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Abstract

GeneCards is a one-stop shop for searchable human gene annotations (http://www.gene

cards.org/). Data are automatically mined from �120 sources and presented in an inte-

grated web card for every human gene. We report the application of recent advances in

proteomics to enhance gene annotation and classification in GeneCards. First, we con-

structed the Human Integrated Protein Expression Database (HIPED), a unified database of

protein abundance in human tissues, based on the publically available mass spectrometry

(MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression

Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The

integrated database, residing within GeneCards, compares favourably with its individual

sources, covering nearly 90% of human protein-coding genes. For gene annotation and

comparisons, we first defined a protein expression vector for each gene, based on normal-

ized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards

expression section as a bar graph, allowing visual inspection and comparison. These data

are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we

further defined a pairwise metric that helps assess expression-based pairwise proximity.

This new metric for finding functional partners complements eight others, including shar-

ing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards

Suite. In parallel, we calculated proteome-based differential expression, highlighting a

subset of tissues that overexpress a gene and subserving gene classification. This textual

annotation allows users of VarElect, the suite’s next-generation phenotyper, to more
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effectively discover causative disease variants. Finally, we define the protein–RNA expres-

sion ratio and correlation as yet another attribute of every gene in each tissue, adding fur-

ther annotative information. The results constitute a significant enhancement of several

GeneCards sections and help promote and organize the genome-wide structural and func-

tional knowledge of the human proteome.

Database URL: http://www.genecards.org/

Introduction

Achieving deep quantitative coverage of proteomes is an

essential milestone in the characterization of the human or-

ganism, its tissues and its genes. Technological advance-

ments in the past decade have promoted high-throughput

shotgun mass spectrometry (MS) proteomics towards the

ability to quantify the whole proteome of a given sample

(1). The Human Proteome Project (HPP) is a world-wide

collaborative program aimed at disseminating proteomic

technologies and better integrating them with other high-

throughput approaches (2). The chromosome-based HPP

specifically focuses on expanding our understanding of

chromosomes and protein-coding genes (3). In parallel

with this work, two comprehensive human proteome stud-

ies provided significant genome-wide coverage for a large

number of tissues (4, 5) (see Discussion).

A variety of online resources have been built to store,

process and integrate proteomics data. Some sources

store raw data files, which are not readily available for use

without in-house processing (6, 7). A few online sources

perform integration and standardization of data, making

the processed results available to the community

[ProteomicsDB (5), Multi-Omics Profiling Expression

Database (MOPED) (8), Protein Abundance Across

Organisms (PaxDb) (9), The MaxQuant DataBase (MaxQB)

(10) and Human Proteome Map (4)]. Each data source re-

flects a partial picture, adopting unique methodology and

parsing different content, which makes integration a

necessity.

GeneCards, the human gene compendium, is a gene-

centric database integrating data for 152 704 human genes

from 125 sources (11). Some data in GeneCards, such as

gene aliases and summaries, are straightforward to inter-

pret. Other data are analyzed after the mining steps, in

order to improve its presentation and create new scientific

insights. For example, unification of 3215 pathways from

12 sources into 1073 SuperPaths provides a comprehensive

view of the pathways realm (12). This was done not only

by collecting data mined from multiple sources but also via

judicious integration, reducing redundancy and optimizing

the level of pathway-related informativeness for individual

genes.

Taking advantage of the great advances in quantitative

proteomics, and using GeneCards’ integration philosophy,

we aimed to unify, analyze and leverage the main sources of

human proteomics data, making them readily available to

users via GeneCards gene annotation. The crux of this is the

construction of HIPED (the Human Integrated Protein

Expression Database), a unified one-stop shop, gene-centric

view of the protein expression realm. HIPED data supplies

novel gene annotations. Its expression proteomics finger-

print enables the creation of a metric for genes comparisons.

Gene pairs with highest similarity are annotated as expres-

sion partners, creating a novel gene network. Additionally,

in order to strengthen the tissue annotation of genes in

GeneCards, we calculated the set of tissues for each gene in

which it is differentially expressed.

Gene expression studies were previously used as the

basis for a variety of gene annotations and functional in-

sights. This includes determination of gene–gene expres-

sion-wise relations (13, 14), and definition of gene sets

with specific expression profiles such as tissue specificity

and housekeeping properties (15–17). One of the most

popular databases of protein–protein interactions (PPIs),

STRING (18), includes microarray coexpression scores as

a part of the PPI pipeline. As most previous studies were

based on RNA-based datasets, the data in HIPED allow a

proteomics-based look, in search for novel gene annota-

tions and classifications.

