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Abstract

DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will
behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here
our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a
multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of
385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that
probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on
probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve
microarray performance for a wide variety of applications.
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Introduction

DNA-based microarrays have become central to current

biomedical research for a host of diverse applications[1], ranging

from assessment of genomic copy number (array CGH)[2,3,4] and

identification of transcription binding sites (ChIP-chip)[5,6,7] to

resequencing[8,9,10,11,12] and SNP genotyping[13,14,15,16,17].

Of great excitement is a recent application, microarray-based

genomic selection (MGS), which can serve as a bridge to next-

generation resequencing technologies, enabling the complete

ascertainment of sequence variation in large, specific regions of

the human genome[18,19,20]. Appropriate microarray design is

fundamental to the success of these experiments.

To optimize the design, production, and performance of DNA

microarrays, selecting the right oligonucleotide sequences to be tiled

is essential. Probes should be chosen to maximize the information

contributed by every available feature on an array. What constitutes

‘‘information’’ on a DNA microarray is largely the effective binding

of a probe to its target sequence, in the absence of cross-

hybridization of non-target sequence; this is a universally desirable

property, regardless of the microarray application. There are

numerous algorithms based on various criteria to aid in the selection

of probe sequences. Bertone and colleagues focused on optimizing

methods for choosing probes in a genomic region heterogeneous for

repetitive and unique elements, with the aim of maximizing the

percentage of non-repeat bases covered[21]. Graf and coworkers

expanded on these results by developing a probe uniqueness score

(U) based on the number of unique substrings of sequence within a

given target region[22]. This group developed a probe-selecting

algorithm incorporating U, melting temperature (Tm), and synthesis

cycle number with sequence-specific filters. With this algorithm they

have demonstrated acceptable coverage of the mouse genome[22].

Array manufacturers have used similar methods to create

proprietary, platform-specific algorithms for array design. For

example, Roche NimbleGen (Madison, WI) combines synthesis

cycles (with a sliding upper limit depending on final probe length),

Tm, repetitive element exclusion, and uniqueness measures to select

probes[23]. Nonetheless, the probes selected by all these algorithms

have yet to be evaluated experimentally. Moreover, such direct

empirical evaluation of probe performance would drive better

design algorithms.

There has been some empirical characterization of probe

behavior by various groups. Sharp et al. characterized the

performance of Roche NimbleGen probes in detail using an array

CGH format. Seven individuals with a validated genomic

imbalance on chromosome 15q, where each individual has from

one to six copies of the same locus, were assessed on a custom-

designed array with 91,069 probes available to detect copy

number[24]. The outcome measure was the Pearson’s correlation

coefficient for a given probe (r) between normalized log(2) ratio

values and copy number across experiments. This group found

that probe uniqueness, SNP content, probe length, Tm, and

guanine homopolymers all influenced probe performance[24].

The negative influence of guanine- or purine-rich sequence has

been noted by other groups[25,26]. However, all the variables

considered by Sharp et al. were examined individually, without a

multivariate analysis that could enable detection of correlated

variance components. An additional univariate study found probe

uniqueness and homopolymer presence (. length 5), but not

probe length or Tm, to affect the resolving power of array CGH to

detect deletions in both human and C. elegans experiments[27]. As

with Sharp et al., a multivariate analysis was not performed.

We sought to refine probe design parameters by evaluating

probe performance in a multivariate context empirically and
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systematically. We chose to focus on Roche NimbleGen arrays,

since this format is both the most amenable to custom design and

currently has the highest probe densities. In most analysis

techniques, data for a given probe is the log(2) ratio of signal

intensity between two samples. We reasoned that well-behaved

probes ought to give consistent log(2) ratios near 0, whereas poorly

behaved probes will vary around 0 more widely. Therefore we

elected to focus on the variance in the log(2) ratios across multiple

experiments as a measure of poor probe behavior. We believe this

measure simultaneously identifies probes with both unreliable

binding by target sequences as well as low target capture, since low

signal often inflates the log(2) variance. We used experimental data

from 19 array CGH hybridizations to evaluate probe performance

for 385,474 probes tiled in the Duchenne muscular dystrophy (DMD)

region of the X chromosome. We used as predictor variables

several sequence-derived probe characteristics, including Tm,

probe length, probe GC content, probe purine content, and the

presence of a known SNP in the probe. We also explored whether

the presence and length of homoadenine, homocytosine, homo-

guanine, or homothymidine sequence motifs could influence probe

performance. The outcome measure, variance in normalized

log(2) ratios across experiments, was dichotomized based on the

observed distribution of values across probes. Following univariate

analysis, we incorporated multiple predictor variables into

hierarchical models to reveal the subset of predictor variables

with the effects on probe performance. Our results indicate that

Tm, the presence of a SNP, and the presence of homocytosine

motifs all influence probe behavior. These data should improve

array design substantially by refining the algorithms to optimize

probe performance.

