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Whole-genome sequencing analyses suggest
novel genetic factors associated with
Alzheimer’s disease and a cumulative effects
model for risk liability

Jun Pyo Kim 1,2,3,21, Minyoung Cho 4,21, Chanhee Kim 5,6,21, Hyunwoo Lee 7,
Beomjin Jang 4,8,9,10, Sang-Hyuk Jung 11, Yujin Kim5,6, In Gyeong Koh5,6,
Seoyeon Kim 5,6, Daeun Shin1,2,3, Eun Hye Lee 2,12,13, Jong-Young Lee 14,
YoungChan Park 15, Hyemin Jang1,16, Bo-Hyun Kim1, Hongki Ham 2,
Beomsu Kim 4, Yujin Kim4, A-Hyun Cho4, Towfique Raj 8,9,10,17,18,
Hee Jin Kim1,2,3, Duk L. Na 1,2,3, Sang Won Seo1,2,3,7,22 ,
Joon-Yong An 5,6,19,22 & Hong-Hee Won 4,20,22

Genome-wide association studies (GWAS) on Alzheimer’s disease (AD) have
predominantly focused on identifying common variants in Europeans. Here,
we performed whole-genome sequencing (WGS) of 1,559 individuals from a
Korean AD cohort to identify various genetic variants and biomarkers asso-
ciatedwith AD.OurGWAS analysis identified apreviously unreported locus for
common variants (APCDD1) associated with AD. Our WGS analysis was
extended to explore the less-characterized genetic factors contributing to AD
risk. We identified rare noncoding variants located in cis-regulatory elements
specific to excitatory neurons associated with cognitive impairment. More-
over, structural variation analysis showed that short tandem repeat expansion
was associated with an increased risk of AD, and copy number variant at the
HPSE2 locus showed borderline statistical significance. APOE ε4 carriers with
high polygenic burden or structural variants exhibited severe cognitive
impairment and increased amyloid beta levels, suggesting a cumulative effects
model of AD risk.

Alzheimer’s disease (AD) is the leading cause of dementia worldwide,
affecting over 57 million individuals1. AD is a complex neurodegen-
erative disorder influenced by genetic and environmental factors, with
approximately 60–80% heritability2. Recently, large-scale genome-
wide association studies (GWAS) have discovered 75 AD-associated
genetic loci3,4; however, these only account for approximately 15% of
the phenotypic variance5, indicating that a substantial portion of the
genetic factors involved in AD remain to be discovered. Despite these
findings, most previous GWAS have been conducted primarily in Eur-
opean populations, highlighting the need for research in diverse

populations. Indeed, with only a small fraction of genetic variants
shared across all ancestries6, GWAS of diverse populations holds the
potential to identify novel genetic factors7 andpopulation-specific rare
variants8–11.

Whole-genome sequencing (WGS) analysis can identify the full
spectrum of genetic factors and facilitate genetic association testing
for common and rare variants, thereby elucidating the genetic archi-
tecture of AD. WGS evaluates the contribution of rare noncoding
variations, which are largely unexplored but constitute a significant
proportionof an individual’s genetic variation. Thenoncodinggenome
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harbors regulatory elements such as enhancers and promoters, which
are essential for cell-type-specific gene expression and cellular func-
tion. Rare noncoding variants within these elements can disrupt gene
regulatory networks and potentially affect AD development and
progression12. In addition,WGS analysis can identify structural variants
(SVs) suchas copynumber variations (CNVs) and short tandemrepeats
(STRs), which previous studies have rarely investigated simulta-
neously. A large-scaleWGS study reported a rare AD-associated STR in
the downstream noncoding region of APOE13.

Although previous large-scale GWAS have used clinical diagnosis
as an outcome, core AD biomarkers are critical for genetic studies
because patients clinically diagnosed with AD may not exhibit AD
pathology, and AD often manifests atypically14. Thus, using bio-
markers, such as amyloid beta (Aβ), in genetic research can help dis-
cover more precise signals and novel AD-associated loci15.

In this study, we examined a wide range of genetic risk factors for
AD using high-depth WGS data from 1559 individuals from a Korean
cohort with AD. We performed a GWAS for common and rare AD-
associated variants using the core AD biomarkers amyloid PET and
clinical phenotypes. We compared our findings with existing Asian AD
GWAS to assess the reproducibility and novelty of the identified loci. In
addition, we characterized the relationships between AD and rare
noncoding variants that disrupt gene regulatory elements, CNV, and
rare STR expansions at the APOE locus. Our integrative WGS study
identified the associations and cumulative effects of various genetic
factors with cognitive impairment and Aβ deposition in AD.

Results
Study description
Our Korean AD WGS study recruited 1824 samples from the Korea
Registries to Overcome and Accelerate Dementia (K-ROAD) project
from 2017 to 2023 and generated high-depth WGS data (average of

30 × depth per sample) for these samples (Supplementary Fig. 1). After
quality control, we excluded 76 samples due to low-quality data or
relatedness and 189 with other types of dementia (Supplementary
Fig. 2). As a result, 1559 individuals were included, comprising 655
cognitively unimpaired (CU) individuals, 590 with mild cognitive
impairment (MCI), and 314 with dementia of the Alzheimer’s type
(DAT) (Supplementary Fig. 3, Supplementary Data S1a, S1,b). CU indi-
vidualswere significantly younger than those in theMCI (p < 2.2 × 10−16)
and DAT (p < 2.2 × 10−16) groups, according to the t tests.

From the WGS dataset, we prioritized high-quality single-nucleo-
tide variants (SNVs) and insertions and deletions (indels), which were
used for GWAS of common variants, gene-based testing of rare coding
variants (Figs. 1 and 2), and genetic association testing of rare non-
coding variants (Fig. 3). In addition, this dataset, was used to identify
CNVs and STRs (Fig. 4).

Our dataset includes various AD biomarkers, phenotypes, and
clinical diagnostic data. Aβ positivity was defined using the global
centiloid values derived fromAβ PET imaging. Among the participants,
925 were classified as Aβ-positive, whereas 634 were Aβ-negative. We
assessed cognitive function using the Korean Mini-Mental State
Examination (K-MMSE), Clinical Dementia Rating Sum of Boxes (CDR-
SB), verbal memory, and visual memory tests for the participants. The
rich phenotypic data enabled various comparisons of genetic factors
and a precise understanding of their effects (Supplementary Data S1c).

Identification of genes relevant to AD severity using common
and rare coding variants
To perform GWAS of AD, we first performed single-variant association
analysis using common variants (minor allele frequency, MAF ≥ 1%).
Subsequently, gene-based association analyses were performed using
rare coding variants (MAF < 1%), specifically those annotated as dele-
terious (Supplementary Fig. 4). Clinical diagnosis and Aβ positivity
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Fig. 1 | GWAS of clinical diagnosis and Aβ and the explanatory power of the
identified loci. a Manhattan plot for single-variant association analysis of clinical
diagnosis with a meta-analysis of Korean and Japanese cohorts. The genome-
wide significance threshold is indicated by a black horizontal dashed line at p
of 5 × 10−8, and the suggestive threshold is indicated by a gray line at p = 1 × 10−6. The
nearest genes were annotated for signals suggestive of significance. b Manhattan
plot for single-variant association analysis of Aβ using the Korean WGS cohort.

c,dManhattanplots for gene-based association analysis of clinical diagnosis (c) and
Aβ levels (d). The Bonferroni-corrected significance threshold is indicated by a
black horizontal dashed line at p = 2.9 × 10−6, and the suggestive threshold is indi-
cated by a gray line at p = 1 × 10−5. Genes were annotated for signals reaching sug-
gestive significance. Two-sided Firth logistic regression was performed using
REGENIE, with no correction for multiple testing. GWAS, genome-wide association
analysis; Aβ, amyloid beta; WGS, whole-genome sequencing.
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phenotypes were the outcome measures. We examined the genetic
association of these variants with AD using 314 individuals diagnosed
with DAT, 655 individuals with CU, and 925 Aβ-positive and 634 Aβ-
negative individuals.

To identify the associations between single common variants and
clinical diagnoses, we increased the sample size by conducting ameta-
analysis of results from other East Asian GWAS, including Japanese16

and Korean studies. The Japanese cohort comprised 140 individuals

Fig. 2 | Gene prioritization and cell type-specific expression patterns of
prioritized genes. a,bColocalization of GWAS of clinical diagnosis (a) and Aβ levels
(b) with ROSMAP, MetaBrain, and GTEx eQTLs. Colocalizations with a posterior
probability above 0.5 are shown. c Heatmap of gene prioritization of loci reaching
suggestive significance from single-variant association analysis. The heatmap
includes genes nearest to lead-SNPs (red), eQTL colocalization (green), eQTL signals
associated with lead-SNPs (yellow), peak-to-gene connections identified through
scATAC (blue), and evidence from prior publications (purple). d Heatmap of DEGs
derived from a previous study (Mathys et al.) according to the final cognitive con-
sensus diagnosis across brain cell subtypes. Significance levels are indicated as
*p <0.05, **p <0.01, and ***p <0.001. e Regional plots of the clinical diagnosis GWAS
and GTEx cortex eQTLs for APCDD1 within a 500kb window of the lead variant