HIPED enables the characterization of protein and RNA

relations for human genes. The relationships between RNA

and protein levels are generally far from being straightfor-

ward (19, 20). The ability to predict protein abundance

from RNA levels is made complex because of the contribu-

tion of diverse regulatory processes controlling the tran-

scription, processing and degradation of mRNAs and the

translation, localization, modification and destruction of

proteins (20, 21). Most studies focus on comparisons of pro-

tein to RNA content of a given cell/tissue (22), only few con-

centrate on the genes across-tissue protein–RNA expression

vectors (5, 23). HIPED enables comprehensive comparisons,

which can assist in gene characterizations, further facilitat-

ing the discovery of specific gene properties and mechanisms

affecting protein–RNA relationships.
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Methods

Mining and integrating human proteomes

Protein expression sources provided data either via txt files

(PaxDb version 3.0 integrated datasets, MOPED version

2.5, MaxQB 09/2013) or via API methods (ProteomicsDB

02/2015). A standard symbolization algorithm was de-

veloped to map all identifiers used [sources gene identifiers,

Ensembl (24) and UniProt (25) protein identifiers] to gene

symbols, using GeneCards aliases, identifiers and protein

annotations. For genes having multiple proteins, expression

data were summed to receive a gene centric aggregated

value. For proteins belonging to multiple genes, protein in-

tensity values were equally divided among such genes.

For integration, we converted all abundance data to

mole-based parts per million (PPM), whereby for MaxQB

and ProteomicsDB, iBAQ (intensity based absolute quanti-

fication) was converted to PPM by

PPMi ¼
iBAQiP
j iBAQj

� 106

Duplicate samples and samples having <10 mapped

genes were excluded from HIPED. This resulted in the def-

inition of 771 proteomic samples (Supplementary Table S1).

Of these, 555 samples represented cell lines and disease-

related datasets, and 216 samples were normal human ana-

tomical entities (tissues, in vivo cells and body fluids).

Experimental data of individual samples independently

curated by different sources were pre-averaged

(Supplementary Table S4). Further averaging across data

sources (see Supplementary Table S2 and legend), we ended

up with 69 datasets for normal anatomical entities

(Supplementary Table S3) and 125 for the cell lines

(Supplementary Table S1). Averages were calculated as geo-

metric mean of non-zero PPM values. Three datasets with

extremely high gene counts (>12 000; Supplementary

Figure S5 outliers, proteomes #15, 17, 18 in Supplementary

Table S2) were excluded from averaging.

Mining and integrating human transcriptome

GTEx (26) RPKM (reads per kilobase of transcript per mil-

lion mapped reads) values for similar anatomical entities

were averaged across all individuals, resulting in 51 aver-

aged samples (Supplementary Table S13). Further, we add-

itionally averaged sample types of very close anatomical

sources (e.g. coronary artery and aorta) to produce another

seven averaged samples, to a total of 58 averaged RNA-seq

datasets. This data were incorporated in GeneCards RNA

expression histogram images and used in the protein versus

RNA comparative analyses.

Differential expression was computed using the DESeq2

package (27), where each tissue was tested against all tis-

sues. Genes with maximal cross-tissue average read

count<5 were not used. As previously reported (28), the

DESeq package was not readily scalable for such a large

dataset (total of 2712 samples). Therefore, the GTEx read

counts for similar anatomical entities were pre-averaged

across all individuals for differential expression calculations.

We compared this alternative approach with using the

DESeq built-in replicate handling. Three sample analyses

were performed on one tissue versus seven controls

(Supplementary Figure S19). Analyzing the fold change val-

ues for all 35 514 genes, the average of Pearson correlation

value was 0.82, suggesting good agreement between the

methods. Further, comparing differential expression annota-

tion with identical cutoff of X4, the average false-positive

rate was 1.0%, whereas the false-negative rate was 2.3%,

suggesting that the alternative method is somewhat more

conservative in assigning differential expression to genes.

Analysis of protein expression

Unless otherwise stated, the protein abundance PPM values

were log10 transformed and right-shifted into positive numer-

ical space. The shift value was determined as log10 of dataset-

wide minima divided by 2. Proteomics-based fold change

values were calculated by dividing protein abundance of a gene

in a tissue by the average protein abundance of the gene. Fold

change values deriving from abundance values lower than

0.1PPM were ignored. The expression fold change cutoff was

selected on the basis of seeking an optimum between dispro-

portionately increasing the number of overexpressed genes per

tissue and excessively diminishing the number of genes remain-

ing without tissue overexpression annotation (Supplementary

Figure S15). Expression breadth was defined as number of tis-

sues for which a gene has a non-zero abundance value.

Gene–gene expression correlation

Pearson’s correlation coefficient was used to measure ex-

pression similarity between genes. Alternative correlation

methods produced similar results to those shown in the

main text using Pearson’s coefficient. Randomized tissue ex-

pression vectors were calculated by permuting the tissue ex-

pression vector of every gene. The pairwise ‘AND’ metric

was calculated by counting the number of anatomical enti-

ties in which both genes have non-zero abundance values.