Results

Examining the distribution of variance revealed that the

majority of probes have low variance (,0.1, n = 378,057), with

only ,2% of probes showing high variance (.0.1 and ,4.97,

n = 7,417). We dichotomized the probes based on a cutoff of 0.1

(Figure 1, and see Figure 2 for raw data examples). Results of our

univariate analysis are described in Tables 1, 2 and 3. Variables

that were found to be highly significant (p,0.01) included Tm,

probe length, GC content, presence of a SNP, average

heterozygosity of a SNP, polyA, polyC, polyG, and polyT. Low-

variance probes had a higher Tm, shorter length, higher GC

content, shorter polyA or polyT runs, and longer polyC or polyG

runs. Low-variance probes were also less likely to have a SNP.

Among those probes that did have a SNP, low-variance probes

have less common (i.e., lower frequency) SNPs. Purine content was

not associated with probe performance.

Tm, probe length, and GC content all appear to be related to

one another. To examine the degree of relationship, we computed

Pearson’s correlations among these variables. This revealed a

highly correlated structure among these three variables (Table 4).

To discern which variable(s) were having the primary effect on

probe performance, we compared Akaike’s information criterion

(AIC) from single-term models, where probe performance was

regressed on length, GC content, or Tm (Table 5). Based on the

AIC, Tm is the predictor that best fits the data. We then compared

two-term models with Tm and either length or GC content to

assess whether there were residual effects of these variables after

accounting for Tm. When either length or GC content is included

in a model with Tm, neither length nor GC content is a significant

Figure 1. Observed variance in probe performance across multiple array CGH experiments. 384,475 probes are ranked by variance in
normalized log(2) ratios across 19 array CGH experiments. Rank order of probe is plotted on the x-axis, variance on the y-axis. A dotted horizontal line
is drawn at variance = 0.1, where probes are dichotomized according to ‘‘low’’ or ‘‘high’’ variance. Inset: number of probes that fall into each category.
doi:10.1371/journal.pone.0009921.g001

Probe Selection

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9921



predictor of probe performance. Furthermore, based on AIC

values, using Tm alone is the most parsimonious model that fits

the data best (Table 6). This implies either that Tm is the primary

factor among these variables contributing to probe performance,

or that our Tm calculation effectively describes length and/or GC

content.

We then examined the potential association of the remaining

significant variables (polyA, polyT, polyG, polyC, presence of a

SNP) with probe performance by adding these terms to a model

including Tm. The AIC of each model shows that the presence of

a SNP and polyC are independently predictive of probe

performance, but the remaining variables (polyA, polyT, polyG)

do not have a significant relationship to probe performance after

adjusting for Tm (Table 7). The presence of a SNP is significantly

associated with poor probe performance, whereas the presence of

poly-cytosine motifs are predictive of good probe performance,

after adjusting for Tm effects. The majority of this latter effect is

contributed by the tricytosine motif, with a minority contributed

by a quadcytosine motif. Five or more cytosines in a row appear to

have no effect on probe performance (Table 8), although this is

likely a reflection of the small number of such observations.

Discussion

We reasoned that the log(2) ratio from a given probe in an array

CGH experiment is a useful proxy for the information yielded by

that probe. We propose that the variance in the log(2) ratio across

multiple experiments captures poor probe behavior, such as

unreliable binding by target sequences as well as low target

capture, since at low signals the log(2) variance is often inflated.

We explored other measures of probe performance from our array

CGH data, including raw intensity measures for Cy3 (532

channel) and Cy 5 (635 channel) both separately and combined,

and the ratio of the standard deviation to the mean intensity across

experiments for Cy3, Cy5, and combined intensities. These

measures all yielded very similar distributions, with most probes

behaving in a consistent fashion, but with ,2% of probes giving

highly unreliable data. This implies that we have identified a true

set of poorly performing probes.

