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A B S T R A C T   

The main objective of this study was to map the quality of groundwater for domestic use in the 
Nabogo Basin, a sub-catchment of the White Volta Basin in Ghana, by applying machine learning 
techniques. The study was conducted by applying the Random Forest (RF) machine learning 
algorithm to predict groundwater quality, by utilizing factors that influence groundwater 
occurrence and quality such as Elevation, Topographical Wetness Index (TWI), Slope length (LS), 
Lithology, Soil type, Normalize Different Vegetation Index (NDVI), Rainfall, Aspect, Slope, Plan 
Curvature (PLC), Profile Curvature (PRC), Lineament density, Distance to faults, and Drainage 
density. The groundwater quality of the area was predicted by building a Random Forest model 
based on computed Arithmetic Water Quality Indices (WQI) (as dependent variable) of existing 
boreholes, to serve as an indicator of the groundwater quality. The predicted WQI of groundwater 
in the study area shows that it ranges from 9.51 to 69.99%. This implied that 21.97 %, 74.40 %, 
and 3.63 % of the study area had respectively the likelihood of excellent. The models were found 
to perform much better with an RMSE of 23.03 and an R2 value of 0.82. The study conducted 
highlighted an essential understanding of the groundwater quality in the study area, paving the 
way for further studies and policy development for groundwater management.   
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1. Introduction 

Globally, many developing communities suffer from physical water scarcity, because water is a basic human need, and its insuf-
ficientness impedes development in many places, especially in areas with little or no access to surface water. Water resources have 
great economic potential for agriculture, tourism, irrigation, transport, and industry [1,2]. Although water surrounds most parts of the 
world, however, it is not always readily available, especially potable water, which is required to meet necessities including food 
production, sanitation, and long-term development [3,4]. It is worth noting that only 2.5% of the water on earth is available as surface 
water, with the rest 1.2% being located in groundwater, glaciers, and ice caps, respectively [5]. 

Surface water sources include rivers, lakes, canals, runoff, and reservoirs. It is important to understand that, surface water sources 
can change dramatically in a short amount of time [4,6], which makes them more susceptible to chemical spills and accidental releases. 
Groundwater quality, on the other hand, is typically constant over time; however, changes in groundwater conditions can lead to 
variations in water quality over short distances. Groundwater is an adequate source of water, with little to no treatment required [7]. 
However, unlike surface water, groundwater is not easily accessible. Finding areas with groundwater potential requires groundwater 
exploration. Groundwater exploration often requires geophysical investigations which require expensive equipment for assessment. 
Domestic water supply accounts for about 95 % of groundwater use in Ghana, largely in rural areas and small towns [8,9]. According to 
Kpakpo [10], the percentage of families in Ghana who rely on groundwater for their water supply is about 41 %, with the percentage 
being much greater in rural areas (59%) than in urban areas (16%). However, in some parts of the Upper East and Upper West Regions 
of Ghana, groundwater is the main supply of water for 80% of the urban population. Less than 5 % of Ghana’s groundwater is used for 
irrigating and watering livestock and poultry, and less than 1% of Ghana’s total groundwater use due to industrial uses of groundwater 
(Hydrogeology of Ghana - MediaWiki, 2022). 

Groundwater quality is influenced by a wide range of factors ranging from natural to anthropogenic factors. To save cost in drilling 
a borehole only to abandon it, because of poor water quality it would be helpful if there exists a map that shows the suitability or 
otherwise of the groundwater for domestic consumption. Thus, it is not enough to know only where groundwater exists, it is equally 
important to know if the groundwater in the area is safe for consumption. Notably, severally conventional methods have been applied 
to assess water resources, groundwater vulnerability and quality around the globe [11–17]. In recent years, Water Quality Index (WQI) 
integrated with Machine Learning (ML) and Deep Learning, as many innovative techniques [18]. Deshpande et al. [19], Goodarzi et al. 

