common Yes (but expression
not higher in
females)

No53 53

NEXMIF
(KIAA2022)

Severe ID +
epilepsy

Trunc ID þ epilepsy,
DEE

Trunc No Noa 54

SMC1A CdLS Mis DEE and CdLS Trunc (DEE mostly) and
mis (CdLS mostly)

Yes Rare55 56

WDR45 DEE and BPAN Trunc, mis rare DEE and BPAN Trunc, mis rare No No 57,58

Abbreviations: abs, absence seizures; BPAN, b-propeller-associated neurodegeneration; CdLS, Cornelia de Lange syndrome; DEE, developmental and epileptic
encephalopathy; GTCS, generalized tonic–clonic seizures; ID, intellectual disability; LD, learning disability; MICPH, microcephaly with pontine and cerebellar
hypoplasia; mis, missense; Trunc, truncation; XCI, X-chromosome inactivation.
aOne of 7 individuals showed 100% skewing.
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expression or splicing. However, one of the major challenges

with implementation of GS is the sheer number of variants

detected; even when sequencing trios, *40 to 90 de novo

variants are identified as compared to the 0 to 2 detected in

ES.67-69 For this reason, most studies to date have focused

solely on the exome to determine the diagnostic yield of

GS.70,71 In a DEE cohort (n ¼ 197), the majority of whom had

array-CGH and prescreening of a panel of known DEE genes,

27% of individuals had pathogenic variants (variants and

CNVs) in known or novel DEE genes.70 In a small GS study

of 14 individuals with early infantile DEE, all patients had

pathogenic variants that encompassed known DEE genes.71

Of note, the majority of these variants in both studies should

or would have been resolved by gene panel/ES or array-CGH.

Interpretation of up to 100 de novo variants in noncoding

DNA is much more challenging, primarily because of our lim-

ited understanding of function in these regions. Perhaps the

most obvious place to start is intronic regions where the can-

didate gene can at least be reasonably inferred. Variants in

these intronic regions may impact splicing or fall within pre-

viously unannotated regions of the genome. For instance, exon

5 of SCN8A is alternatively spliced, but, up until recently, only

exon 5N (N-neonatal) was captured by ES, while exon 5A

(A-adult) was missed, resulting in variants in exon 5A being

called “intronic.” Reanalysis of data with improved annotation

led to the identification of 3 SCN8A 5A pathogenic variants in

individuals with DEE.72 This finding highlights the importance

of precise annotation of the genome to identify all exons. Using

brain-specific deep RNA sequencing to identify novel tran-

scripts, 191 DEE-associated genes were recently reannotated,

and an additional *700 kb of coding sequence was added to

these genes. Mapping of ClinVar variants to these transcripts

reclassified 23 intronic variants as coding, and resequencing of

novel SCN1A coding regions led to the identification of 2 de

novo SCN1A variants.73 A similar study of SCN1A in patients

with DEE identified 5 intron 20 SCN1A variants that likely lead

to aberrant inclusion of an SCN1A “poison exon” in the tran-

script and the premature truncation of the protein.74 There are

likely many additional instances of tissue and cell-specific

transcripts, including those harboring poison exons that may

be detected using deep RNA sequencing and that may aid

interpretation of variants from GS.

Finally, while GS has highlighted a role for noncoding var-

iants in promoters and enhancers (cis-regulatory elements

[CREs]) that affect gene expression in other neurodevelopmen-

tal disorders,75,76 these studies have not yet been performed in

DEE. The challenges are 2-fold: (1) our knowledge of where

these CREs reside in neurons/glia that are implicated in sei-

zures is incomplete and (2) whether a single variant can disrupt

expression of a gene completely is unlikely, and initial success

in this regard will likely be with SVs that disrupt CREs. To

address the initial challenge, chromatin capture techniques will

need to be performed in both fetal and adult brain as well as

potentially iPSC-derived neurons to identify epilepsy-relevant

CREs in the genome.

Unsolved DEE: The Role of Genetic
Mosaicism

Somatic mosaicism has been proposed as an additional

mechanism that may explain unsolved DEE. Mosaicism is the

result of a postzygotic variant that arises during development.

This variation is inherited by subsequent cells that arise via

mitotic division, resulting in a genetically distinct subset of

cells. Depending on when the variant arises during develop-

ment, it could be present across many tissue types or restricted

to just one. Deep sequencing of surgically resected brain tissue

has shown that mosaic variants present in the brain can cause

neurological disorders such as focal cortical dysplasia (FCD)

and hemimegalencephaly.77 Although FCD is one of the most

common causes of focal epilepsy, deep sequencing of resected

brain tissue from individuals with nonlesional focal epilepsy

(NLFE) also revealed SLC35A2 variants present in the resected

tissue and not in the lymphocyte DNA in 3 (17%) of 18 cases.78

In the DEEs, studies on mosaicism have been restricted to

analysis of blood, cheek swabs, or saliva from unsolved cases.

For instance, analysis of 237 individuals who presented with

Dravet syndrome but did not have apparent pathogenic SCN1A

or PCDH19 variants revealed somatic mosaic microdeletions

involving SCN1A in 2 individuals.79 Reanalysis of commercial

genetic testing panels in 9 DEE genes revealed mosaicism in

3.5% of probands.80 There are also a number of case reports,

including males with PCDH1981,82 and individuals with

GRIN183 and SCN2A84 mosaic pathogenic variants. The chal-

lenge in detecting somatic variants in cases of DEE is that this

ideally requires brain tissue, which is not easily accessible. Due

to this inaccessibility of brain tissue, the cases of somatic

mosaicism-associated DEEs are likely underrepresentative of

the true number of cases.

Also worth noting here is that mosaicism has important

genetic counseling implications in the instances of low-level

parental mosaicism, that is, when unaffected parents carry a

pathogenic variant in a subset of cells, including germ cells.

Using single-molecule molecular inversion probes, Myers et al

examined 123 consecutively recruited trios and identified low-

level mosaicism in 8.3% of parents of individuals with DEEs

caused by apparent de novo variants.85 Similarly, a study focus-

ing on a Dravet syndrome cohort revealed that 7% to 13% of

families have a parent with low-level mosaicism in SCN1A.86

Collectively, these studies show that roughly 1 in 10 parents

will be somatic mosaics for “de novo” variants, and in these

instances, recurrence risk can be up to 50%. As such, many

commercial diagnostic testing companies now offer “mosaic

carrier testing” for parents with children with de novo variants

in DEE-associated genes.

Summary and Future Directions

Although new genes, noncoding variants, and SVs, as well as

mosaicism, are likely to define a subset of unsolved cases, they

are unlikely to account for all. As such, new genetic discoveries

will continue to be made, including perhaps epigenetic causes
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as well as oligogenic models of inheritance, both of which have

been shown to contribute to the “missing heritability” of other

genetic conditions.87,88 In addition to finding highly penetrant

variants, genetic research in DEEs in the future will begin to

unravel genotype–phenotype correlations and potential var-

iants that modify clinical presentation. Perhaps most impor-

tantly in the coming years, we will translate DEE gene

discoveries into precision medicine opportunities, including

antisense oligonucleotides, new or repurposed compounds, and

perhaps even gene therapy for the treatment of these disorders.
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