(rs28372356). f APCDD1 and VAPA expression across different cell types in response
to pseudo-progression of SEA-AD. Each line represents the locally weighted mean
expression (LOWESS) of the supertypeswith each subclass. Source data are provided
as a Source Data file. Aβ, amyloid beta; ROSMAP, Religious Orders Study/Memory
and Aging Project; GTEx, genotype-tissue expression; AFR, African; OPC, oligoden-
drocyte precursor cell; eQTL, expression quantitative trait loci; DEG, differential
expressed gene; Astro, astrocyte; Exc, excitatory neuron; Inh, inhibitory neuron;
CAMs, cell adhesion molecules; Micro, microglia; Oligo, oligodendrocyte; End,
endothelial cells; Fib, fibroblasts; Per, pericytes; SMC, smooth muscle cell; VLMC,
vascular and leptomeningeal cells; Micro-PVM, microglia and perivascular macro-
phages; GWAS, genome-wide association analysis; scATAC, single-cell chromatin
accessibility; SEA-AD, Seattle Alzheimer’s Disease Brain Cell Atlas.
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Fig. 3 | Identification of rare noncoding variants associated with AD risk.
a Overview of rare noncoding variant analysis using CWAS. b Variants were anno-
tated with 59 terms across five groups, generating 29,917 non-redundant cate-
gories. c Volcano plot showing burden enrichment across categories; intergenic
categories (red) showed significant enrichment (RR > 1, p <0.05). A Bonferroni-
corrected significance threshold was applied based on 1463 effective tests.
d Density plots show the number of significant tests for each phenotype within
eachnoncoding category. The red lines represent nominally significant Aβ-positive-
enriched categories. The permuted expected distribution is shown in gray. Sig-
nificance tested by permutation (n = 1000). e Network of AD-associated intergenic
category clusters. Each node represents a cluster of categories. Each node is
interconnected based on correlations with disease association presented by nor-
malized z-scores. f The correlation between single annotations and four risk clus-
ters (FDR<0.05, RR > 1 The four clusters were grouped into three terms
(correlation > 0.5). Numbers of variants indicated in parentheses. g Schematic of
variant selection within the risk cluster. h Comparison of K-MMSE scores between

individuals carrying andnot carrying theC25 variantwithin theAβ-positive group.n
represents the number of samples in each group (C25 carriers: n = 508; non-car-
riers: n = 400). Box plots show the median line. Box edges mark the 25th and 75th
percentiles. Whiskers span 1.5 × the interquartile range. Points beyond are outliers.
Two-sided linear regression was used with adjustment for sample covariates.
i Example of a C25 variant interacting with multiple genes through Hi-C and over-
lapping excitatory neuron-specific regulatory elements. j Heatmap of genes linked
to risk variants across AD phenotypes, with color gradients indicating log2-fold
changes and significance marked by *. Only gene–variant pairs from excitatory
neuron subtype (Exc L2–3 CBLN2 LINC02306) shown. Differential expression tes-
ted via quasi-likelihoodF-test (muscat), FDRadjusted. Sourcedata are provided as a
Source Data file. AD, Alzheimer’s disease; CWAS, category-wide association study;
FDR, false discovery rate; RR, relative risk; C25, Cluster 25; H3K122ac, acetylate
lysine 122 onH3; APP catabolism, regulation of amyloid precursor protein catabolic
process (GO:1902991).
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with probable AD and 798 cognitively normal older adult controls. The
Korean cohort included 523 DAT individuals and 340 CU individuals,
all from independent samples, and genotyping was conducted using a
chip array. This meta-analysis revealed two genome-wide significant
loci near APOE and APCDD1 (p = 1.81 × 10−8) (Fig. 1a, Supplementary
Fig. 5a and Table 1). For APCDD1, consistent signals were observed
across three independent East Asian cohorts (Korean WGS,
p = 7.49 × 10−5; Korean chip array, p = 5.85 × 10−3; Japanese WGS,
p = 1.79 × 10−3). For Aβ positivity, we conductedGWAS usingWGS data,
identifying one significant locus, APOE, and two suggestive loci near

SAMD3 (p = 1.22 × 10−7) and PTPRD (p = 2.07 × 10−7) (Fig. 1b and Sup-
plementary Fig. 5b). These three loci (APCDD1, SAMD3, and PTPRD)
have not been reported in European or East Asian studies3,17 (Supple-
mentary Data S2a).

Rare coding variants were evaluated using gene-based association
analysis.We prioritized rare coding variants, which were predicted to be
loss-of-function or deleteriousmissense variants, and then collapsed the
variants using genes for association testing. While the association ana-
lysis for clinical diagnosis did not identify any significant genes, the
testing for Aβ positivity identified a suggestive gene burden for DRC7

Fig. 4 | Structural variants associated with AD. a Overview of association test
between structural variants and AD. b Manhattan plot for association analysis of
CNV with Aβ positivity. Red and gray dashed lines indicate the Bonferroni
(p = 2.4 × 10−6) and cytoband-based Bonferroni (p = 1.6 × 10−4) thresholds, respec-
tively. Two-sided logistic regression was used with sample covariates. c Schematic
of three STR association models. d Proportion of tandem repeats observed within
each genomic region. The proportion reflects the frequency of STR presence
relative to the size of the region. Dashed line: genome-wide average. eHistogramof
STRmotif length (inset: ≥ 7 bp). fHistogram ofmedian STR tract lengths relative to
GRCh38, genotyped by ExpansionHunter; x-axis limited to – 20 to 20. gHistogram
of STR repeat counts in the GRCh38. h The association between individual STRs (x-
axis: mean length difference between Aβ-positive and Aβ-negative samples divided
by standard deviation). STR lengths were analyzed using two-sided logistic
regression, adjusting for sample, technical, and APOE ε4 covariates. i Relative

burden of STRs enriched in Aβ-positive individuals across thresholds of STR length
and observation count. j Distribution of STR outlier counts for each sample com-
pared across Aβ-positive (n = 895) and Aβ-negative samples (n = 620). kOdds ratio
measuring the likelihood of Aβ positivity in individuals with different numbers of
STR outliers. l Aβ levels of each sample were compared between groups and divi-
ded according to the threshold ( < 10 or ≥ 40) for the STR outlier count.m Same as
(l), but for CU samples only. n Gene set enrichment analysis for genes near STR
outliers in samples with ≥ 40 outliers (two-sided Fisher’s exact test, FDR-adjusted).
The boxplots in this figure show themedian line. Box edgesmark the 25th and 75th
percentiles. Whiskers span 1.5 × the interquartile range. Points beyond are outliers.
For (j, l,m) two-sided linear regressionmodelswereusedwith sample and technical
covariates, and n refers to the number of individual samples. Source data are
provided as a Source Data file. Aβ, amyloid beta; AD, Alzheimer’s disease; CU,
cognitively unimpaired; CNV, copy number variants; STR, short tandem repeat.
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(p= 5.99 × 10−6) (Fig. 1c, d, Supplementary Fig. 5c, d and Supplementary
Data S2b, c). Among the 25 prioritized rare coding variants in the DRC7
gene, 18 variants were more frequently observed in Aβ-negative indivi-
duals than in Aβ-positive individuals, with 11 variants exhibiting the
highest allele frequency in East Asians (Supplementary Data S2d). Two
variants (chr16:57707535 and chr16:57723121) were predicted to be
pathogenic using AlphaMisSense, a machine learning model that
assesses missense variant pathogenicity. In addition, other computa-
tional pathogenicity predictors identified four variants by MetaSVM, 17
variants by SIFT, and 13 variants by PolyPhen. Nineteen variants showed
positive PhyloP mammalian conservation scores, suggesting that most
were located in conserved genomic regions.

Based on the cell type-specific differentially expressed genes
(DEGs) identified in a previous study18, DRC7 expression was elevated
in excitatory neuron subtypes with low social isolation scores and
increased in astrocytes of individuals with diabetes (Supplementary
Fig. 6a). DRC7 was highly expressed in excitatory neurons and astro-
cytes in the Seattle Alzheimer’s disease brain cell atlas (SEA-AD)
(Supplementary Fig. 6b).

Prioritized genes associated with GWAS loci and their expres-
sion patterns linked with AD severity
To prioritize genes associated with the GWAS loci, we conducted sta-
tistical fine-mapping analyses through expression quantitative trait
loci (eQTL) colocalization. We employed three different eQTL data-
bases: genotype-tissue expression (GTEx) eQTL data, cell type-specific
eQTLdata from the ReligiousOrders Study/Memory andAging Project
(ROSMAP), and MetaBrain eQTL data. In the clinical diagnosis GWAS,
the rs429358 locus exhibited colocalization with four genes (ZNF227,
TRAPPC6A, FOSB, and APOE), and the rs28372356 locus was found to
colocalize with APCDD1 (Fig. 2a and Supplementary Data S2e). In the
AβGWAS, the rs429358 locuswas colocalizedwith the same four genes
(ZNF227, TRAPPC6A, FOSB, and APOE), whereas the rs6923619 locus
exhibited colocalization with SAMD3 (Fig. 2b and Supplementary Data
S2e). No significant colocalization was observed for rs78009495.

Next, we conducted gene prioritization for the three previously
unreported identified loci (rs28372356, rs6923619, and rs78009495)
(Fig. 2c and Supplementary Data S2f, i). Gene prioritization was per-
formed based on the following five criteria: nearest gene, co-
localization with eQTL, eQTL signals on lead SNPs, evidence from
prior publications, and peak-to-gene connection identifiedwith single-
cell chromatin accessibility (scATAC). First, for rs28372356, which is
associatedwith a clinical diagnosis, the nearest genewas APCDD1, with
co-localization observed between the eQTL and GWAS signals. In
addition, this lead variant exhibited significant eQTL signals for
APCDD1, VAPA, and TXNDC2. Both APCDD1 and VAPA have been
reported in previous AD- and brain-related studies19–22. Next, for the
rs6923619 variant, associated with Aβ positivity, TMEM200A, EPB41L2,
ARHGAP18, and SAMD3 were identified as prioritized genes (Supple-
mentary Fig. 7). Finally, for rs78009495, associated with Aβ positivity,
the PTPRD gene was prioritized.

We also investigated whether these genes were differentially
expressed according to the clinical diagnosis using cell type-specific
DEGs calculated from previous research18 (Fig. 2d and Supplementary
Data S2j). In patients with AD, ARHGAP18 expression was found to be
higher in inhibitory neurons. In addition, TMEM200A and SAMD3
expression were lower in excitatory neurons, whereas SAMD3

expression was higher in astrocytes. Among individuals carrying the
rs6923619 variant, lower amyloid beta levels and SAMD3 expression
were observed in the GWAS and eQTL analyses, respectively (Supple-
mentary Data S2f). Single-cell ATAC-seq further revealed a peak-to-gene
link at the SAMD3 locus in astrocytes, where the DEG directionality
aligned with both the GWAS and eQTL findings (Supplementary
Data S2h).