Using this definition of poorly performing probes, our study

demonstrates that Tm, homocytosine motifs, and the presence of a

SNP are all significant predictors of probe performance in

microarray design. Tm is a highly significant predictor: an

increase in Tm of ten degrees renders a probe almost three times

Figure 2. Examples of data from low- and high-variance probes. Normalized log(2) ratio data for 5 probes of low variance and 5 probes of
high variance across multiple experiments. High-variance probes are likely to have outlier values for one or more experiments, but also have large
variance even when outliers are excluded.
doi:10.1371/journal.pone.0009921.g002

Table 1. Results of univariate analysis, quantitative variables.

Low Variance
Probes

High Variance
Probes p-value

N 378,058 7417

Variance 0.039 0.379

Tm 65.13 63.87 ,2.2e-16

Length 56.55 56.97 ,2.2e-16

GC content (%) 35.93 33.28 ,2.2e-16

Purine content (%) 50.47 50.56 0.4538

Proportion with SNP 0.141 0.158 .000011

SNP heterozygosity 0.144 0.157 0.032

doi:10.1371/journal.pone.0009921.t001
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more likely to be in the low-variance (i.e., higher reliability)

category. The next largest predictor of probe performance is

presence of a SNP. After adjusting for Tm, we find there is a 15%

increase in the likelihood that a probe will be in the high-variance

(i.e., lower reliability) category if it contains a known SNP. Further,

we find that homocytosine motifs of size 3 or greater are associated

with reliable probe performance.

The array we used is specific to the DMD region of the X

chromosome. An advantage to this experimental design is that

patient samples are unlikely to have additional copy number

variants, aside from the pathological deletions and duplications

already identified and excluded prior to this analysis. This is

important, because if there were additional deletions or duplica-

tions, the variance of the log(2) ratio data would be artificially

inflated, and we would run the risk of misclassifying probes,

leading our analysis astray.

Our analysis identifies poorly behaving probes as those that do

not behave reliably across multiple experiments. There is another

potential class of poorly performing probes: those that have

saturated intensity due to signal from cross-hybridization of non-

unique sequence. These probes might behave consistently from

experiment to experiment, qualifying as well-behaved according to

our criteria. However, because potential probes are first screened

for non-unique sequence, and probes with too many genomic

matches discarded, this is likely a small source of misclassification.

Ultimately, our results are in predominant agreement with other

analyses, in particular those of Sharp et al. As in previous reports,

we find SNP content and Tm to be significant predictors of poorly

performing probes. However, because our analysis could be

extended to a multivariate format, we were able to test directly

among the related variables Tm, GC content, and probe length to

arrive at the predictor variable(s) with the largest effect(s). While

Sharp et al. attempted to correct for relationships among predictor

variables, they did so in an indirect manner, measuring covariance

between variables, and their analysis framework did not allow

simultaneous adjustment for multiple predictor variables. Further-

more, Sharp et al. used an approximation for Tm that did not take

into account the microarray environment. The Tm calculation we

have used is one most appropriate for surface-bound oligonucle-

otides, and may more accurately estimate the true melting

temperature of the oligos. Nevertheless, it should be noted that

the Sharp et al array was specific to a single region of the genome,

on chromosome 15. It is possible that their results are specific to

this single genomic interval and may not be generalized across the

genome, which perhaps accounts for the minor differences

between our results and those of previously published studies.

There are likely two dimensions to probe performance: the

ability of a probe to be correctly synthesized on an array, and the

ability of a correctly synthesized probe to bind its target. The

variables found to have the strongest effects in this analysis, Tm

and presence of a SNP, are likely related to hybridization and not

synthesis; however, the contribution of the tricytosine and

quadcytosine motifs to probe performance remains unclear. It is

possible that three or four cytosines in a row allow a probe to

assume a three-dimensional conformation that renders it highly

available to its target sequence. It is also possible that, once a target

sequence binds to a probe with more than three cytosines, it is

stably bound due to the large number of hydrogen bonds holding

it in place. Another possibility is that during synthesis, cytosines

have a slightly higher coupling efficiency than the three other

nucleotides, and therefore three or more cytosines in a row are the

motifs likely to have the fewest base misincorporations during

array manufacture.