Fig. 1. Geographical location of the Study Area (Nabogo Basin).  
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[20], Patel et al. [21], Siriwardhana et al. [22],Abba et al. [23] and Xiong et al. [24] assessed water, and groundwater quality in their 
various study areas, where their findings from WQI methods proved significant for water quality management, and it recommended 
the replication of these methods in different territories of the world. 

Therefore, the primary goal of this study was to investigate the capability of the Random Forest algorithm in RStudio, GIS, and 
remote sensing techniques for mapping groundwater quality in the Nabogo Basin in Ghana. Decision makers in groundwater devel-
opment and management will benefit from the resulting groundwater potential map to find acceptable areas for water resource 
exploitation. A new and upcoming technique for groundwater prediction is the use of machine learning techniques. For groundwater 
mapping, machine learning algorithms like random forest have been utilized continually [25–30]. The current study aims to use 
machine learning to predict groundwater quality in Ghana’s Nabogo Basin. 

Traditional exploration of groundwater does not consider water quality but only its availability. Finding groundwater that is not of 
the right quality subsequently leads to either the water source being abandoned or expensive equipment being used to treat the water 
for domestic use. All these put a financial burden on water users. It would be prudent if one could decide beforehand whether to drill a 
borehole or not, based on knowledge of whether the water that will be obtained will be of good or not. Other works carried out within 
the study area have been to characterize groundwater resources concerning recharge, unsaturated zone process, and quality [31–35]. 
The processes employed by these studies are expensive and time-consuming for any interested person who wants to develop 
groundwater resources within the Nabogo basin. Machine learning approaches, which employ stochastic solutions to data to better 
constrain the processes of characterizing an area within a shorter period, are much more preferred. 

Finding groundwater of the right quality for domestic use is as important as finding areas with the potential for extracting 
groundwater. However, the water quality of the Nabogo Basin has not yet been mapped. Most groundwater research in the study area 
has only mapped the availability of groundwater in the basin, without its quality. In a study by Ref. [36], which mapped groundwater 
availability in the Nabogo Basin, the authors recommended that further studies be carried out to map the groundwater quality in the 
study area. Therefore, the main objective of this study was to predict quality in the Nabogo Basin by applying machine learning 
techniques. 

2. Study area 

2.1. Location and climate 

The Nabogo Basin (Fig. 1) falls under the White Volta Basin, under the Volta Basin in Ghana. The Nabogo basin encompasses the 
Savelugu Municipality, Nanton District, Karaga District, parts of the Gushegu Municipality, and a very small part of the Mion District in 
Ghana’s Northern Region. The Nabogo River is formed by the convergence of several smaller tributaries before the town of Nabogo, 
within latitudes 9.535 N–10.022 N and longitudes 0.948 W–0.249 W. The area drained by the basin is approximately 2872 km2. The 
basin’s altitude above mean sea level varies from 98 to 271 m. 

The basin has a single-mode rainfall system that begins in April and ends in October, with the peak months being August/ 
September. The mean annual precipitation calculated from a 30-year historical dataset is 1094 mm. Mean minimum and maximum 
temperatures in the basin vary from 22.9 to 34.5 ◦C, respectively. Commonly, within a year, 87 % of the rain falls from May to October. 
However, most of the rains occurring during these months end up as surface runoff with little recharge to the groundwater [37]. The 
humidity levels in the rainy season vary from 70 to 81 % but fall to 28 % in the dry season. Annual evapotranspiration in the basin 
measured using the FAO Penman-Monteith method is 1898 mm/year. The hot temperatures within the basin cause surface waters to 
dry up, resulting in water scarcity and soil hardening, which might also limit infiltration and, as a result, reduce aquifer recharge. 

A study by Dapaah-Siakwan & Gyau-Boakye [8], Dapaah-Siakwan & Gyau-Boakye [9] shows that Palaeozoic sedimentary rocks, 
locally known as Voltaian formation underlay the Nabogo Basin and consist mainly of unconsolidated mudstones, siltstones, shale, 
conglomerate, and sandstones. This formation has been reconsolidated over time, leading to the loss of its primary permeability. As a 
result, secondary porosity caused by weathering and rock deformation controls groundwater occurrence in the basin, resulting in a 
localized fractured-type aquifer system [38]. Aquifer properties vary across this basin due to the complex underlying geology. For 
example, borehole yield in the basin can range from approximately 700 l/min, while the depth to water level ranges from 2 to 30 m, 
with an average of 9 m from the ground level [36]. 