To further explore the association between AD and the prioritized
genes, we examined the cell-type-specific expression patterns. We
focused on the genes (APCDD1, VAPA, and TXNDC2) prioritized at the
previously unreported identified significant locus (rs28372356). The
rs28372356 variant exhibited significant overlapping GWAS and eQTL
signals ofAPCDD1 in theGTExcortex eQTLdata (PP.H4 =0.92) andwas
identified as a variant in the credible causal variant set (Fig. 2e and
Supplementary Data S2e). APCDD1 was elevated in non-neuronal cell
types, particularly in oligodendrocyte precursor cells (OPCs), and its
expression increased with AD progression (Fig. 2f). Furthermore,
APCDD1 is predominantly expressed in non-neuronal cell types within
the brain transcriptome at the single-cell level (BTS) atlas23, with
expression levels increasing with age, particularly in OPCs. (Supple-
mentary Fig. 8). Similarly, VAPA was predominantly expressed in non-
neuronal cell types, especially astrocytes, and its expression increased
with AD progression (Fig. 2f). In contrast, TXNDC2 exhibited a con-
sistently low expression in all brain cell types (Supplementary Fig. 9).

Identification of rare noncoding variants in excitatory neuron
regulatory elements associated with AD severity
Beyond the GWAS of common and rare coding variants, we leveraged
the WGS data to investigate rare noncoding AD-associated variants. We
performed a category-wide association study (CWAS)24,25, a statistical
framework integrating multiple functional annotations relevant to dis-
ease pathology (a priori hypothesis) and combining multiple categories
using these annotations. CWAS can perform category-based collapse
analysis for noncoding associations with appropriate multiple compar-
isons. For CWAS analysis, we utilized 19,266,739 rare variants (MAF<
0.1%) from 1559 samples. We categorized rare variants using AD-
relevant annotations, such as cis-regulatory elements (CREs) from
postmortem AD brain samples26,27, biological pathways enriched for
known GWAS loci3 (e.g., TNF-mediated signaling, endocytosis, and
immune activation), and conserved sequences (Fig. 3a and Supple-
mentary Data S3a). For Aβ positivity analysis, we categorized rare var-
iants from Aβ-positive and Aβ-negative samples into 29,917 categories,
each with at least one variant (Fig. 3b and Supplementary Data S3b).

We compared the burden across each of the 29,917 categories.
Although no category showed enrichment after multiple testing cor-
rections (Supplementary Data S3b), 287 categories showed nominal
significance (p <0.05, relative risk (RR) > 1, binomial test), and inter-
genic categories accounted for thehighestnumbers,with 45 out of 287
categories (Fig. 3c). Permutation tests confirmed statistical sig-
nificance in the intergenic categories (p =0.048), but not in other
noncoding regions (Fig. 3d and SupplementaryData S3c). Applying the
same analysis to clinical diagnosis did not reveal significant signals in
the noncoding regions. Power estimation indicated limited power for
clinical diagnosis, directing subsequent analyses toward Aβ positivity-
associated categories (Supplementary Fig. 10).

We constructed a network based on the correlation of sample
counts across 2,074 intergenic categories to elucidate the functional

Table 1 | Genetic variants significantly associated with clinical diagnosis or Aβ positivity

Gene Locus Type Associated phenotype Distance to TSS Odd ratio (95%CI) p value

APCDD1 chr18:10326201 (rs28372356) SNV Clinical diagnosis − 128,434 1.65 (1.39–1.96) 1.81 × 10−8

HPSE2 chr10:98736468-98737614 DEL Aβ 279,391–280,537 1.60 (1.25–1.99) 0.0001

Two-sided Firth logistic regression (for SNV) or logistic regression (for DEL) was performed, without correction for multiple testing.
CI confidence interval, FDR false discovery rate, SNV single-nucleotide variant, DEL copy number deletion, Aβ amyloid beta, TSS transcription start site.
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annotations associated with the intergenic categories. Consequently,
we found 194 clusters of these categories, including four clusters
associated with Aβ positivity (false discovery rate, FDR <0.05; RR > 1)
(Fig. 3e and Supplementary Data S3d). After analyzing the correlations
between clusters and annotation terms, we identified functionally
distinct groups of intergenic variants (Fig. 3f). Themost significant was
Cluster 25 (FDR = 8.7 × 10−5; RR = 1.1), containing rare noncoding var-
iants within excitatory neuron-specific CREs identified in postmortem
AD brain samples26 (Supplementary Data S3e).

We assessed four AD clinical phenotypes for each cluster to
investigate the association between the variants in the four risk clus-
ters and AD (Fig. 3g and Supplementary Fig. 11). Although none of the
16 tests passed FDR, we prioritized Cluster 25 (C25) for its strongest
nominal significance and potential association with increased AD
severity. Carriers of Aβ-positive-associated variants in C25 exhibited
decreased K-MMSE scores, compared with other Aβ-positive samples
(p = 0.028, Fig. 3h). C25 comprises variants located in excitatory neu-
ronCREs associatedwith cognitive function inAD in aprevious study18.
We examined the interactions between each variant and gene(s) using
Hi-C data to identify the genes affected by these variants28. We iden-
tified that among the 63 Aβ-positive-only variants in C25, 39 variants
interacted with 109 genes. To further elucidate the impact of each
variant, we identified C25 variants within specific excitatory CREs26

(Fig. 3i) and examined the association between gene expression and
phenotypic characteristics within the same excitatory subtypes using
available AD single-cell transcriptome data18. Alterations in the
expression of the 15 genes linked to the 13 variants were associated
with cognitive impairment in the excitatory neuron subtype, Exc L2–3
CBLN2 LINC02306 (Fig. 3j and Supplementary Data S3f).

Comprehensive SV analyses in AD reveals rare STR expansion
burdens linked to Aβ
To investigate the association between SVs and AD risk, we conducted
association tests for CNVs and STRs. We identified 24,516 CNVs in 1555
participants, including 20,515 deletions and 4001 duplications (Fig. 4a
and Supplementary Fig. 12a, b). Logistic regression was employed to
assess the association of CNVs with Aβ positivity and clinical diagnosis
(Fig. 4b, Supplementary Fig. 12c and Supplementary Data S4a). While
no significant associations were observed at the Bonferroni-corrected
significance level, the deletion encompassing HPSE2 was associated
with Aβ positivity after cytoband-based Bonferroni correction
(p = 0.036). We visually confirmed the presence of deletions in the
HPSE2 region (Supplementary Fig. 12d). Although the deletion
encompassing ZNF7was significantly associatedwith clinical diagnosis
after cytoband-based Bonferroni correction (p =0.031), this was
deemed a false positive because of false-positive deletion calls
observed through visualization (Supplementary Fig. 12e).

Next, we identified 293,751 distinct STRs across 1515 samples
(Fig. 4a). We assessed their association with AD using three models
(Fig. 4c). Model 1 compared STR lengths between cases and controls,
Model 2 examined the burden of STRs exceeding a specific length
threshold, and Model 3 identified STR outliers by evaluating length
differences within our cohort and analyzing their count differences
between cases and controls. STRsweremore prevalent within 1000 bp
upstream of protein-coding genes and in the 5’ UTR compared to the
genome-wide average, with proportions of 2.27% and 2.59%, respec-
tively (Fig. 4d). The repeat unit lengths of the STRs were pre-
dominantly within 2–5 base pairs (Fig. 4e). Examination of the median
length of each STR revealed that 59% aligned closelywith the reference
genome with no length differences (Fig. 4f). In the reference genome,
STRs of ≤ 20 base pairs explained 96% of the distribution (Fig. 4g). No
differences were observed in sample mean coverage in Aβ-positivity
and clinical diagnosis (Supplementary Fig. 13).

Using Model 1 (Length Test) for Aβ positivity, no significant STRs
were identified (Fig. 4h and Supplementary Data S4b). However, when

APOE ε4 status was not considered, one STRwas significant, consistent
with findings from a previous European study13 (chr19:44921097-
44921125-TTTA; p = 7.48 × 10−39; Supplementary Fig. 14). This STR was
in LD with the APOE ε4 allele (r² = 0.56). Model 2 (Threshold Test) for
Aβ positivity found no significant STRs, excluding the STR
(chr19:44921097-44921125-TTTA) identified in Model 1 (Supplemen-
tary Data S4c). Additionally, we investigated the association between
STR expansion frequency and Aβ positivity. We observed that for each
threshold (≥ 5, ≥ 10, ≥ 20), rare STRs tended to havemore burden in Aβ
positivity (Fig. 4i). Model 1 for clinical diagnosis showed no significant
associations, and Model 2 for clinical diagnosis exhibited no trend of
burden for rare STRs; the analysis based on Aβ positivity showed
greater concordance with results from the previous European study13

than that for clinical diagnosis. Analyses of the two models indicated
that individual STRs are less likely to drive AD risk, whereas the burden
of rare STRs may increase the risk for Aβ positivity.

Finally, to investigate whether rare STR expansions were asso-
ciated with AD, outliers of each STR were called (Fig. 4c, Model 3:
Outlier Test). Of 293,751 STRs, 15,910 were identified as outliers. No
significant differenceswere foundwhen comparing the number of STR
outliers in Aβ positivity (Fig. 4j). The average outlier count was slightly
higher in Aβ-positive samples (Aβ-positive = 19.59, Aβ-negative = 19.36,
Supplementary Data S4d). The odds ratio for Aβ positivity increased
with the count threshold and was independent of the APOE ε4 ratio
(Fig. 4k) (p = 1.92 × 10−7, Supplementary Fig. 15). To validate these
findings, we compared samples with < 10 and those with ≥ 40 outliers
to assess differences in Aβ levels. Samples with ≥ 40 outliers had sig-
nificantly higher Aβ levels (p =0.0045, Fig. 4l). Moreover, in samples
diagnosed as CU, those with ≥ 40 outliers had significantly higher Aβ
levels (p = 0.019, Fig. 4m). Only one outlier STR was found in LD with
primary risk SNPs, and its exclusion did not alter the results, con-
firming that these STRs were independent risk factors (Supplementary
Data S4e). Pathway enrichment analysis showed that the genes for STR
outliers were enriched for synaptic functions, such as synaptic mem-
branes (GO:0097060) (Fig. 4n and Supplementary Data S4f).