Analysis of protein and RNA expression

Cellular copy numbers for both protein and RNA were

computed as follows: RPKM values and PPM values were
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each multiplied by a factor for this unit conversion. For pro-

tein, we used a factor of 104 to convert PPM to copy num-

ber, assuming 1010 molecules/cell (29). For RNA, we used a

factor of 1, based on the assumption that one transcript

copy per cell corresponds to between 0.5 and 5 FPKM (frag-

ments per kilobase of transcript per million mapped reads)

values (30) and taking an approximate geometrical mean.

For the correlation between protein and RNA expression

tissue vectors, gene vectors of each tissue were log10 trans-

formed, z-scored and right-shifted into positive numerical

space, before measuring the Pearson’s correlation. In silico

genes with permuted protein vectors were used as random

controls. Averaged P/R ratios were calculated as the geometric

mean of across-tissues P/R cell copy number ratios of a gene.

P/R values having zero in either one of the parameters were

ignored and genes with a 24-length zero vector were excluded.

Bioinformatics analyses

Gene symbols, gene categories, gene-protein mappings, gene

ontology (GO) terms, String PPIs (18), COMPARTMENTS

cellular localization (31) and paralogs (24) were retrieved

from GeneCards V4 (11); Gene–disease relationships from

MalaCards V1.08 (32); Pathways gene lists from PathCards

(12). Gene set enrichment analysis was performed using

GeneAnalytics (33, 34).

Tissue clustering

All computations below used the MatlabVR software (version

R2012b; MathWorks Inc.). For hierarchical clustering, we

used either 1 minus Pearson’s correlation or Jaccard coefficient

as distance, and using the Ward method. K-means was per-

formed using Pearson’s correlation as the distance metric, with

10 repeats. In clustering and principal component analysis

(PCA) analyses of data from multiple sources (Supplementary

Figures S4–S6), only genes reported by all sources in an ana-

lysis were used to minimize source-related bias.

Data availability

HIPED-derived data incorporated into the GeneCards

database is available upon request, via the GeneCards on-

line ‘contact us’ form. For retrieval of raw proteomics data

used to create HIPED, please contact our sources.

Results

Mining and integration of human proteome data

We created HIPED, a Human Integrated Protein Expression

Database (Figure 1A). HIPED encompasses 20 593 unique

genes present in 771 proteome samples (Figure 1B;

Supplementary Table S1). These data are mined from four

proteomics sources—ProteomicsDB (5), MOPED (8),

PaxDb (9) and MaxQB (10), each using different post-MS

analyses on in-house and external raw MS data (Table 1).

HIPED has larger gene count and sample coverage than its

integrated components (Figure 1C and D), thus representing

a useful unification and affording a one-stop shop for gene-

centric protein expression information. HIPED data cover

19 370/21 965 (88.2%) of the genes annotated as protein

coding in GeneCards (11), notably annotating also 1223

genes of other gene categories, including 458 RNA genes

and 717 pseudo-genes (Supplementary Figure S1). Of the

total 20 593 genes represented by HIPED proteins, 16 900

appear in normal anatomical entities (next section) and the

remaining 3693 are seen only in disease tissues or in cell

lines.

The 771 proteome samples that include tissues and iso-

lated cells of different types show a broad range of gene

counts (83–18 756), and a diversity of log-normal abun-

dance distributions spanning three to nine orders of magni-

tude (Figure 2). The distribution parameters are somewhat

correlated to the number of identified proteins in the sam-

ple (Supplementary Figure S2A), and it appears that most

of the observed breadth variation is related to the variance

in the distribution’s minimum (Supplementary Figure S2B).

A combination of experimental parameters, sample ana-

tomical identity and pipeline processing likely contributes

to such variance.

With the aim of enhancing the derivation of gene-related

biological insight from proteomic data, we focused on 216

proteome samples stemming from normal human anatom-

ical entities (tissues, in vivo cells and body fluids), to the ex-

clusion of 555 samples which include cell lines and disease-

related datasets. All further proteome analyses (except

Supplementary Figure S8) were performed using the normal

anatomical entities (Supplementary Tables S2 and S3). The

relevant protein expression vectors were analyzed for mu-

tual pairwise correlation, as exemplified in Supplementary

Figure S3. Subsequently, hierarchical clustering was per-

formed, which brings together tissues with similar expres-

sion vectors. In some cases, the clusters that form are related

to samples that are obviously related to each other anatom-

ically, such as different blood cells, whereas, in quite a few

other cases, clusters do not obey such a rule (Supplementary

Figure S4). A parallel PCA showed similar imperfect trends

with respect to demarcation of broad sample types and tis-

sue groups (Supplementary Figure S5).