Sharp et al. have shown an excess of polyG motifs in poorly

performing probes on Roche NimbleGen arrays, the same

technology used in our study[24]. A second group has previously

shown that on Affymetrix resequencing arrays, purine-rich (and

specifically guanine-rich) probes are overrepresented among probe

failures[24,25]. Our analysis fails to discern any relationship

between purine-rich sequences or polyG motifs and poor probe

performance. Results from our univariate analysis imply that there

is an overabundance of polyG motifs in low-variance (or ‘‘good’’)

probes. However, when we incorporate Tm and polyG motifs in a

model together, there is no significant effect from the polyG

motifs. It is therefore possible that prior reports of polyG sequences

associated with poor probe performance actually reflect a Tm

relationship. In fact, Sharp et al. show that polyG is positively

correlated with Tm, but speculate that polyG motifs have an effect

independent of Tm[24]. They do not show this directly, however,

Table 2. Percent of low and high variance probes with homopolymer runs (nucleotide, variance).

Size of Homopolymer A, Low A, High T, Low T, High C, Low C, High G, Low G, High

1 or 2 21.3 18.0 23.8 20.6 73.7 80.1 74.0 77.5

3 37.3 37.8 38.0 37.9 23.1 18.0 22.8 20.2

4 27.8 30.3 26.2 28.4 3.2 1.9 3.2 2.3

5 11.5 12.2 10.3 11.8 na na na na

6 1.8 1.5 1.5 1.0 na na na na

7 0.3 0.2 0.3 0.3 na na na na

doi:10.1371/journal.pone.0009921.t002

Table 3. Results of univariate analysis, categorical variables.

A C G T

chi-square 62.79 69.70 160.97 51.36

p-value 3.213e-12 1.182e-13 ,2.2e-16 7.021e-12

doi:10.1371/journal.pone.0009921.t003

Table 4. Pearson’s correlations between predictor variables
(all p ,2.2e-16).

Tm Length

GC content 0.966 20.466

Length 20.397

doi:10.1371/journal.pone.0009921.t004

Probe Selection

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9921



as it was not possible to test both variables simultaneously in their

analysis framework. Furthermore, Zwick et al. and Cutler et al.

also do not test for Tm[25,26]. It therefore remains possible that

the polyG relationship really reflects a Tm relationship best

accounted for when we include Tm in a multivariate analysis. It is

also possible that polyG has different effects depending on the

genomic region being examined (or on the organism, as Zwick et

al. were sequencing Bacillus anthracis). The genomic region on

15q11 tested by Sharp et al. is 41% GC, compared with 36.3%

GC in the DMD region we tested in our study, suggesting that GC

content alone is not responsible for this discrepancy. Alternatively,

it is possible that manufacturers have already responded to known

purine (or guanine) issues by improving their synthesis chemistries

in the interval between the two studies.

Our analysis here examines probes already selected by the

manufacturer’s algorithm. Such algorithms actually work well, as

evidenced by the fact that fewer than 2% of the probes on our

array had high variance across experiments. However, the analysis

we present here allows for a quantifiable estimate attached to each

predictor variable, providing some much-needed guidance when

selecting probes for custom-designed arrays. For example,

although it was already known that both Tm and SNP are

important, our analysis implies that low Tm is ‘‘worse’’ than the

presence of a SNP in a probe. We propose a sequential series of

considerations when designing probes that could significantly

reduce probe failure (Figure 3). Such enhanced probe selection,

however modest, could still have a major experimental impact

(Figure S1). As microarray probe density continues to increase, a

2% probe failure rate represents a substantial cost in data loss. By

way of illustration, with Roche NimbleGen’s latest high-density

array of 2.1 million probes, a 2% rate translates to the failure of

42,000 probes. What this means for array CGH is that such losses

could obscure copy number discrimination or reduce precision in

breakpoint determination. For MGS, critical genomic regions

targeted for capture and resequencing may be missed. Thus we

propose that the data reported here will help reduce probe failure

and allow for maximum data extraction from microarray

experiments.

Materials and Methods

Experimental data
We obtained 19 de-identified patient DNA samples with

previously characterized DMD gene structural mutations (deletions

and duplications) from the Emory Genetics Laboratory, OHSU

DNA Diagnostic Laboratory, and LabPLUS, Auckland, New

Zealand. All samples were stripped of personal identifiers and

numbered randomly. This study was approved by the Emory

University Institutional Review Board (#IRB00024817).