The surface water system are tributaries of the white and black volta. Borehole depths vary widely from 21.0 m to 99.0 m, with 
yields ranging from 0.3 m3/h to 12.0 m3/h. Anku et al. [39] uncovered a positive correlation between borehole depth and yield. 
Aquifer transmissivity among sandstones ranges from 0.1 to 52.0 m2/d. Siltstone and mudstone aquifers have transmissivity ranging 
from 0.2 to 16.0 m2/d [40,41]. In general, the Voltaian aquifers have a strong relationship between aquifer transmissivity and specific 
capacity [40,42]. The study area generally has groundwater suitable for domestic and agricultural use but some parameters make the 
quality poor [43]. This includes a low pH ranging from 3.5 to 6.0 and a high concentration of iron throughout the study area [41]. The 
majority of groundwater quality issues can be attributed to hydro-geochemical processes in bedrock rock aquifers and anthropogenic 
activities resulting in high sodium chloride concentrations. 

3. Materials and methods 

3.1. Laboratory analysis 

Groundwater samples were obtained from One hundred and forty (140) boreholes following established sampling protocols. These 
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samples were collected in 100 ml acid-washed high-density linear polyethylene (HPDE) bottles. Subsequently, contaminants were 
removed from the samples using a Sartorius polycarbonate filtering apparatus with a 0.45-m cellulose acetate filter membrane. Upon 
filtration, the cation samples were promptly acidified to a pH of 2 using nitric acid, while the anion samples were left untreated. 

Parameters such as potential hydrogen (pH), electrical conductivity (EC), total dissolved solids (TDS), and total hardness (TH), 
were examined to assess groundwater quality. Major cations, including sodium (Na), potassium (K), magnesium (Mg), and calcium 
(Ca), as well as major anions such as chloride (Cl), sulfate (SO4), chloride (Cl), and bicarbonate (HCO3), were measured using 
appropriate methods such as atomic absorption spectrophotometry (AAS) and ultraviolet spectrophotometry (UV) respectively. 
Additionally, bicarbonate concentration was determined through titration, while other water quality variables were analyzed using 
various methodological approaches. 

3.2. Data collection 

This study utilized data from SRTM DEM with 30 m resolution and satellite data downloaded from the USGS EarthExplorer website, 
satellite imagery (Landsat 7, 30 m resolution). This data was imperative in computing the different indices. The borehole data was 
acquired from the Community Water and Sanitation Agency (CWSA). Table 1, shows the different data types, formats, and sources used 
in this study. 

3.3. Methodological framework 

The methodology used in this research was to obtain a DEM and collect water quality data on existing boreholes in the study area 
(Fig. 2). Topographic features affecting groundwater potential (i.e., elevation, TWI, LS, geology, soil, LULC, aspect, slope, PLC, PRC, 
lineament density, distance to faults, drainage density) were then extracted from the DEM in the GIS environment. An arithmetic Water 
Quality Index (WQI) was then computed for each of the boreholes using the water quality data from each borehole. WQI was 
determined by calculating using physiochemical properties like pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Total 
Alkalinity (TA), Total Hardness (TH), Manganese (Mn), Iron (Fe), Fluoride (Fl− ), Calcium (Ca2+), Magnesium (Mg2+), Chloride (Cl− ), 
Nitrate (NO3

− ), and Sulfate (SO4
2− ). The borehole WQI was used as a predictor (dependent) variable in the prediction of groundwater 

quality. 