Phenotypic association of genetic factors in AD
We assessed the increase in explanatory power of the variants identi-
fied in this study. We compared the phenotypic variance explained by
previously reported variants in European studies3 with that explained
by the variants identified in our study. We calculated incremental r² to
measure the increase in r² when these variants were added. For clinical
diagnosis, the incremental r² was 12.8% with only the European loci
(Fig. 5a). This increased to 14.7% upon including loci identified in the
Korean cohort and further increased to 16.6%with the inclusion of RVs
and SVs. For Aβ, the incremental r² increased from 7.5% with European
loci to 9.8% with the addition of Korean loci and reached 10.7% after
the inclusion of RVs and SVs.

To understand the genetic complexity of AD, we explored the
phenotypic association of diverse genetic factors across APOE ε4
genotype, polygenic, rare noncoding variants, and SVs. We excluded
rare coding variant carriers because these variants exhibited a pro-
tective effect opposite to that observed for other variants. Individuals
with single variants among the rare noncoding variants of C25 were
classified as rare noncoding variant carriers (n = 862). SV carriers were
characterized as individuals with either CNVs within the HPSE2 gene
region (n = 10) or STRs expanded by ≥ 40 repeats (n = 82).

To examine polygenic effects, we employed the effect sizes of
variants asweights in the PRS from large-scale EuropeanGWASdata, as
previous studies have demonstrated transferability from European to
East Asian populations29. We calculated polygenic risk scores (PRSs)
using European GWAS of clinical diagnosis3 (n= 487,511) and Aβ
positivity15 (n = 11,816). IndividualswithCUhad significantly lower PRSs
derived from the clinical diagnosis GWAS than those with DAT
(p = 0.0005) or MCI (p =0.0334) (Supplementary Fig. 16a). Clinical
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Fig. 5 | Diverse effects of genetic variants on Aβ levels and cognitive function.
a Bar plots illustrating the incremental r² for clinical diagnosis and Aβ in compar-
ison to previously reported variants (Bellenguez et al.), previously unreported
identified variants, RVs, and SVs (K-ROAD). b Stacked bar plot depicting the dis-
tribution of samples categorized as APOE ε4 carriers, PRS top 20% group, RNV, or
SV carriers based on clinical diagnosis status and Aβ positivity. Cases possessing
two ormore genetic factors were categorized into groups according to the number
of factors present: two, three, or four factors. c Violin plots illustrating the dis-
tribution of Aβ, K-MMSE, CDR-SB, verbal memory, and visual memory scores in
each group. Box plots indicate the median (center line) and interquartile range
(bounds of the box). d Forest plot comparing the differences in Aβ positivity and
cognitive function markers between groups carrying only APOE ε4 (n = 437) and
thosewith high PRS,RNV,or SValongwithAPOE ε4. PRScalculationswerebasedon
variants identified in PRS calculations were based on variants identified in a prior

European GWAS (Bellenguez et al.) or variants from the current study (K-ROAD).
e Forest plot comparing differences in Aβ positivity within each PRS quintile for
carriers and non-carriers of APOE ε4, RNV, and SV. Two-sided logistic or linear
regression was performed to assess statistical significance in the violin and forest
plots, adjusting for age, sex, batch, education, and the top 10 principal compo-
nents of genetic ancestry, followed by FDR correction for multiple comparisons.
FDR-adjusted P-values are presented. Error bars represent 95% confidence inter-
vals. n indicates the number of independent participants. Source data are pro-
vided as a Source Data file. Aβ, Amyloid beta; K-ROAD, Korea Registries to
Overcome and Accelerate Dementia Research; RV, rare variants; SV, structural
variants; RNV, rare noncoding variant; PRS, polygenic risk score; DAT, dementia
of Alzheimer’s type; MCI, mild cognitive impairment; CU, cognitively unimpaired;
K-MMSE, Korean Mini-Mental State Examination; CDRSB, Clinical Dementia Rat-
ing Sum of Boxes.
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diagnosis (p = 0.0005) and Aβ positivity (p =0.0282) were significantly
correlated with PRS (Supplementary Fig. 16b). Individuals with higher
PRS had decreased cognitive functioning based on K-MMSE
(p = 1.47 × 10−3), visual memory (p = 2.40 × 10−3), verbal memory
(p = 2.03 × 10−5), and CDR-SB (p = 8.40 × 10−4) scores (Supplementary
Fig. 16c). Aβ-negative samples had lower PRSs—calculated from GWAS
based on Aβ positivity—than Aβ-positive samples (p = 2.49 × 10−8)
(Supplementary Fig. 16d). Individuals with high Aβ PRS were at higher
risk for clinical diagnosis (p = 5.65 × 10−8) and Aβ positivity
(p = 2.49 × 10−8), with reduced cognitive functioning based on K-MMSE
(p = 1.06 × 10−5), visual memory (p = 3.67 × 10−7), verbal memory
(p = 7.86 × 10−9), and CDR-SB (p = 3.36 × 10−5) scores (Supplementary
Fig. 16e, f). In subsequent analyses, we used the PRSs calculated from
the Aβ GWAS, as they exhibited lower P-values. To set PRS thresholds,
we divided samples into percentiles of 5–40% and compared the risks
for AD or Aβ positivity between the high PRS group and the remaining
samples.We observed the highest odds ratio when contrasting the top
20% of PRS samples with the others and therefore set the threshold at
20% in all subsequent analyses (Supplementary Fig. 16g, h). We then
examined the distribution of individuals with each genetic factor
based on clinical diagnosis, Aβ positivity, or cognitive functioning
(Fig. 5b and Supplementary Figs. 17, 18a). In the CU, Aβ-negative, and
high cognitive function groups, the proportion of non-carriers was
high. In contrast, in the DAT, Aβ-positive, and low cognitive function
groups, APOE ε4 carriers and individuals with two or more genetic
factors were more prevalent. When comparing with non-carriers in
each group, significant associations were observed across all trait
markers with APOE ε4 only, two factors, and three factors (Fig. 5c).

Next, we investigated whether the presence of other genetic fac-
tors besides APOE ε4 affected Aβ levels or cognitive functioning
compared to carrying APOE ε4 alone. For this analysis, the PRS was
calculated using the three lead SNPs (rs28372356, rs6923619, and
rs78009495) identified in this study (K-ROAD). Compared with the
group with only APOE ε4, the group with high PRS or SV along with
APOE ε4 exhibitedhigh levels of Aβ (Fig. 5d, SupplementaryFig. 18b, c).
In addition, having high PRS alongside APOE ε4 was associated with
lower levels of visual memory and verbal memory function.

Lastly, we stratified PRS into quintiles and compared the odds
ratios for Aβ positivity between individuals with and without APOE ε4,
rare noncoding variants, or SVs (Fig. 5e). Carriers of APOE ε4, rare
noncoding variants, or SVs exhibited significantly higher odds ratios in
the 20–40, 40–60, 60–80, and 80–100% PRS quintiles compared with
the reference group, which was the non-carrier group in the 40–60%
PRS quintile. In contrast, non-carriers did not show significant differ-
ences in Aβ positivity across PRS groups relative to the
reference group.

Discussion
We performed a comprehensive WGS analysis to identify the various
genetic factors involved in AD and their contributions to the AD
phenotype. We identified three previously unreported loci with sig-
nificant or suggestive genome-wide associations. Along with com-
mon variations, we examined rare noncoding variations and
identified significant associations with underlying excitatory neuron-
specific CREs. Integrating various AD biomarkers and phenotypic
measures helped identify cognitive function or Aβ levels as core
domains, where various genetic risks from common to rare variants
were involved. Subsequently, a comparison of the phenotypic rela-
tionship across PRS, rare coding, noncoding, and SV variants
revealed a complete landscape of genotype-phenotype associations
underlying AD in a Korean cohort.

Using a large-scale East Asian WGS dataset, we identified signals
near the APCDD1, SAMD3, and PTPRD genes that were not reported in
European GWAS3. Postmortem brain samples from patients with AD
showed reduced SAMD and TMEM200A expression in excitatory

neurons associated with a higher risk of AD and lower resilience to
cognitive decline, suggesting that the loss of function of these genes
may underlie AD pathogenesis. We identified rare coding variants of
the DRC7 gene associated with Aβ positivity. DRC7 expression is ele-
vated inexcitatory neuron subtypes of patientswith low levels of social
isolation. Although DRC7 is not associated with dementia or AD, it is
involved in neurodegenerative diseases30. Dynein dysfunction may
disrupt Aβ clearance31. Rare variants ofDRC7may interferewith dynein
function.

Our findings suggest a cumulative effects model wherein genetic
factors jointly affect susceptibility for AD or Aβ accumulation. Among
APOE ε4 carriers, the increased polygenic burden may affect pheno-
typic severity in cognitive functioning or Aβ levels. Similar patterns
were observed in APOE ε4 carriers with SVs in Aβ levels. However,
variations in the individual factors did not cause significant phenotypic
changes, indicating a cumulative effect on AD development.

Furthermore, phenotyping using Aβ PET imaging revealed signals
that were distinct from those identified using clinical diagnosis. The
signal from the SAMD3 region, identified in the GWAS with the Aβ
phenotype, possessedmore biological implications according to post-
GWAS analysis. Moreover, when PRS was calculated using previous
GWAS results, despite the Aβ GWAS having approximately 40 times
fewer samples than the clinical diagnosis GWAS, both PRSs effectively
captured all AD-related phenotypes. In addition, our STR analysis
showed a robust association for Aβ positivity, including the same STR
locus identified in a recent European WGS study13.