The strongest inter-vector correlation was observed for

pairs of data sets arising from the exact same sample, but

analyzed and curated by different pipelines (Supplementary

Figures S3 and S6). This is corroborated by the high degree

of overlap seen in the assignment of expressed/not expressed
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status for different proteins (Supplementary Table S4). Such

results indicate that different modes of analysis are de-

cidedly comparable. Lower but significant correlation val-

ues were observed for pairs of different samples from the

same tissue of origin (Supplementary Figure S6). In view of

such trends, and in order to characterize every anatomical

entity through its pattern of protein expression, we gener-

ated a unified view by defining gene expression vectors for

each of the 69 entities. These were derived from the 216

samples by averaging across different proteomic dataset rep-

resentations for each of the entities (Figure 3;

Supplementary Figure S7). These 69 across-genome gene

vectors may be perceived as portraying a broadly disposed

proteomic representation of human tissues. Interestingly,

when expression vectors for tissues sampled from the group

of 69 were compared with those of the respective cognate

cell lines, a surprising result obtained (Supplementary Figure

S8). It appears that cell lines, irrespective of their tissue of

origin, tend to cluster together, often away from the cognate

normal tissue (see ‘Broad tissue set’ in the Discussion).

Proteomic tissue fingerprints for human genes

One of the key outcomes of generating a large database of pro-

tein expression values across numerous genes and tissues is an

emerging capacity to define an across-tissue protein abun-

dance vector for every gene, which may be perceived as char-

acterizing a gene’s proteomic tissue fingerprint. For this, we

Table 1. HIPED sources.

Database Sample

count

Gene

count

Database url Reference

ProteomicsDB 577 17,153 https://www.proteomicsdb.org/ (5)

MOPED 172 17,164 http://moped.proteinspire.org (8)

PaxDB 11 19,851 http://pax-db.org/#!home (9)

MaxQB 11 10,059 http://maxqb.biochem.mpg.de/mxdb/ (10)

Figure 1. HIPED—Human Integrated Protein Expression Database. (A) HIPED architecture scheme. (B) Classification of the 771 proteomes in HIPED.

(C) Gene and sample type counts of HIPED and its mined components. Sample types are unique normal anatomical entities or cell lines represented

in each source. (D) Gene content overlap of HIPED mined sources.
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represented each of the 16 900 genes by a 69-dimensional vec-

tor of protein abundance across the anatomical entities

(Figure 4). We then submitted the 16 900 vectors to a k-means

procedure, in order to identify clusters of across-tissue expres-

sion pattern similarity. Following silhouette optimization, 53

clusters were identified (Figure 5; Supplementary Figure S9,

Tables S9 and S10). Each cluster was then represented by a

center-of-mass vector (Supplementary Figure S10A), which

conveys tissue expression idiosyncrasies shared by genes

within the cluster, often jointly including well-studied genes

and genes of limited functional annotation. This procedure en-

ables new insights on relatively uncharacterized genes

(Supplementary Figure S10B).

An alternate way to view the protein expression space is

PCA. It appears that while the first component of this PCA

analysis is related to expression breadth (the number of

tissues showing non-zero expression, Figure 6A;

Supplementary Figure S11), the second component is related

to anatomical entities identification (Figure 6C). Functional

signatures, such as subcellular localization, define further

characteristics of the expression space (Figure 6B). Two ex-

tremes of gene expression breadth, namely genes expressed

in a single entity, and genes expressed in the majority of

entities (housekeeping), populate specific areas in the ex-

pression space (Figure 6C). A visual display of protein abun-

dance values across all 69 anatomical entities from HIPED

was implemented in the expression section of GeneCards

(11, 35), making the data available for scrutiny, and ena-

bling quantitative comparisons of protein expression in

every relevant gene (Figure 7). This is done in conjunction

with the display of several gene expression sources, allowing

facile comparison.

Figure 2. Protein abundance distribution (PPM values) of mined datasets in HIPED. (A) All 771 samples comprising HIPED. (B) Selected sample groups

of similar anatomical entities.
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A tissue expression comparison metric

We examined the legitimacy of using the correlation be-

tween tissue expression vectors as a measure of gene-to-gene

similarity. For this, the distribution of all pairwise Pearson’s

correlation coefficients for the 16 900 proteome-annotated

genes was computed (Figure 8; Supplementary Figure S12).

Control randomized vectors yielded a significantly different

distribution of correlation values (P<10�5). Further, there

was an appreciable enrichment of test versus control counts

in positive correlation values, peaking at R¼ 0.6. This sug-

gests that the expression proximity metric we have defined

can be used to assess gene-to-gene similarity.

To obtain further evidence for the validity of the expres-

sion metric, we examined the expression correlation be-

havior of gene pairs sharing functional attributes: sequence

paralogs, diseases, PPIs and biological pathways. In three

of the cases, there was an enrichment of gene pairs with

high expression similarity (R> 0.5) among functionally

related gene pairs (Figure 9). In the case of paralogy, we

further show a weak but significant correlation between

protein sequence similarity and expression similarity

(Pearson’s correlation coefficient¼0.39, P< 10�3;

Supplementary Figure S13). In the case of biological path-

ways, the enrichment for expression-correlated gene pairs

was negligible.