All patients had prior clinical validation of DMD structural

mutations identified by multiplex PCR of 32 exons and/or

Southern blot. We evaluated DNA from these patients with array

CGH using a custom-designed array with 385,474 probes in the

dystrophin gene region, which spans 2,222,000 bases on chromo-

some X (31,046,000–33,268,000; www.ucsc.edu). The vast

number of probes permits oversampling of the region; the average

spacing between probe starts is less than six bases. The array used

in these experiments was designed and manufactured by Roche

NimbleGen Systems, Inc. (Madison, WI). Roche NimbleGen used

in-house design criteria to select probes. These design criteria

included four main components: (1) an upper limit on synthesis

cycles, (2) probe selection based on Tm, (3) avoidance of repetitive

elements, and (4) a proprietary ‘‘uniqueness measure’’[23].

DNA extraction was performed on patient DNA using the

Gentra Systems Puregene DNA extraction kit according to the

manufacturer’s instructions. Normal male and female reference

DNA was obtained from Promega, Inc. Each patient and reference

DNA sample was sonicated such that fragment size was between

500–2000 bases, as verified on a 1% agarose gel. Patient and

reference DNA samples were then labeled using Klenow enzyme

(NEB) and Cy3 or Cy5 9 mer wobble primers (TriLink Technol-

ogies), respectively. After labeling, each sample was purified by

isopropanol precipitation and reconstituted in ultra-pure water. We

combined 13 ug each of labeled patient and reference DNA, and

Table 5. Comparison of single-term models with Tm, GC
content, and probe length.

Single-Term Models AIC

Tm 72273*

GC content 72333

Length 73231

doi:10.1371/journal.pone.0009921.t005

Table 6. Testing for residual effects of GC content or probe
length, after adjusting for Tm.

Model Includes Estimates beta se p-value Model AIC

Tm Tm 20.111 0.003 ,2e-16 72273

Tm + GC content Tm 20.108 0.014 8.89e-15 72275

GC content 20.002 0.006 0.794

Tm + length Tm 20.113 0.003 ,2e-16 72273

Length 20.005 0.003 0.126

doi:10.1371/journal.pone.0009921.t006

Table 7. Comparison of models with remaining predictor
variables.

Model With Tm and: AIC

SNP 72255

PolyA 72268

PolyC 72253

PolyG 72276

PolyT 72270

PolyC + SNP 72236

doi:10.1371/journal.pone.0009921.t007

Table 8. Final model including Tm, SNP, and polyC.

Variable beta se p-value Final Model AIC

Tm 20.107 0.004 ,2e-16 72236

SNP 0.143 0.032 8.32e-06

Poly C (3) 20.134 0.031 1.81e-05

Poly C (4) 20.204 0.087 0.0185

PolyC (5) 29.15 54.5 0.8667

doi:10.1371/journal.pone.0009921.t008
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desiccated the mixture in a Vacufuge (Savant DNA 120), then

resuspended in appropriate hybridization buffer along with Cy3

and Cy5 control CPK6 50 mer oligonucleotides. This mixture was

hybridized to the array for 16–20 h at 42uC in a Maui

Hybridization instrument (BioMicro Systems). Arrays were then

washed according to the manufacturer’s recommendation and

immediately scanned on a GenePix 4000 scanner (Molecular

Devices). After scanning, intensity data were extracted from images,

and within-array normalization was accomplished using manufac-

turer-provided software (NimbleScan). Normalized log(2) ratio data

were analyzed using the GLAD[28] program as implemented in R.

Predictor variables
Characteristics we hypothesized might be related to probe

performance were: probe melting temperature (Tm), probe length,

probe GC content, probe purine (AG) content, the presence/

absence and average heterozygosity of a known SNP, maximum

size homoadenosine sequence, maximum size homocytosine

sequence, maximum homoguanine sequence, and maximum

homothymidine sequence in a probe. These variables were

derived from the probe sequence via a custom Perl program.