Despite these successes, our study has several limitations. First,
the eQTL and single-cell transcriptome data used in this study were
derived primarily from European populations. Future studies should
produce large-scale gene expression data from diverse populations
and investigate the consequences of genetic variations identified in
non-European samples on gene expression regulation. Second, genetic
factors jointly affect AD risk liability; however, it is unclear whether
such genetic factors disrupt the same AD-related pathway. Previous
large-scale GWAS reported common variations in APP metabolism,
microglia, and immune activation pathways3,4. Genes regulated by rare
noncoding variants were specific to excitatory neurons, with GWAS
loci and STR expansions also showing enrichment for excitatory neu-
rons and synaptic pathways. Although thismight indicate the nature of
genetic heterogeneity underlying AD, further studies with larger
sample sizes should address the functional and molecular con-
vergence of AD risk factors. CWAS analysis identified a potential
association between excitatory neuron CRE variants and AD. However,
single-category analyses lacked statistical significance, likelydue to the
complexity of noncoding variants and the limited sample size. To
address this issue, DAWN analysis was conducted across multiple
categories, yielding significant results. Nevertheless, the small sample
size remains a key challenge, reducing statistical power and increasing
the risk of false positives and negatives25. Future studies should
incorporate larger cohorts32. In addition, noncoding regulatory var-
iants exhibit context-dependent effects, thus meriting functional
validation, such as through CRISPR-based perturbation33, to confirm
their biological significance. In addition, Cytoband-based Bonferroni
multiple corrections were applied to the CNV analysis. We also visually
verified the presence of CNVs in the identified regions using samplot
and confirmed the absence of false positives in the QQ plot. However,
due to the limited statistical power of the CNV analysis, these results,
such as the HPSE deletion, should be cautiously interpreted, and fur-
ther validation in larger datasets or independent cohorts is necessary
to confirm their significance.

In summary, this comprehensive WGS study of a Korean AD
cohort identified various genetic variations associated with AD and its
core biomarker, cerebral Aβ deposition. Our findings suggest the
cumulative effects of such genetic variations on AD pathology and
support the need for future studies in diverse ancestral populations.
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Methods
Ethics
This study complied with all relevant ethical regulations for research
involving human participants and was conducted in accordance with
the criteria set by the Declaration of Helsinki. This study received
approval from the institutional review board (IRB) of SamsungMedical
Center, andwritten informed consent was provided by all participants,
and no financial or material compensation was offered for participa-
tion. WGS and genotyping using microarray were conducted using
blood samples obtained from the participants. The collection, storage,
and analyses of biospecimens, genetic data, and data as part of the
K-ROAD were approved under the Samsung Medical Center; IRB No.
2022-07-092. All data were handled in accordance with relevant data
protection and privacy regulations.

Study population
A total of 1824 individuals of Korean descent with available WGS
data were recruite from a Korean dementia hospital-based cohort
(K-ROAD). As an open cohort with ongoing data accumulation, the
K-ROAD aims to develop a genotype-phenotype cohort to accelerate
the development of novel diagnostic and therapeutic techniques for
AD and other related dementias. Overall, 25 university-affiliated
hospitals in South Korea participated in the K-ROAD cohort. Eligible
participants were individuals with a spectrum of Alzheimer’s clinical
syndrome − CU, MCI, or DAT −who underwent amyloid PET imaging.
This study was approved by the institutional review board, and
written informed consent was obtained from all participants.
WGS was conducted using blood samples obtained from
participants.

Phenotype definitions
All the participants underwent clinical interviews, neurological exam-
inations, neuropsychological testing, and brain magnetic resonance
imaging (MRI). After these evaluations, clinical diagnoses were estab-
lished by consensus among multidisciplinary teams. CU participants
were selected based on the following criteria: (1) absence of medical
history that is likely to affect cognitive function based onChristensen’s
health screening criteria34 and (2) absence of objective cognitive
impairment observed on any cognitive domain (above the − 1·0 stan-
dard deviation (SD) of age- and education-matched norms in memory
and above − 1·5 SD in other cognitive domains)35. Participants withMCI
met the specified criteria36: (1) subjective cognitive complaints by the
participants or caregiver; (2) objective cognitive impairment in any
cognitive domain (below the − 1·0 SD of age- and education-matched
norms in memory and/or below − 1·5 SD in other cognitive domains);
(3) no significant impairment in activities of daily living; and (4) no
dementia. The participants diagnosed with DAT fulfilled the NIA-AA
diagnostic criteria37. All participants underwent clinical interviews,
neurological examinations, neuropsychological testing, andbrainMRI.
After these evaluations, clinical diagnoses were determined through
agreement among the multidisciplinary teams.

All participants underwent Aβ PET with either 18F-florbetaben
(FBB) or 18F-flutemetamol (FMM). To quantify the Aβ burden on PET
scans as centiloids (CL), we followed the method described by Klunk
et al.38. All imaging analyses for the K-ROAD study were conducted at
the Samsung Medical Center laboratory, which served as the core
center. Aβ positivity was defined using a threshold of 40 on the global
centiloid scale derived from Aβ PET imaging. In cases where global
centiloid values for individuals were unavailable, an expert visual
assessment was used to determine Aβ positivity.

To determine global cognitive function, we used the K-MMSE and
CDR-SB. We also used Seoul Verbal Learning Test (delayed recall) and
Rey Complex Figure Test (RCFT) (delayed recall) scores as repre-
sentative measures of verbal and visual memory functions,
respectively.

WGS data alignment and variant calling
Genomic DNA was extracted from blood samples using the QIAmp
DNA Mini Kit (QIAGEN). For sequencing, library preparation was per-
formed with a TruSeq® DNA PCR-Free Library Prep Kit (Illumina), and
DNA size selection was performed via Covaris ultrasonication using
1 µg of input DNA for an average insert size of 350 bp. Sequencing was
performed at an average depth of 30 × with paired-end sequencing
using a NovaSeq 6000 instrument with an S4 flow cell.

The paired-end raw sequencing data were initially processed via
quality trimming, adapter trimming, removal of short sequences, and
hard trimming using TrimGalore software (RRID:SCR_011847) (https://
github.com/FelixKrueger/TrimGalore). Subsequently, the sequenced
reads were aligned to the hg38 reference genome using the BWA-MEM
software39,40. After alignment, duplicates were removed using the
GATK (v.4.2.4.1) MarkDuplicate41–43. Base quality score recalibration
was conducted using BaseRecalibrator with a WGS interval contig,
indels from Mills and 1000G gold standard, known indels from the
Homo sapiens assembly38, and high-confidence SNPs from the 1000G
phase1. Germline SNP and indel calling were performed using Haplo-
typeCaller, and base quality score recalibration was conducted using
ApplyBQSR. Genotype GVCFs were used to produce gVCFs, and a DB
folder was created using Genomics dbimport. Finally, the gVCFs from
the DB folder were combined using CombineGVCFs.

WGS quality control
The quality control (QC) of variants and samples was performed using
Hail (v0.2.68) (https://github.com/hail-is/hail), except for principal
component analysis (PCA) and relatedness analysis, which were per-
formed using PLINK v1.9044 and KING 2.045, respectively. First, we
performed pre-filtering and genotyping QC. Prefiltering included
splitting multi-allelic variants, variant quality score recalibration
(VQSR) filtering, including allele counts greater than0, removal of LCR
regions, and removal of a previously defined duplicated sample (n = 1).
Genotype QC was performed using the following criteria: genotype
quality (GQ) (GQ ≥ 20), allele balance (AB) (hetero-variants AB ≥0.2
and ≤0.8, homo variants AB ≥0.9), and read depth (DP) (autosomal
DP ≥ 10 and ≤ 200, chrX DP (female) ≥ 10 and ≤ 200, chrXDP (male) ≥ 5
and ≤ 200, chrY DP ≥ 5 and ≤ 200).

For sample QC, we used high-confidence variants based on the
following criteria: biallelic variants, high call rates (> 0.95), and com-
mon single SNVs (allele frequency >0.1%). We excluded samples with
low coverage (mean depth ≥ 15) and low sample-level call rates (miss-
ingness ≥0.9). Samples with unmatched sex (f stat for females < 0.2, f
stat for males > 0.8) or ambiguous sex (fstat > 0.3 and <0.8) were
excluded. We then applied different variant QC criteria and included
only autosomal and biallelic variants with high call rates (> 0.95) and
allele frequencies (> 5%). Relatedness was calculated using KING, and
samples up to the second degree were excluded, keeping only one
sample. The sample was removed as follows. First, batch 3 samples
were excluded because they were excluded from the STR analysis.
Samples diagnosed with AD were prioritized, followed by those of
older age. Finally, we prioritized the inclusion of samples in sequen-
cing batches 1, 2, and 4, as theywere sequenced earlier. After removing
related samples, PCA was performed using PLINK v1.9044. Next, non-
reference genotype concordance was calculated for samples with
available chip array data (n = 947), and samples with concordance
below 0.5 were excluded.

After sampleQC, samples that failed the sampleQCwere removed
from the raw VCF file. We repeated the prefiltering and genotype QC,
including the VQSR, LCR region, allele balance, GQ, and DP. We
excluded variants with excess heterozygosity (inbreeding coefficient
< –0.3), high missing rates (call rate <0.9), and high Hardy-Weinberg
equilibrium (HWE)with control samples (HWE> 1e-09).Wedivided the
variants into SNPs and indels, and QC procedures were conducted
separately. SNPs were filtered based on QD ≥ 2, SOR ≤ 3, FS ≤ 60,
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MQ ≥ 50, MQRankSum ≥ – 12.5, and ReadPosRankSum ≥ – 8.0. Indels
were filtered based on QD ≥ 2, FS ≤ 200, ReadPosRankSum ≥ – 20,
MQ ≥ 50, and MQRankSum ≥ – 12.5.

Finally, after merging the SNPs and indels, we conducted QC of
the final sample. Samples exceeding five SDs of the mean in any cri-
terion, such as the number of SNPs, insertions, deletions, transition/
transversion (Ti/Tv), hetero/homo variants, ratio of insertion-deletion,
hetero-homo variants, and Ti/Tv, were excluded.

Variants were annotated using the Variant Effect Predictor (VEP)46

v108. The pLoF variants were annotated using the LOFTEE plugin47,
and the dbSNP154, REVEL, metaSVM, and CADD Phred scores were
imported using the dbNSFP (version 4.3) plugin48,49. The SpliceAI
scores were annotated using the SpliceAI plugin50.