We subsequently sought to define a group of expression

partners for every relevant gene, based on the pairwise

similarity of across-tissue protein abundance patterns. In

order to define an optimal expression similarity cutoff, we

strived to reconcile between promiscuous partnering and a

scarcity of genes with partners. Two different methods for

such optimization gave optimal expression similarity

rounded cutoff of 0.6 and 0.8, respectively, so a mean of

0.7 was chosen (Supplementary Figures S14A and B).

Thus, gene pairs having Pearson’s correlation coefficient of

>0.7 were defined as expression partners. This metric

defined 881 932 expression-based gene–gene relationships,

each gene having 124 expression partners on average, and

the overall gene coverage was 14 264/16 900 genes, with a

range of 1–1395 partners (Supplementary Figure S14C).

Notably, this expression correlation cutoff is also roughly

the line of demarcation of function-sharing enrichment of

gene–gene pairs (Figure 9). Another interesting observation

is that large expression partner counts (>500) are seen for

genes for which expression is seen in 30–60 tissues out of

the maximal 69 (Figure 10), i.e. genes that may be crudely

defined as housekeeping. The gamut of expression partners

for every gene is shown in GeneCards (Figure 7) and will

also be available in the GenesLikeMe tool of the

GeneCards Suite (33).

We examined a subset of expression partners, focusing

on pairs with a well-annotated member and a poorly

studied one, as indicated by their GeneCards Inferred

Functionality Score (36) (Supplementary Table S11,

Figures S10B and S14D). Some of the extreme examples

are such that the minimally annotated gene belong to

classes of predicted genes, such as those with symbols pre-

fixed with ENSG [from Ensembl (24)], LOC [from Entrez

Figure 3. Averaged protein expression vectors. Representation of selected 53 genes averaged protein abundance vectors for the 69 anatomical enti-

ties in HIPED.
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Gene (37)] and containing open reading frames, with prac-

tically no functional information; hence, the expression-

related pairing could aid in innovative functional insights.

An interesting example is the pair ENSG00000263264, for

which very little annotative information is known, and

RUNX1, a well-characterized transcription factor that has

a role in the development of normal hematopoiesis (25)

and is a causative gene for blood diseases (32). Those ex-

pression partners are mutually expressed in hematopoietic

system cells.

Proteome-based differential expression

We annotate tissue specificity of genes based on protein

abundance. For each gene, the abundance fold change be-

tween each tested tissue and the average of all tissues was

Figure 4. Double hierarchical clustering of the 16 900 genes in 69 normal anatomical entities. Examples of gene groups sharing functional annotations

are highlighted. (A) CNS—397 genes enriched with diseases as schizophrenia, pathways as neuroscience and GO terms as transporter activity. (B)

Blood—301 genes enriched with diseases such as obesity and C2 deficiency and GO terms as complement activation (C) Immune system—483 genes

enriched with diseases such as rheumatoid arthritis and pathways as lymphocyte signaling. (D) Genes with housekeeping properties—1771 genes

enriched with pathways and GO terms related to metabolism and gene expression. See Supplementary Tables S5–S8 for the full enrichment analysis

data.

Figure 5. K-means analysis 53 clusters of the 16 900 genes in normal

human proteomes.
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calculated. We defined genes having fold change of 6 to be

differentially expressed in a tissue (Supplementary Figure

S15). This created 36 857 gene–tissue annotation pairs,

with 26–3142 (average 366) genes being differentially ex-

pressed in each tissue, and 0–7 (average 2.2) tissues differ-

entially expressing a given gene (Supplementary Figure

S16A and B). The list of tissues in which a gene is differen-

tially expressed is shown in GeneCards, with such informa-

tion available to its search engine and affiliated tools

(Figure 7).

This differential expression data define a binary matrix

with a 16 900-long protein expression column vector for

each tissue, and a 69-long tissue expression row vector for

each gene (Figure 11). Hierarchical clustering of the gene

vectors showed connectivity between anatomically related

tissue samples (Supplementary Figure S17). Again, as in

Supplementary Figure S4, deviations occur, with a promin-

ent example being the long distance of cerebral cortex

from a cluster of other brain tissues (Supplementary Figure

S17). This could stem not only from real expression

Figure 6. PCA of 16 900 genes comprising HIPED normal proteomes. (A) Gene expression breadth. Expression breadth is one of the gene expression

vector signatures determining its position in the PCA space. This feature is closely related to the first component of the PCA. (B) Subcellular localiza-

tion. Subcellular localization data from COMPARTMENTS (31) was projected on the gene expression space. Only genes having the maximal confi-

dence score of 5 for a single subcellular compartment are shown. (C) Single tissue and housekeeping genes. All 2320 genes expressed in a single

anatomical entity are shown, representing the tissue-specific dimensions in the expression space (left panel, different colors are used to distinguish

tissues). Genes with housekeeping properties populate a specific area in the PCA space (right panel). Top 50 genes were selected with the highest

pairwise similarity of across-tissue protein abundance patterns of a gene against an in silico ‘ideal’ housekeeping profile (similar expression of