Tm was calculated using the thermodynamic model proposed

by Vainrub and Pettitt[29], which modifies the Langmuir isotherm

to appropriately account for electrostatic interactions among

surface-bound molecules, which are present in microarray

environments, as follows:

Tm~DH0zNpwL2

DS0zR ln SNp

�
NAV

� �

Briefly, let DH0 be the probe reference state enthalpy, DS0 the

probe reference state entropy, Np the probe density, w the

interaction strength constant, L the probe length, R the universal

gas constant, S the feature size surface area, V the hybridization

volume, and NA Avogadro’s number. Entropy, enthalpy, and

initiation parameter values for calculating DH0 and DS0 were

obtained from the unified nearest-neighbor thermodynamic

method proposed by SantaLucia[30]. We assumed values of

50,000 per square micron for Np, 4610216 for w, 20624 uM for

S, and 2.0e-4 for V. All values are approximately consistent with

our experimental conditions. Tm was calculated according to the

formula above from the sequence composition of each probe, as

implemented in a custom Perl program.

Probe length was calculated based on the probe sequence

(range: 50 to 75 nucleotides). GC content and purine content were

expressed as proportions. The presence of a known SNP was

assessed by obtaining all known SNP positions cataloged in dbSNP

(build 128) within the 2.22-Mb DMD region on chromosome X

(n = 6883). We asked whether any SNPs mapped within the

interval defined by the probe start and stop positions for all probes

on the array; probes with SNPs were coded as ‘‘1’’, and those

without were coded as ‘‘0’’. For probes with SNPs, we recorded

the type of SNP and, when available, the average heterozygosity.

For the maximum homonucleotide sequence within a probe, we

recorded the longest stretch of homonucleotides .2 for all four

possible nucleotides (A,G,C,T; four different variables for each

probe: polyA, polyC, polyG, polyT). Probes with a maximum 1 or

2 of any homo[A,G,C,T] sequence were coded as ‘‘0’’, probes with

3 homo[A,G,C,T] were coded ‘‘1’’, probes with 4 homo[A,G,C,T]

were coded ‘‘2’’, and so on. When tabulating the data, we noticed

Figure 3. Proposed algorithm to refine probe selection.
doi:10.1371/journal.pone.0009921.g003
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that for long homopolymer runs (.7 for A and T; .4 for C and

G) there were cells with n,5. Small numbers in any one cell of a

table can inflate a chi-square test, but our sample size renders

Fisher’s exact test computationally intractable. As a compromise,

we chose to collapse the highest categories downward, until all

cells had a minimum value of 5, as follows: for A and T, probes

with runs 7 or greater (maximum run size = 9 for A, 8 for T) were

collapsed into a single group (number of recoded probes = 138 for

A, n = 89 for T); for G and C, probes with runs 4 or greater

(maximum run size = 6 for C, 8 for G) were collapsed into a single

group (number of recoded probes = 96 for C, n = 175 for G).

Outcome variable
For each array, we excluded probes within the DMD region that

were known to be deleted or duplicated for each patient; we kept

probe data only for regions with equal genomic content between

test and reference. To avoid unfairly inflating the variance in

probes because of uncertainty in the predicted breakpoints of

known copy number variants, we also excluded probes within

25 kb of a predicted breakpoint. For all 385,474 probes, we

calculated the variance of the normalized log(2) ratio across all

experiments (range 0.0018–4.97). Examining the distribution of

variance revealed that the majority of probes have low variance

(,0.1, n = 378,057), with only a fraction of probes displaying high

variance (.0.1 and ,4.97, n = 7417). We dichotomized the

probes based on a 0.1 variance cutoff.

For univariate analysis, we compared the distribution of predictor

variables between low- and high-variance probes using Student’s t-

test for continuous variables and a chi-square test for categorical

variables. To examine bivariate relationships among Tm, GC

content, and probe length, we computed Pearson’s correlations

among these variables. After univariate exploration of the data,

variables with significant differences (p,0.05) between low- and

high-variance probes were investigated further in multivariate

analysis using a logistic regression model. To best capture the

nonlinear relationship between homonucleotide runs and probe

performance, dummy categorical variables were created. Dummy

categorical variables were also created for Tm, in 5-degree bins, to

confirm that the Tm-probe performance relationship was linear

across the Tm range (data not shown). Models were compared using

Akaike’s information criterion (AIC)[31].

Supporting Information

Figure S1 Effect of Removing Bad Probes. Array CGH data for

5 samples. Normalized log(2) ratio plotted by position. Top panel

includes data for all probes. Bottom panel includes data for 98% of

the data (excludes 2% of probes with excessive variance).

Found at: doi:10.1371/journal.pone.0009921.s001 (0.23 MB

PDF)
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