Chip array data quality control
Genomic DNA was genotyped using an Asian Screening Array Chip
(Illumina). Quality control procedures were as previously described29.
Briefly, we performed variant QC based on criteria including MAF and
HWE. We conducted sample QC, including the removal of duplicates,
related samples, and PCA outliers. Imputation was performed using
the Korean Imputation Service of the CODA. Samples identified as
duplicates or those related to individuals in the WGS data were
excluded. After excluding samples with missing phenotypes or other
types of dementia, 1560 samples remained. Of these, 697 individuals
with MCI were further excluded, resulting in 340 individuals with CU
and 523 individuals with DAT for the association analysis.

Single-variant- and gene-based association analyses
Single-variant association analyses were conducted using REGENIE51

(v2.2.4) with the leave-one-out cross-validation (LOOCV) method.
Variants with a minor allele count (MAC) > 31 were included. The
association analyses were performed for clinical diagnosis and Aβ
positivity, with age, sex, sequencing batch, and principal components
(PC) 1 to 10 as covariates. For the clinical diagnosis, we performed a
meta-analysis of an independent Korean cohort (n = 863) using a chip
array and a Japanese cohort (n = 938) from a previous study16. The
samples from individuals in theKoreanWGS cohortwere excluded.We
integrated the WGS data with the chip array data using PLINK v1.9044,
calculated relatedness using KING, removed related samples up to the
second degree, and conducted a GWAS using REGENIE. For the Japa-
nese cohort, variants with a MAC>90 were used. We performed a
meta-analysis usingMETAL52, with STDERR as a single genomic control
and heterogeneity option. Variants that were present in all datasets
were included in the meta-analysis (n = 3,201,142).

Gene-based analyseswereperformed for clinical diagnosis andAβ
positivity using REGENIE with age, sex, sequencing batch, and PC 1 to
10 as covariates. We included rare variants with an alternative allele
frequency (AAF) of 1% or lower. Annotation using VEPwas employed to
mask the gene-based analysis. Variants were defined based on their
REVEL score (high ≥0.75, low ≥0.5), SpliceAI (high ≥0.8, low ≥0.5),
and CADD score (deleterious ≥ 20). The masks are defined as follows:

Mask1 = pLoF (LOFTEE)
Mask2 =Mask1 +Missense variants (MetaSVM Deleterious and
REVEL High)
Mask3 =Mask1 +Missense variants (MetaSVM Deleterious or
REVEL High)
Mask4=Mask1 +Missense variants (MetaSVM Deleterious/Toler-
ate or REVEL High/Low)
Mask5 =Mask4 + Splicing variants (SpliceAI High)
Mask6=Mask4 + Splicing variants (SpliceAI High/Low)
Mask7 =Mask6 +Deleterious variants (CADD Deleterious)
Manhattan plots were generated using the ggmanh package

(version 1.6.0) in R software (version 4.3.1)53. Regional plots for the
GWAS and eQTL summary statistics were generated using the
cowplot54 package, with LD calculated using LDlinkR55 based on the

European LD reference panel. In addition, the gene regulatory regions
were plotted using theUCSC genomebrowser with annotations56 from
GENCODE v44, GeneCard, ENCODE57, and GeneHancer. The distance
to the transcript start site was calculated based on representative
transcripts from RefSeq and GENCODE in the UCSC Genome Browser.
PhyloP conservation, AlphaMisSense, MetaSVM, SIFT, PolyPhen, Spli-
ceAI, and population-specific allele frequencies from the gnomAD
database were annotated using VEP.

Gene prioritization and statistical colocalization analysis
Gene prioritization. Gene prioritization was conducted based on the
following four criteria: nearest genes, eQTL, publications, and scA-
TACs. First, the genes nearest to the lead variant were identified using
the UCSC genome browser. Second, we identified genes with sig-
nificant eQTL signals and lead variants across four datasets, including
cell-type specific58, MiGA59, multi-ethnic60, and MetaBrain61 eQTLs.
Thirdly, publication-based prioritization was established based on
whether the gene was mentioned with ‘AD’ or ‘brain’ in PubMed sear-
ches as of March 25, 2024. Finally, we defined the prioritized genes
based on peak-to-gene associations previously calculated using
scATAC-seq in the ROSMAP cohort26. When the lead variant and var-
iants in high LDwith the lead variant (LD r2 > 0.5) were linked to a gene
through peak-to-gene connections, the gene was prioritized. For gene
prioritization, only consensus coding sequence genes were con-
sidered; pseudogenes and noncoding genes were excluded. Gene
prioritization was visualized using the circlize package62 (version
0.4.16) in R software (version 4.3.1).

Differential expression analysis. To determine whether the prior-
itized genes were differentially expressed in association with clinical
diagnosis or related phenotypes, cell type-specific DEGs described by
Mathys et al.18 from the ROSMAP cohort were used. DecontX- and
RUVr-adjusted DEGs were obtained from the AD/Aging Brain Atlas
(https://compbio.mit.edu/ad_aging_brain/). Heatmap visualization was
performed using the ggplot2 package (version 3.5.0) in R (ver-
sion 4.3.1)63.

Cell type-specific expression and gene trajectories. Data and ima-
ges of cell type-specific expression and gene trajectories were
obtained from SEA-AD provided by the Allen Brain Map64. The gene
expression trajectory viewer available through the SEA-AD web appli-
cation was used (https://sea-ad.shinyapps.io/ad_gene_trajectories/).
Briefly, gene expression was measured using scRNA-seq in approxi-
mately 1.7million cells from themedial temporal gyrus (MTG). Pseudo-
progression scores were computed using machine learning methods
based on the quantitative staining of key pathological proteins in
the MTG.

Developmental trajectory of the human brain. Developmental tra-
jectories were analyzed using the BTS database23. Briefly, data from 114
human postmortem brain samples spanning the early fetal stages to
late adulthood were integrated to investigate cell-type-specific gene
expression across developmental stages.

Single-cell RNA sequencing analysis of Korean AD postmortem
samples
Single-cell transcriptomic data were generated using dorsolateral
prefrontal cortex samples from 15 individuals who underwent autop-
sies at the Samsung Medical Center. Of the individuals, 9 were Aβ-
positive and 6 were Aβ-negative based on the Consortium to Establish
a Registry for Alzheimer’s disease (CERAD) neuropathological criteria
(none to sparse: negative, moderate to frequent: positive). To obtain
the gene count, we used the Cell Ranger software65 (v.6.1.2) (10 ×
Genomics) with the GRCh38 genome. The Cell Ranger count pipeline
(including pre-mRNA) was used to account for the unspliced nuclear

Article https://doi.org/10.1038/s41467-025-59949-y

Nature Communications |         (2025) 16:4870 11

https://compbio.mit.edu/ad_aging_brain/
https://sea-ad.shinyapps.io/ad_gene_trajectories/
www.nature.com/naturecommunications


transcripts. The gene count matrix of all libraries was generated using
the Cell Ranger Aggr pipeline with default parameters in Cell Ranger
3.0 to call cell barcodes.

Single-cell RNA sequencing, we performed using SCANPY66

(v1.9.8). First, we excluded outlier cells (range [Q1 – 3(Q3 – Q1),
Q3 + 3(Q3-Q1)], with Q1 as the lower quartile and Q3 as the upper
quartile) in termsof the number of genes, total counts, andpercentage
of mitochondrial genes. Next, we removed doubly labeled cells using
Scrublet67 (v0.2.3). After filtering 11,780 cells, 88,622 cells were
retained. The integration method to remove single-cell platforms and
dataset-specific batch effects was performed using Harmony68 using
individuals and batches with normalized gene expression. To annotate
major cell types and subtypes based on previously published single-
cell RNA sequencing data, annotations of major brain cell types (pre-
viously defined by the Allen Brain Institute, https://portal.brain-map.
org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-
seq) were projected onto this study.

Cis-eQTL mapping and COLOC
To test for cis-eQTLs, we used the tensorQTL69 v.1.0.2 cis_nominal
mode with genotypes and a gene expression matrix. Individuals with
fewer than 10 cells for each major cell type were filtered out. The
pseudo-bulk gene expressionmatriceswere averaged across all counts
for each gene in each cell type. As input covariates for the analysis, we
includedPEER70 factors 30–70 for eachbrain cell type and thefirst four
PCA of the genotypes. Each SNP–gene pair used a 1Mbwindow within
the transcription start site of a gene. We performed TensorQTL cis
permutations, with 1,000permutations per gene. The COLOCpackage
(v3.2-1) was used to assess whether SNPs from the GWAS co-localized
with bulk RNA-seq or single-nucleus RNA-seq expression QTLs71,72. We
extracted a significant genome-wide locuswithin 1Mbon either side of
the lead SNP (2Mb wide region total) in the GWAS. In each QTL
dataset, we filtered all SNPs of each gene matched with a significant
genome-wide locus within 100 kb to test for co-localization. Missing
minor allele frequencies were replaced with reference values from the
European superpopulation of the 1000 Genomes Project (Phase 3).
Matching sets of colocalized SNPswere compared using their P-values.
Colocalization was considered when the posterior probability for
colocalization (PP.H4) exceeded 0.5, and the eQTL P-value was below
1 × 10−4. The 95% credible set consisted of the smallest subset of SNPs
with a cumulative SNP.PP.H4 of 95%73.

Analysis of rare noncoding variants
To investigate the association of rare noncoding variants with AD, we
employedCWAS, amethodoriginally developed for ultra-rare de novo
variants and optimized for cases where each variant appeared in only
to 1–3 samples24,25. This optimization guided us to set an MAF thresh-
old of 0.1% to effectively capture these ultra-rare variants. We used
19,266,739 rare heterozygous variants (which passed QC criteria as
described above) with MAF ≤0.001, gnomAD74 (v3.1) MAF ≤0.001 in
the non-psychiatric disease subset, TOGO75 (GEM Japan Whole Gen-
ome Aggregation (GEM-J WGA) Panel) MAF ≤0.001, and KOVA76

MAF ≤0.001.
Rare noncoding variants were analyzed using CWAS with the

CWAS-Plus package v1.277 to integrate AD-related functional data and
select rare noncoding variants that were strongly associated with AD
risk. The framework incorporates diverse epigenomic and tran-
scriptomic data to prioritize rare noncoding variants. The package is
available at [https://github.com/joonan-lab/cwas]. CWAS categorizes
variants by assessing combinations of five types of annotations: variant
type, gene set, functional score, genomic region, and functional
annotation. The five annotations were as follows: (1) variant type:
variant type based on their length as an SNV or indel; (2) gene set:
variants located within the same gene groups; (3) functional score:
based on conservation and constraint scores; (4) genomic region:

specifying the genomic region where the variant was located; and (5)
functional annotation: functional elements to which each variant
belonged. Association tests were conducted to determine whether
variants belonged to a particular category in each sample.