10 000 PPM across all tissues and cells and 0 PPM across fluids).
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Figure 7. Protein abundance data in GeneCards. A screenshot of protein expression based data for the gene DPYSL2, including (i) protein expression

chart; (ii) a list of tissues in which the gene is differentially expressed; (iii) a list of the gene expression partners. DPYSL2 plays a role in neuronal de-

velopment and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration (25). Protein expression charts

are created via GeneCards automated expression charts pipeline. In order to optimize user perception of the expression, values were displayed using

a special root scale (35). This scale enables viewing many orders of magnitude like on a logarithmic scale, but preserves certain characteristics of a

linear scale in which the differences increase with the orders of magnitude.
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idiosyncrasies but also potentially by experimental error.

In total, 5840 distinct across-tissue expression patterns

(row vectors) were observed, a very small fraction of the

269 possible ones. This includes all 69 single-tissue patterns

(purely tissue-specific genes) and about half of the possible

two-tissue patterns (Supplementary Figure S18). Such rela-

tively simple patterns are very frequent among genes,

whereby 86% of all genes have patterns with � 3 tissues.

The number of genes showing a given pattern generally de-

clines with the count of tissues in which a gene is differen-

tially expressed (Supplementary Figure S16C). Patterns

with higher tissue counts are highly idiosyncratic, with

�38% of the genes having very rare patterns (populated by

� 3 genes), and �26% of all genes having a unique pattern

not seen in any other gene. We note that the ‘oligo-tissue’

patterns provide a powerful tool for defining gene similar-

ity via expression pattern sharing. In an example, a par-

ticular pattern with four tissues (brain, fetal brain, frontal

cortex and retina) is seen in 10 genes (AP3M2, CADPS,

CTNNA2, GDAP1, GNAO1, MAPRE3, MYO5A,

NCAM1, PPM1E and RAB39B). Those genes are related

to 31 neuronal diseases (Supplementary Table S12).

Protein to RNA comparisons

Building HIPED provided a large portfolio of human pro-

tein abundance profiles. In comparison with RNA expres-

sion, we mined GTEx, a comprehensive panel of RNA

expression data (26), with RNA-Seq results from 51 types

of human samples collected from dozens of individuals per

tissue (Supplementary Table S13). We focused on 24

tissue/sample types that are represented in both the protein

and RNA data, to facilitate analyses of protein–RNA rela-

tionships (Supplementary Table S14). This dataset encom-

passed 14 155 genes, each with two across-tissue vectors,

for protein and for RNA abundances.

First, we analyzed the correlation between the protein

and RNA vectors (Figure 12A). While the mean Pearson’s

correlation coefficient is 0.19, the distribution appears

strongly different from that for randomized vectors, with

37% of the genes having a correlation coefficient higher

than 0.3. Interestingly, both extremes of the distribution

are populated with genes whose expression is strongly tis-

sue specific (Figure 12B).

We subsequently calculated the protein/RNA (P/R)

ratios using an absolute scale of cellular copy number for

both scales (Figure 12C and D). The ratios have a log-nor-

mal distribution, showing a geometric mean of P/R �5900,

as befits the relatively high molecular count amplification

occurring in the translation process. Notably, for genes at

the extremes of the distribution, this amplification can be

as high as>106 and as low as<102.

The combination of both vectors could help create

novel gene-specific signatures. Indeed, different genes res-

ide at different locations of the 3D scatter plot (Figure

13). One geometrical location is that of the default pos-

ition, namely a strong protein–RNA correlation and aver-

age P/R ratio. Other positions represent deviations from

this norm, which indicate stronger or weaker translation

amplification and/or inter-tissue variations in the P/R

ratio. The latter constitutes a deviation from a previous

assertion that for many genes the P/R ratio is relatively

stable amongst different tissues (5). The 3D position of

every gene is being implemented as novel annotation in

GeneCards.

Discussion

Data integration

The goal of HIPED was to create a unified gene-centric

view of protein expression, as obtained from several sour-

ces. HIPED integrates only the processed protein abun-

dance values and provides appropriate database links to

the original MS-derived data. Our approach strives to pro-

vide the user with integrative information on every gene as

gleaned from four data sources and hundreds of individual

experiments. This is in contrast to an approach whereby

data are merely aggregated into one repository, preserving

the original individual experiments. Both approaches have

Figure 8. Pairwise correlation distribution. The fraction distribution of

the pairwise Pearson’s correlation coefficients for the 16 900 proteome-

annotated genes is plotted along random generated genes. The ratio

between compared fractions distributions was plotted, disregarding

bins with extremely low (<8 � 10�5) fraction values. Real data vectors

exhibit significantly different (positively) correlation values than the ran-

dom controls (Wilcoxon rank sum tailed test, P < 10�5).
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been used previously (5, 8–10). Admittedly, our procedure

involves certain risks, as the different sources of data use

different experimental and analytical methodologies.