3.4. Machine learning model 

Random Forest is a machine learning method that combines the predictions of multiple decision trees to improve performance. It 
offers high accuracy in predictions, reduced variance, and is less prone to overfitting compared to individual decision trees. It can be 
observed that the borehole data used is concentrated around the southern part of the study area and the RF model has the capacity to 
predict the unsampled areas with higher accuracy. It can handle missing values, and feature importance, and can be applied to both 
classification and regression problems. Randomness introduced during training reduces the risk of overfitting, making it a powerful 
choice for noisy or complex datasets. Random Forest is efficient on large datasets with numerous features and instances, making it 
suitable for big data applications. It does not require feature scaling, making it less sensitive to the scale of input features. Random 
Forest can capture complex non-linear relationships in the data, making it suitable for tasks where underlying patterns are not well- 
described by linear models. It is relatively easy to tune, with default hyper parameters often providing good results. However, the 
choice of the best model depends on the specific characteristics of the dataset and the goals of the analysis. A thorough understanding 
of the data is crucial for selecting the right model. 

By contributing to the forecast of groundwater resources, ML approaches have the potential to promote insight into groundwater 
and management. This can be accomplished by facilitating the collection of large water datasets, storing these datasets in databases, 
and processing these datasets to obtain useful insights that water resource managers can use to: determine water quality in untested 
areas or depth; design monitoring programs; assist in the formulation of groundwater protective measures; and, finally, assess the 
viability of groundwater water supply [44]. 

The RF model has been used to forecast manganese removal (Bhagat, Tiyasha et al., 2020), flood vulnerability Chen et al., 2020), 
pollution sources in water supply networks (Grbčić et al., 2020), and water quality prediction (Chen et al., 2020). Furthermore, the 
XGBoost model was used to predict water quality factors [45], biological water quality monitoring Chen et al., 2018), manganese 
removal prediction (Bhagat, Tiyasha et al., 2020), sediment heavy metal prediction (Bhagat, Tung et al., 2021), and lead 

Table 1 
Data, format, and their sources.  

No. Data Format Source 

1 Topographic Data (DEM) TIFF USGS 
2 Lithology Shapefile/scanned maps Ghana Geological Survey 
3 Land use land cover Shapefile Esri Land Cover Map 
4 Soil information Shapefile FAO Digital Soil Map 
5 Rainfall data Excel CHIRPS 
6 Borehole water quality Excel/PDF CWSA  
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contamination prediction (Bhagat, Tiyasha et al., 2021), all with varying degrees of accuracy. ANN-based prediction models have been 
widely applied in various studies including wastewater heavy metal removal (Bhagat, Tung et al., 2020), heavy metal pollution 
prediction [44], flood susceptibility (Falah et al., 2019), and water level forecasting (Zhu et al., 2020). 

This research makes use of the RF technique for predicting groundwater availability and quality. The RF approach employs an 
ensemble of classification and regression trees. Each tree is constructed using a different bootstrap sample (with replacement) from the 
original data [26]. In comparison to standard trees, RF adds a randomization layer to bagging, whereas in classic trees, each node is 
split using the optimal split among all variables. In the case of RF, only a random subset of the variables is considered when splitting a 
node during tree construction [27]. In comparison to other approaches, RF provides resilience to overfitting due to its random 
structures (Ning et al., 2022). 

RStudio was used to create a stacked raster dataset (using the stack function) of the various raster layers produced from the GIS 
environment. These layers served as the predictor (independent) variables used in the Machine Learning algorithm (Random Forest). 
Thus, each pixel of the stacked raster dataset contained values for the individual raster layers. The pixel values were extracted from the 
stacked raster dataset for each borehole location and merged with the WQI dataset to generate a new dataset. This new dataset was 
used to build RF models for the prediction of groundwater quality (indicating whether or not water is suitable for domestic use). The 
new dataset was divided into training and testing data to build the RF model. The training data was used to train the RF model, whereas 
the test dataset was used to validate the model by predicting WQI in the testing dataset. The prediction of borehole WQI was done by 
regression in the Random Forest algorithm. An accuracy test was then carried out for the model using the OOB error in Random Forest. 

Fig. 2. Procedural framework in GIS used in this study (Authors: Source).  