For the gene set, cell typemarker genes fromPsychENCODE78, AD-
related pathway genes from a previous study3, and genes from the tau
protein bindingGeneOntology Term (GO:0048156)were used. For the
functional score, PhastCons46way79 (> 2), Phlop46way80 (> 0.2), and
JARVIS81 (>0.99) were used. For functional annotation, cell type-
specific regulatory elements from single-cell data obtained from
postmortem AD brain samples26,27 (available at https://personal.
broadinstitute.org/bjames/AD_snATAC/ and https://compbio.mit.
edu/microglia_states/) and AD-specific epigenomic histone acetyla-
tion data from postmortem human brains82 (available at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130746) were used (Sup-
plementary Data 3a). Each variant was annotated using VEP46 (v105).
Categories for each variant were created based on a combination of
the five annotations. Variants were assigned to multiple categories
based on their annotations.

We performed a two-sided binomial exact test within each cate-
gory to evaluate case–control associations based on the number of
samples carrying variants in each category. P-values were calculated
using a binomial test by comparing the observed case–control pro-
portions within a category with the null expectation (Supplementary
Fig. 5e). Relative risk (RR) was computed as the ratio of the proportion
of cases to controls carrying the variants. To control for multiple
testing in our burden analysis, we estimated the effective number of
tests. This was achieved by transforming the correlation structure
among categories into a negative Laplacian form. Specifically, we took
the absolute values of the correlation matrix and computed a degree
matrix by summing correlations for each category. These values were
then normalized by the squared entries of the degree matrix to pro-
duce a Laplacian matrix. We performed eigen decomposition on this
matrix and counted the number of eigenvalues that cumulatively
explained at least 99% of the total variance. This number was used to
approximate the number of independent tests and guide genome-
wide significance thresholds. Next, we assessed whether the nominally
significant categories within each genomic region were statistically
enriched. Categories with P-values below the nominal threshold
(p < 0.05) were identified and compared across the genomic regions.
To confirm the significance of these counts, label-swapped permuta-
tion tests were performed, in which phenotypic labels were randomly
reassigned across 1,000 iterations to generate a null distribution for
the number of significant categories. The observed counts of the sig-
nificant categories were then compared to this null distribution to
identify regions that exhibited enrichment beyond random expecta-
tions, confirming the presence of case-enrichment. Only categories
with sample counts of 9 or more were included. For power estimation
in our CWAS analyses, we performed a logit‐based binomial power
analysis across a range of hypothetical sample sizes (0 to 70,000) to
assess the sensitivity in detecting differences in variant burden
between groups. Specifically, for each sample, the variant burden was
computed as the total number of positive variant calls and then
aggregated to obtain group-level summary statistics (mean, standard
deviation, and total counts). A one-tailed binomial test was subse-
quently applied to determine whether the cumulative variant burden
in cases exceeded that in controls at a significance level of 0.05. For the
Aβ‐positivity test (n = 925 for Aβ‐positive; n = 634 for Aβ‐negative), the
estimatedpowerwas0.85,while for the diagnosis test (n = 314 forDAT;
n = 655 forCU), the estimated powerwas 0.098. n refers to the number
of individual samples.

We employed the DAWN hidden Markov random field model24,83

to examine genetic factors associated with AD risk within intergenic
regions. A networkwas constructedbasedon the correlation of sample
counts across 2074 intergenic categories selected from a total of
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29,917 categories that had 10 or more samples. Clusters of intergenic
categories were identified using K-means clustering (K = 194), which
was determined to be optimal based on the silhouette coefficient,
reflecting the correlation structure among intergenic categories. A
sparse PCA was performed to estimate the RR for each cluster.
Permutation-based z-scores were calculated to standardize the
observed metrics across categories. A hidden Markov random field
model was then applied to adjust these estimates, considering the
enrichment of neighboring clusters within the simulated correlation
network. This process yields the Bayesian posterior probabilities for
each cluster. Significant clusters were identified using a Bayesian false
discovery rate (FDR) threshold of 0.05, applied to posterior prob-
abilities. Clusters meeting this criterion were considered statistically
significant. Among the significant clusters, those with an RR greater
than 1 were further defined as risk clusters. The CWAS analysis com-
mands and scripts used in this study are available in the GitHub
repository (https://github.com/wonlab101/K-ROAD_Alzheimer_WGS).
To examine the annotation terms that define five risk clusters, the
overlap between each pair of variant categories was quantified to
calculate the correlation matrix. Overlap was determined as the count
of shared variants between two categories divided by the geometric
mean of each category’s total number of variants. The correlation
values ranged from0 to 1, where0 indicated nooverlap and 1 indicated
complete overlap.

To investigate phenotypic associations, we focused on Aβ-
positive samples and divided them into carrier and non-carrier
groups for each identified risk cluster. We conducted a linear regres-
sion analysis to evaluate the associations between the four risk clusters
(Clusters 25, 98, 103, and 194) and four phenotypic variables (verbal
memory, visual memory, CDRSB, and K-MMSE), resulting in a total of
16 tests. To assess whether carriers exhibited increased severity in
cognitive function phenotypes, we compared the clinical scores of
carriers and non-carriers of each risk cluster variant within Aβ-positive
samples. Each cluster variable was converted to a factor, and linear
regression models were used for each phenotype, adjusting for edu-
cation, age, and sex as covariates. Although none of the 16 tests met
the threshold for significance after FDR correction, our primary goal
was to identify variants in the genomic regions with the strongest
nominal associations with phenotypes. Based on this criterion, we
prioritized the variants in Cluster 25 (C25), which showed the most
significant nominal p-values for follow-up analysis.We investigated the
interactions between 63 Aβ-positive-only variants in C25, selected
based on the criterion of each variant being present in at least two Aβ-
positive samples, using Hi-C data via 3DIV28 (http://3div.kr/hic). We
identified protein-coding genes within 2Mb with a distance-
normalized interaction frequency > 2, and confirmed interactions
with 109 genes for 39 variants. We examined the excitatory subtype
CREs for each variant and determined whether their target genes were
significantly downregulated with cognitive impairment in the same
excitatory subtype (Exc L2-3 CBLN2 LINC02306), using cell type-
specific DEGs described by Mathys et al.18 from the ROSMAP cohort
were used. DecontX- and RUVr-adjusted DEGs were obtained from the
AD/Aging Brain Atlas (https://compbio.mit.edu/ad_aging_brain/).

Copy number variant analysis
For CNV (copy number variant) discovery, Parliament284 was per-
formed. It runs four callers in parallel: Manta85, Lumpy86, Delly87, and
CNVnator88. The results from each caller were integrated at the indi-
vidual level using SURVIVOR89 and validated using SVTyper90. CNVs
were filtered based on the following three criteria: (1) deletions and
duplications; (2) CNVs detected by Manta; and (3) a maximum CNV
length of 1 Mbp. The CNVs identified in each sample weremerged into
a population set using the SURVIVOR software. The distance between
the breakpoints was set to 1000bp, with a minimum length threshold
of 50bp. The population CNV set was annotated using AnnotSV91, and

only the results from the full-mode annotation were used for the
analysis (Supplementary Fig. 19a).

We performed logistic regression to examine the effect of each
CNV on Aβ positivity and clinical diagnosis (Supplementary Fig. 5f).
CNVs were categorized as carriers or non-carriers. Age, sex, and the
three PCs were included as covariates. For the standard regression
analysis, CNVs identified in only onepatientwere excluded. The results
of the regression analysis were adjusted by multiple comparisons
using the Bonferroni method, FDR, and the Bonferroni method, which
is basedoncytobands. SignificantCNVswere validatedby visualization
using samplot92.

Short tandem repeat analysis
We identified short tandem repeats (STR) using ExpansionHunter93

(v5.0.0) with default parameters on a panel of 312,302 polymorphic
STRs from Guo et al.13. The three analytical models for STR analysis
were extended and adapted from the framework described by Guo
et al13. For quality control, one sample with poor calling quality was
excluded. We also performed PCA using the R package stats (v4.2.2)
based on STR coverage and excluded samples that differed in PC1 and
PC2 distributions by more than four times the SD from the mean. In
addition, samples outside the main cluster were filtered using a
threshold of less than 220 on PC2 (Supplementary Fig. 20). We
excluded 27,551 STRs located in segmentally duplicated regions,
leaving 293,751 STRs for further analysis. We calculated the MAF for
each STR to examine its distribution (Supplementary Fig. 19b). All
alleles were included in the STR analysis. The remaining 293,751 STRs
were subjected to multiple hypothesis testing corrections using the
Bonferroni method, with a significance threshold of 1.70 × 10−7 (0.05/
293,751). In all logistic regression analyses, the following covariates
were included: sex, age, sequencing batch, PC 1–3, average STR cov-
erage per sample, and STR coverage. We excluded the coverage for
each STR when comparing the samples.

We assessed the association between STR genotype and AD risk
using a dominant model and analyzed the length of the two alleles for
each STR. Because of the non-normal distribution of many STR gen-
otypes, we conducted a rank-based inverse normal transformation
before analysis. We performed logistic regression to evaluate the
association between STR and disease status. The inverse-normal
transformed allele count of each STR locus was used as the primary
predictor. Models were adjusted for sex, age, sequencing batch,
sequencing depth, APOE ε4 carrier status, and PC1-3 (Supplementary
Fig. 5g, h). Analyseswere conducted bothwith andwithout adjustment
for APOE ε4 carrier status. We compared the P-values from logistic
regression on transformed STR genotypes with those from non-
transformedmodels to determine absolute effect sizes. We confirmed
the similarity of P-values before and after transformation (correlation
Pearson r2 = 0.90, p < 2.2 × 10−16).