Examples of inter-experiment differences (38) include (i)

different individuals tested; (ii) different part of tissue or

cell enrichment protocols employed; (iii) different MS par-

ameters utilized; (iv) different bioinformatic analyses used.

An additional challenge to cross-source integration is that

the mined sources differ in their gene content (Figure 1D).

Thus, a total of �12% of the identified genes are reported

by only one of the four sources, and only �47% are re-

ported by all four sources. This requires judicious proced-

ures for averaging. However, the emerging advantages of

integration outweigh the risks, by portraying to the users a

clear view of the behavior of each gene product across a

variety of anatomical entities.

Of particular relevance is the criticism voiced towards

the two genome-wide proteomic studies (4, 5), which we

have utilized, questioning their high gene coverage. One

critique (39) scrutinized their proteome coverage in the

realm of olfactory receptor proteins. Such proteins are

nominally not expected to be expressed outside the chemo-

sensory epithelium although evidence to the contrary has

been published (40). The conclusions drawn, based on

proteomic scrutiny, point to potential shortcomings in

spectra interpretation (39, 41, 42). Of note, our Figure 1D

Figure 9. Pairwise correlation distribution. The fraction distribution of the pairwise Pearson’s correlation coefficients for the 16 900 proteome-anno-

tated genes is plotted along gene pairs sharing functional attributes, namely: (A) sequence paralogs, (B) diseases, (C) PPIs and (D) biological path-

ways. The ratio between compared fractions distributions was plotted, disregarding bins with extremely low (<8 � 10�5) fraction values.
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does not show genome-wide excess of proteins identified

solely in the data mined from one of the questioned sources

(5). While the controversy is not fully settled, the data of

the appraised sources were subsequently updated (43) and

utilized by others (8, 38, 44, 45, 52, 53). We expect that

future updates of HIPED will benefit from further progress

of proteomic and other OMIC approaches, allowing better

annotation of human proteins. HIPED is planned to be

updated with up-to-date versions of its sources as a part of

GeneCards updates protocols, which take place several

times a year.

Broad tissue set

Analyses that utilize large-scale expression studies for gene

annotation, such as determination of gene–gene rela-

tionship, comparison of protein and RNA expression, an-

notation of house-keeping and tissue-specific expression

patterns, differ in their tissue content. Some of the tissues/

anatomical entities are typically shared by many studies

(‘major tissues’), exemplified by liver, heart, brain, testis,

ovary, colon, kidney, lung and blood cells (4, 5, 13, 15,

16). Other ‘minor tissues’ include those less often studied,

such as fetal samples or tissue sub-compartments. There

are even rarer target entities such as bronchoalveolar lav-

age (a lung biomarker discovery fluid, MOPED) and cardia

(a stomach tissue sub-compartment, ProteomicsDB). Our

set of 69 normal anatomical entities includes representa-

tives of all the above, and is used as a means of characteriz-

ing genes and their mutual relationships. This set of 69

tissues is not inclusive and depends on the particularities of

the proteomic sources utilized. Thus, skeletal muscle,

agreeably a major tissue, is absent from this set.

Clustering analysis of the protein expression vectors

(Supplementary Figure S7) indicated different levels of con-

nectivity, with clusters of close similarity (e.g. nervous,

gonads/fetal, gastrointestinal and blood), as well as entities

such as certain individual cells and fluids that tend to show

very weak inter-tissue similarity. Obviously, obtaining

gene–gene relationships benefit from a selection of a subset

of maximally orthogonal tissues. At the same time, the in-

clusion of tissues showing higher similarity would be bene-

ficial by adding fine-tuning. Our comprehensive set of

anatomical entities, emerging from the combined effort of

the proteome experimentalists, ensures optimal analyses.

HIPED future versions will attempt to further character-

ize the human proteome. While this study is focused on the

normal anatomical entities, some questions regarding the dis-

ease and cell line proteomes remain open. One direction to

be pursued in subsequent studies is a thorough comparison

of the non-normal proteomes with the corresponding normal

counterparts. Such efforts might aid the annotation of genes

related to the disease phenotypes. Further, they could help

identify expression differences between human tissues and

their cognate cell lines (Supplementary Figure S8).

Gene–gene relationships

Many previous analyses report expression profiles for indi-

vidual genes (4, 5, 8–10, 15, 26, 46). In this article, we strive

to go further by leveraging expression data in order to estab-

lish gene expression similarity metrics. Previous attempts to

similarly annotate gene–gene expression partners or estab-

lish expression-based gene networks, focused on RNA ex-

pression datasets and antibody-based proteomics, analyzing

across-tissue patterns (13, 14, 18, 47) or time-scale and sub-

cellular localization, as was done in yeast (48). The study

described herein is different because it exploits integrated

high-throughput MS-based proteomics for this purpose.