Fig. 3. Procedure in R Studio used to develop the WQI map in this study (Authors: Source).  
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The Random Forest algorithm in R was then used to predict the WQI for each pixel of the stacked raster dataset. The output of these 
classifications was saved to a new raster dataset (in TIF format). The classified raster dataset, which represents the Water Quality Index 
was now loaded in the GIS software. The raster dataset was converted to a vector dataset, ready to be published as a web map. The 
procedure is shown in Fig. 3. 

3.5. Determination of water quality and water quality index 

The water quality data was processed for the thirteen (13) selected physicochemical parameters and then the WQI was estimated 
for each water sample. The Water Quality Index is a dimensionless quantity (single-dimensional number) ranging from 0 to 100 that 
provides a reliable means of determining the overall quality of various parameters present in water. The physicochemical parameters 
were expressed in different units, and different ranges, and exhibited concentration-impact behaviour. As a result, before the devel-
opment of the index, all the parameters must be converted into a single measure, and weights are then assigned based on the 
importance of the chemical on overall water quality. 

According to the WQI, determined using the weighted arithmetic in this study, the allowable maximum value of WQI is 100, and 
values above 100 indicate pollution and are unsafe to drink [34,46–48]. The WQI generates a numerical measure that is used as a 
management tool in the assessment of water quality. The main advantage of this technique is that it integrates data from multiple water 
quality parameters into a mathematical equation that assigns a numerical value to water quality. 

The thirteen (13) significant parameters selected for the determination of the WQI were EC, TDS, pH, TA, TH, Mn, Fe, Ca2+, Mg2+, 
Cl− , F− , NO3− , and SO4

2− . Equation (1) ([49,50];, 2020; [19–22]) was used to calculate the weighted arithmetic water quality index 
based on Ghana Standard Authority (GSA) water quality requirements for the different parameters. 

WQI=
∑n

i=1
qiWi (1)  

Where Wi denotes the unit weight for every parameter, qi is the 0–100 subindex rating for each variable, and n is the number of 
consolidated subindices. The Water Quality Index model in this research follows the five (5) steps outlined by Ref. [49]. 

Step 1: Parameter selection for measuring water quality.  

￭ Thirteen (13) physicochemical parameters were selected for this study. 

Step 2: Estimate the weightage of each parameter (I)  

￭ The weightage of a parameter is inversely proportional to its allowable limits, i.e., weightage of parameter, I = 1/Si, where Si is the 
maximum permissible limits of the parameter [51]. The weightage of each parameter is shown in Table 2. 

Step 3: Using the weightage of each parameter, estimate the unit weight of parameters (Wi).  

￭ The unit weight (Wi) of parameters (determined using equation (2) [21]) is proportional to the weightage assigned to each 
parameter i.e, 

Wi =K/Si (2)  

And the constant of proportionality is given by equation (3) [19–22]. 

Table 2 
Weightage of water quality parameters and the unit weight of water quality.  

Parameters GSA (Si) I = 1/Si Wi = K/Si 

pH 8.5 0.118 0.0176 
EC 1000 0.001 0.0001 
TDS 500 0.002 0.0003 
TA 500 0.002 0.0003 
TH 500 0.002 0.0003 
Ca2+ 75 0.013 0.0020 
Mg2+ 50 0.020 0.0030 
Cl− 250 0.004 0.0006 
Mn 0.1 2.500 0.3739 
Fe 0.3 3.333 0.4986 
F− 1.5 0.667 0.0997 
NO3- 50 0.020 0.0030 
SO4

2- 250 0.004 0.0006  
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K= 1

/
∑n

i=1
1

/

Si (3)  

where K is a constant of proportionality; Wi is the unit weight of the parameter; n is the number of water quality parameters. The unit 
weight calculated for each parameter is shown in Table 2. 

Step 4: Determining the subindex value (qi). The subindex value is using equation (4) [19–22]. 

qi =
Vi − Vo

Si − Vo
× 100 (4)  

Where; 
Vi = mean concentration of the parameters in water, Si = standard desirable or permissible concentration of the parameters in 

water, V0 = Actual concentration of the parameters in pure water (generally V0 = 0 for most parameters except pH). 
For pH, qi is determined using equation (5) [19–22]. 

qi =
Vi − 7
8.5 − 7

× 100 (5) 

1. Step 5: The overall WQI is calculated by aggregating the sub indices.  

￭ WQI is the total of all the parameters’ sub-indices (qi) and unit weights (Wi) and was determined using equation (6) [19–22]. 