We conducted a burden test to compare the number of STR
expansions between the cases and controls. For the panel of 293,751
STRs, expansions were defined as STR lengths ≥ 5, 10, or 20 repeat
units longer than the GRCh38 reference. We constructed 2 × 2 con-
tingency tables for each STR and used Fisher’s exact test to evaluate
the differences in expansion burden. Bonferroni correction was used
for multiple hypothesis testing, with a significance threshold of
1.70 × 10−7. In addition, we analyzed expansions observed in one, ≤ 5,
≤ 10, or ≤ 100, or without frequency cutoff, comparing total expan-
sions between cases and controls.

We used the density-based spatial clustering of applications with
noise (DBSCAN) outlier detectionmethod (adapted fromprevious STR
studies13,94) to identify extreme STR tract lengths in 1515 samples.
DBSCAN, an unsupervised clustering technique, determines outlier
clustersby examining data density95.We established clusters by setting
criteria for the minimum number of reachable data points (μ) within a
maximum distance (ε). Outliers representing extreme STR lengths
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were identified asdata points that couldnot be reachedby the clusters.
Specifically, we set ε as twice themode of STR lengths, and μ as log2 of
the sample size. Each STR was analyzed by inputting the length of the
two alleles per individual into DBSCAN. Before the analysis, we con-
ducted a linear regression analysis to account for sample and technical
covariates. The residuals from this regression were used as inputs for
DBSCAN. Next, we counted the number of outlier STRsper sample and
measured the odds ratios based on each threshold for Aβ positivity.
We examined the differences in Aβ levels among groups using a linear
model, with covariates consistent with those used in the logistic
regression model.

Three SNPs, rs28372356, rs6923619, and rs78009495, which were
identified in our GWAS as having significant and suggestive associa-
tions, were evaluated for LD with STR outliers. A total of 15,910 STR
outlierswere analyzed, focusing specifically on 84unique STRs located
within a 2Mb window of these SNPs to assess potential LD relation-
ships. The LD calculations were performed using PLINK version 1.9.
The merged VCF file containing both the lead SNPs and STRs was first
converted to a PLINK binary format (BED, BIM, and FAM files). For each
of the three lead SNPs, pairwise LD (r²) valueswere computedwith STR
outliers within the defined 2Mb window to identify SNP-STR associa-
tions in close proximity. An r² value greater than 0.1 was considered
indicative of meaningful LD between the SNP and the
corresponding STR.

Gene set enrichment analysis was performed using the Cluster-
Profiler package (v4.6.2) in R software. Our analysis compared STRs
found in samples with 40 or more outliers (n=4424) with the entire
reference STR panel (n =293,751). Each STR was linked to a gene with
the nearest transcription start site within 500kb. To assess enrichment,
we employed the enrichGO function in ClusterProfiler with the follow-
ing parameters: keyType= ENTREZID, ont =ALL, pvalueCutoff =0.05,
and qvalueCutoff =0.05.

PRS calculation
PRS was calculated using European-based GWAS data and PRS-cs96,97

(v1.0.0). Two GWAS studies were employed for PRS calculation, one
based on clinical diagnosis3 (n = 487,511) and the other on Aβ
positivity15 (n = 11,816). The region near APOE was excluded from the
analysis (chromosome 19, 43895848 to 45996742/GRCh3898). For the
PRS-cs analysis, weutilized theUKBiobank European LD reference and
set the global shrinkage parameter (phi) to 1e-02, which is appropriate
for highly polygenic traits. PRS scoring was conducted using the score
option in PLINK software (v1.90), incorporating a total of 663,786 and
579,170 variants derived from the clinical diagnosis and Aβ GWAS,
respectively. In addition, we calculated the PRS using three lead SNPs
(rs28372356, rs6923619, and rs78009495) identified in this study. The
score function in PLINK v1.9044 was used to compute the PRS for each
variant using the beta values. Statistical testswere conducted using the
R software (v4.3.1).

A regression analysis was performed to assess the association
between PRS and AD pathology and cognitive function. AD pathology
was evaluated using clinical diagnosis (CU versus DAT) and Aβ posi-
tivity, with logistic regression and adjustments for age, sex, 10 PCs of
genetic ancestry, batch, and education. Cognitive function was eval-
uated using the K-MMSE, CDR-SB, visual memory, and verbal memory
tests, with linear regression adjustments for age, sex, 10 PCs of genetic
ancestry, batch, and education.

Comparing genetic factors
The explanatory power of the identified loci was calculated using
incremental r² values99,100. Nagelkerke’s r² was computed using logistic
regression, and the differences in r² between the null model and the
models with variants were calculated as incremental r². The null model
included covariates and APOE genotypes (age, sex, batch effects,APOE
ε4 genotype, APOE ε2 genotype, and PC 1 to 10). First, we integrated

lead variants identified in the European GWAS3 (Bellenguez et al.) into
the model. A total of 67 variants were identified in the Korean geno-
type data. Second, we added the genotypes of one significant lead
variant and two suggestive lead variants identified in this study. Finally,
the RVs and SVs identified in this study were included. These models
are defined as follows:

Null model: clinical diagnosis or Aβ ~APOE ε4 genotype +APOE ε2
genotype + covariates (age, sex, batch effects, PC 1 to 10).

Model 1 (lead variants identified in Europeans): clinical diagnosis
or Aβ ~ 67 lead variants identified in the European GWAS+ null model.

Model 2 (lead variants identified in Europeans and Koreans):
clinical diagnosis or Aβ ~ 3 lead variants identified in the Korean
GWAS+model 1.

Model 3 (lead variants identified in Europeans and Koreans,
along with rare and SV from the Korean cohort): clinical diagnosis or
Aβ ~ rare coding variants (DRC7) + rare noncoding variants
(C25) + STR +CNV+model 2.

To confirm the phenotypic associations of genetic factors, we
examined the genetic effects of APOE ε4 carriers, PRS top 20%, rare
coding variants carriers, and SV carriers. The top 20% of PRS were
calculated based onAβGWASdata (n = 11,816). Rare noncoding variant
carriers were defined as individuals who possessed at least one rare
noncoding variant from C25. We excluded carriers of rare coding
variants because these variants exhibited a protective effect contrary
to the effects observed for other variants. SV carriers were defined as
individuals with either CNVs in the HPSE2 gene region or an STR
expansion of 40 or more repeats.

Samples with missing data for any of the categories (APOE ε4
carrier, PRS top 20%, rare noncoding variants, and SVs) were excluded
from the analysis, resulting in 1,495 individuals analyzed. We cate-
gorized individuals into eight groups, including the non-carrier group,
groups with individuals carrying only one of the genetic factors (APOE
ε4 only, PRS only, rare noncoding variants only, and SV only), as well as
groups with two, three, and four factors. The group carrying all four
factors was excluded from further analysis because of the presence of
only one sample. First, we compared the non-carrier group with other
groups and then compared the APOE-only group with the two- or
three-factor groups. The Wilcoxon rank-sum test was used to test the
statistical significance. TheBonferroni correctionwas applied to adjust
for multiple comparisons.

Next, we performed analyses on groups containing individuals
who were carriers of both APOE ε4 and high PRS, rare noncoding
variants, or SV, and compared them to the group comprising only
carriers of APOE ε4. For this analysis, we used the PRS calculated with
the three lead SNPs identified in the K-ROAD study. Group-wise sig-
nificance comparisons were conducted using linear regression,
adjusting for age, sex, PC 1–10, batch, and education. Statistical tests
were performed using the R software (version 4.3.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics for the Korean cohort are available in
the NHGRI-EBI GWAS Catalog under accession numbers
GCST90566388 and GCST90566389 [https://www.ebi.ac.uk/gwas].
The Japanese GWAS summary statistics used in this study were pro-
vided by Prof. Daichi Shigemizu. The single-nuclei RNA-seq data for
the Korean participants are accessible for collaborative research
under restricted conditions to protect participant privacy. For
inquiries regarding data access, please contact the corresponding
author (S.W. Seo (sangwonseo@empas.com)). Data access requests
will be reviewed and responded to within 2 to 4 weeks of receipt. The
summary statistics of cell type-specific eQTLs (https://zenodo.org/
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records/7276971), MiGA eQTLs (https://doi.org/10.5281/zenodo.
4118605), multi-ethnic eQTLs (http://icahn.mssm.edu/brema), and
MetaBrain eQTLs (https://www.metabrain.nl/) are available in public
repositories. The results of single-cell analyses from ROSMAP-MIT,
including DEGs, are available at the AD/Aging Brain Atlas (https://
compbio.mit.edu/ad_aging_brain/). The SEA-AD analysis results are
available at the Allen Brain Map (https://portal.brain-map.org/
explore/seattle-alzheimers-disease). The cell type-specific reg-
ulatory elements derived from single-cell data obtained from post-
mortem AD brain samples are available at [https://personal.
broadinstitute.org/bjames/AD_snATAC/] and [https://compbio.mit.
edu/microglia_states/]. AD-specific epigenomic histone acetylation
data from postmortem human brains, available at [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE130746]. The chromatin
interaction data are available at 3DIV. The ExpansionHunter input
variant catalogs are available from Guo et al. [https://github.com/
mhguo1/AD_STR]. Source data are provided as a Source Data file.
Source data are provided in this paper.

Code availability
Publicly available software was used for all analyses. This code is avail-
able on GitHub (https://github.com/wonlab101/K-ROAD_Alzheimer_
WGS) at https://doi.org/10.5281/zenodo.15189321. CWAS-Plus is avail-
able on GitHub (https://github.com/joonan-lab/cwas/tree/CWAS-v.1.2).
COLOC is available on GitHub (https://github.com/RajLabMSSM/
downstream-QTL/tree/master). The eQTL mapping pipeline is available
on GitHub (https://github.com/RajLabMSSM/QTL-mapping-pipeline).
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