We demonstrate that genes tend to be co-expressed

much more than randomly expected and form expression

groups that populate diverse positions in the expression

landscape. A significant aspect of this endeavor rests on the

assumption that genes involved in the same function should

have correlated expression pattern (49), thus allowing one

to ascribe shared functional characteristics to poorly studied

genes. In benchmark experiments, we indeed demonstrate

links between expression pattern similarities and function.

This suggests that the expression similarity scale developed

may help define novel gene functional partners.

Proteomic expression breadth

Expression breadth is used for functional gene annotation,

including often-used terms such as housekeeping and tissue-

Figure 10. Genes partner count and expression breadth. A heat map

showing counts of genes according to bins of partner counts and ex-

pression breadth.
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specific genes. The tissue proteomic expression space presented

here allows one to define more subtle expression signatures

than the two extremes mentioned above, as previously indi-

cated in analyses of mRNA expression (15, 50). Basically, be-

cause it is based on a large number of tissues (69), the

portrayed expression scale is more graded. What previous re-

ports (16, 17) call housekeeping genes spans a relatively broad

range on this scale. We believe that the major reasons for such

differences in housekeeping genes annotation are a combin-

ation of using RNA expression in previous reports, and the

lower number of participating tissues (16 and 43).

Several analyses in this work emphasize tissue breadth-

specific signatures. For instance, the expression breadth

emerges as the primary PCA axis in the space of genic

tissue expression vectors (Figure 6A). Another interesting

insight, derived from the expression partner annotation

procedure, is that genes with high expression breadth pos-

sess many partners.

Protein–RNA comparisons

Protein and RNA abundances provide two different views

of gene expression, and comparing these two scales is not

straightforward. Different genes show both widely dispar-

ate values of mean protein to RNA ratios (in the range of

102 to 106), as well as a wide range of correlation values

for their cross-tissue abundance vectors. In this vein, tissue-

centric comparisons previously revealed that although a

Figure 11. Double hierarchical clustering of the differential expression binary matrix. Analysis included 16 366 genes with differential expression an-

notation, belonging to the 5839 non-zero patterns. Jaccard coefficient was used as the metric distance.
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correlation exists, it is far from being perfect (19, 22, 51).

In parallel, it was recently proposed that for most genes,

the P/R ratios tend to be similar across different tissues

(5, 23). Such behavior is synonymous with there being a

high correlation coefficient between protein and RNA lev-

els when analyzed for many tissues. Our data, showing

generally modest correlation values, and very poor correl-

ation for quite a few genes, indicate that such a generaliza-

tion may not always be supported. Further large-scale

studies of both RNA and protein abundances performed

on identical tissues sources could help better resolve such

issues.

GeneCards

The major findings of the current research were incorpo-

rated into the GeneCards database, significantly enhancing

its expression section. This makes the recent proteomics

progress readily available through a widely used gene-cen-

tric database, which hosts HIPED in its relational database

Figure 12. Comparisons of protein and RNA vectors. (A) Distribution of Pearson’s correlation coefficient between protein and RNA tissue vectors of

every gene in the protein–RNA comparison (red). This distribution is significantly different from the randomized controls (blue, P-value of t-test

<10�3). (B) Sub-division of each correlation bin using gene fractions according to the number of tissues with protein abundance data. (C) Distribution

of across-tissue averaged P/R cell copy number ratio of every gene in the protein–RNA comparison. Function enrichment analysis reveals that genes

in the upper 10th percentile show a significant enrichment for metabolic and structural functions, while genes in the lower 10th percentile are en-

riched with signaling and regulation of transcription (Supplementary Tables S15 and S16). (D) Box plot of P/R ratios, showing selected 30 genes from

distribution peak and both edges.
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tables. The first data layer in the GeneCards web interface

is protein abundance histograms across all 69 anatomical

entities (Figure 7), joining the existing RNA-based counter-

part, recently enhanced with GTEx data (26). This is fol-

lowed by two textual lists of tissues differentially

expressing a given gene, based on protein and RNA data.

Finally, the users can view a list of expression partners, i.e.

genes with similar expression patterns based on proteomic

data. Some of the genes are annotated as ‘elite’ if they are

also partnered at the RNA level, shown at the top of the

gene list. A third data layer is the provision of HIPED dir-

ect and derived data to other GeneCards Suite databases

and tools. This includes availability of the textual annota-

tions in the search engine, further allowing users of

VarElect, a next-generation phenotyper, affording effective

discovery of direct and indirect relationships between

variant-harboring genes and disease phenotypes. The pro-

tein expression-based similarity metric will soon also be

available in the suite’s gene partnering tool GenesLikeMe.

Supplementary data

Supplementary data are available at Database Online.
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