Thus,WQI=
∑n

i=1
qiWi (6)  

3.6. Prediction of groundwater quality 

The dependent variable (predicted variable) for predicting groundwater quality was the WQI. The model was trained to predict 
borehole WQI in the training dataset and then validated using the test dataset. WQI is a numerical value and therefore the regression 
method of the Random Forest algorithm was used for the prediction. Water quality data for one hundred and forty (140) boreholes in 
the Nabogo Basin were used for training and validation of the machine learning model for groundwater quality. 

4. Result and discussion 

4.1. Variable of importance for groundwater quality prediction 

The Random Forest model in RStudio was able to determine which of the independent variables were used for the prediction of 
groundwater availability and groundwater WQI of the study area. The following sub-sections provide details of the variables of 
importance for each of the predictions. For WQI prediction in this study, the variable of most importance as determined from the 
Random Forest algorithm shows that distance to faults is the most important, followed by rainfall and then NDVI, whereas the least 
important is PRC. The result of the variable of importance for the prediction of groundwater WQI in this study is shown in Fig. 4. 

4.2. Prediction of water quality index 

A Random Forest model was built and trained to predict borehole WQI in the study area. Since WQI is a numerical value, the 
regression method of the Random Forest algorithm was used for the prediction. Water quality data for One hundred forty-two (142) 

Fig. 4. Variable of importance for WQI prediction.  
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boreholes in the Nabogo Basin were used for training and validation of the machine learning model for groundwater quality. After 
extracting raster values of the 142 data points, 2 missing values were obtained for NDVI, and therefore these points were removed from 
the dataset, reducing the data points to 140. The 140 data points were then split into 70% for model training and 30% for model 
validation. This splitting was done to ensure that there remained sufficient points for validating the model. Thus, 98 points were used 
for model training and 42 points were used for validation. The value of mtry (randomized variables/elements to sample) affects the 
outcome of the accuracy (Table 3) of the RF model, as shown below (Fig. 5). The mtry value of 2 was used to select the optimal model 
since a mtry of 2 gave the smallest RMSE. 

The predicted WQI (Fig. 6) of groundwater in the study area shows that WQI ranges from 9.51 to 69.99, and can be put in three 
classes according to the Arithmetic Water Quality Index method. The WQI in the study was classified as excellent (WQI up to 25), good 
(WQI between 25 and 50), and poor (WQI between 50 and 75) quality of groundwater sources, as seen in the water quality map 
(Fig. 7). It was found that the Ariel coverage for areas predicted to be excellent, good, and poor; 21.97%, 74.40%, and 3.63% 
respectively. The trained RF model was used to map GWQI classes across the entire region. Results showed that the Poor GWQI class is 
dominant in the study area, with Good GWQI found in the southwest and Very Poor GWQI observed in the north. These findings were 
consistent with other studies that have assessed the quality of water for different purposes using machine learning techniques [44,45, 
52–56]. However, Ding et al. [25] in a study to optimize the water quality index using machine learning around the Haihe River Basin 
in China found that out of 178 samples evaluated the WQI in the area was classified as excellent, good, and poor quality had areas of 
5.39%, 87.25%, and 7.35%. These findings were also consistent with this current study as major water quality class was found to be 
good. This study compares groundwater quality assessments in the Miandoab Plain Aquifer (NW Iran) and the Haihe River Basin in 
China due to similar environmental challenges, shared hydrogeological characteristics, method validation, global perspective, and 
policy implications. These areas may face similar environmental issues, such as agricultural runoff, industrial discharges, and urban 
development, which can affect groundwater quality. Comparing results from this region to the others can help assess the effectiveness 
of the random forest method, enabling a more comprehensive understanding of water quality issues worldwide. 

Fundamentally, groundwater quality can be influenced by various human activities, including agricultural activities, phosphate, 
ammonium, bacteria, heavy metals, volatile organic compounds (VOCs), pesticides and herbicides, pH, and Total Dissolved Solids 
(TDS). The elevated nitrate levels in this study are linked to agricultural activities, while phosphate levels may be because of sewage 
discharges and detergent use. However, these parameters indicate a direct relationship to human influence around the study area. 
Regular monitoring is crucial to assess the potential impact of human activities and ensure water resource safety. 

4.3. Correlation Matrix of Water Quality Prediction 

The correlation matrix which shows the interaction between the various independent variables in the prediction of WQI (Fig. 8) 
showed that WQI has a positive correlation with Rainfall and NDVI (5), PLC and Elevation (12), PLC and Slope (17), PRC and LS (33), 
Lineament density and Drainage density (20), and Distance to fault and Elevation (39). This implied that an increase in WQI is 
attributable to increased Rainfall, NDVI, PLC, Elevation, Slope, Distance to faults, Limeament, and Drainage density values. The high 
correlation observed between PRC and LS can be mainly attributed to the topographical variation in the Nabogo basin. There was also a 
weak negative correlation between WQI and PLC (− 14), PRC and PLC (− 60), Slope and TWI (− 72), Rainfall and Aspect (− 21), and 
Drainage density and PLC (− 20). Thus, locations that are well-drained are likely to have a reduced WQI. The highly negative cor-
relation between Slope and TWI can also be attributed to the topographical variation. In summary, it can be said that groundwater 
quality in the Nabogo basin is mainly influenced by the topography and exacerbated by anthropogenic factors. 

4.4. Effectiveness of RF for predicting WQI 

The OOB error based on 10-fold cross-validation with 3 repeats for the training dataset produced an RMSE of 23.03 and an R2 value 
of 0.82. The scatter plot (Fig. 5) of the prediction accuracy of the RF algorithm shows that the model was able to fairly predict the yield 
of 39 out of the 42 boreholes in the test dataset. The results from this work are consistent with Sami et al. (2022); Ubah et al. (2021); 
Wang & Ding [29] in separate studies in water quality index analysis where an R2 of 0.98, 0.96, and 0.92 were found respectively. The 
difference in R2 in the study and the other studies is attributed to the size of the training and validation dataset because several studies 
have a wide range of different datasets and hence would have different R2s but the R2 recorded in the study is considered appreciable. 

Table 3 
The error metrics for WQI prediction.  

Mtry RMSE R-Squared MAE 

2 23.03 0.82 18.68 
4 23.87 0.82 19.30 
5 24.03 0.83 19.46 
6 24.40 0.83 19.86 
7 24.62 0.81 20.05 
9 24.97 0.82 20.35 
11 25.53 0.83 20.88 
13 25.92 0.85 21.21 
14 26.08 0.82 21.33  
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5. Conclusion and recommendation 

The aim of this study was to predict groundwater quality in the Nabogo Basin by applying machine learning techniques. The results 
of the study suggest that.  

• The resulting water quality map of the Nabogo basin showed that 21.97 %, 74.40 %, and 3.63 % of the study area had respectively 
the likelihood of excellent, good, and poor quality groundwater sources, based on classification using the arithmetic WQI.  

• The WQI was predicted with a RMSE of 23.03 and an R2 value of 0.82. 

Similar studies should be carried out in the Nabogo Basin by applying machine learning techniques to predict quality. One of the 
major constraints of this study was the limited availability of data and limited spatial distribution of data in the study area. Future 
studies should consider a more spatially distributed dataset for the study. Secondly, the results of this study should be ground-truthed 
to validate the results. It is recommended that water quality tests be conducted on these newly drilled boreholes in order to verify the 
results obtained from this study. Other machine learning algorithms such as ANN and deep learning should also be applied in future 
studies in the basin to predict groundwater quality. 

Fig. 5. Cross validation for WQI RF model.  

Fig. 6. Predicted WQI of the study area.  
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